Автор книги: Пол Халперн
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 28 страниц) [доступный отрывок для чтения: 9 страниц]
Ритмы жизни
За века существования человечества было создано много разных моделей времени.
В античном мире этот феномен обычно воспринимали через идею «циклов». Откровенно говоря, ничего удивительного: суточный ритм наших тел, круговое движение небесных тел, бесконечная смена сезонов – все это говорит, что время циклично. Сохраняющаяся популярность астрологии и концепт реинкарнации служат хорошим доказательством того, что такой взгляд жив.
Пульс природы проявляет себя бесконечным количеством способов, космос предлагает циклы, вложенные в другие циклы: от суточного вращения Земли до ее постоянного годичного вращения вокруг Солнца, и до совместного вращения Солнечной системы вокруг центра Млечного Пути. День следует за ночью, холод идет за теплом. Луна вызывает приливы и отливы, каждое небесное тело следует ритму, определенному его собственным балансом энергии.
Живые существа откликаются на эти циклические шаблоны собственным периодическим поведением. Птицы мигрируют, медведи забираются в берлоги, лосось поднимается по рекам, чтобы выметать икру. Человек ведет себя совершенно так же. Просыпается, ест, засыпает через регулярные интервалы времени, даже если живет там, где не видит солнечного света. Попытки проигнорировать естественные ритмы приводят лишь к тому, что тело откликается приступами усталости, голода или бессонницей.
Учитывая ту власть, которую имеют над нами дневные и сезонные циклы, можно легко понять, почему древние культуры верили, что время фундаментально циклично. От календаря майя, высеченного на круглом камне, до китайского символа инь-ян и египетского Уробороса (змей, пожирающий собственный хвост) мы находим отсылки к цикличности в символике по всему миру. Самые почтенные цивилизации следовали календарям, включавшим не только дни, месяцы и годы, но и более долгие циклы гибели и возрождения космоса.
Например, по версии Пуран, священных текстов индуизма, написанных на санскрите в четвертом столетии нашей эры, мир покоится на циклах, включенных в другие циклы различной продолжительности. История движется через повторяющуюся серию эпох, именуемых югами, каждая длится сотни тысяч лет, юги, в свою очередь, встроены в интервалы большего размера, махаюги, а те включают уже миллионы лет. Махаюги являются составной частью еще больших периодов, кальп, и тут счет идет на миллиарды лет. Небесные события, такие как схождение планет, и катастрофы наподобие потопов и пожаров, отмечают границы эр.
Циклическое время неизбежно повторяемо, обратимо и детерминистично. Экклезиаст выразил это в стихах следующим образом: «Всему свое время, и время всякой вещи под небом»[5]5
Экклезиаст, 3:1, синодальный перевод.
[Закрыть]. Если подождать достаточно долго, то любая фаза цикла повторится.
Но циклическое время не может описать картину целиком, поскольку многие черты мира природы предполагают существование направленного в одну сторону линейного времени. Одна из таких стрел описывается в термодинамике, науке о тепле и энергии. Второй закон термодинамики, предложенный немцем Рудольфом Клаузиусом в середине девятнадцатого века, гласит, что для всякого отдельного процесса величина, именуемая «энтропией», может либо оставаться на том же уровне, либо расти, но не уменьшаться.
Энтропия отражает то, какая часть энергии системы недоступна для работы, и чем она выше, тем больше количество растраченной энергии. Еще энтропия является мерой уникальности системы: чем более уникальной является система, тем ниже энтропия, и наоборот. Обычно упорядоченные системы имеют более низкий уровень энтропии, чем лишенные порядка. «Упорядоченность» в данном контексте означает уникальность расположения частиц в системе.
Например, куда сложнее изготовить снежинку с определенным узором, чем лужу из набора молекул воды. Лучики снежинки уникальны, и расположение частиц в ней тоже, в то время как все лужи одинаковы. Следовательно, в первой куда меньше энтропии. По второму закону термодинамики снежинка, упав на землю, может растаять, превратиться в каплю жидкости, но вода на земле никогда не станет набором снежинок.
Лорд Кельвин (Уильям Томпсон) озвучил постулат, что энтропия вселенной будет только увеличиваться со временем, количество свободной энергии будет сокращаться, пока космос не достигнет полностью инертного состояния, именуемого «тепловой смертью». К этому времени все топки (как нам известно сегодня, работающие на ядерной энергии) в недрах звезд прекратят функционировать, внешние слои взорвутся или улетучатся, оставив остывшую сердцевину. Даже холодные останки (белые карлики, нейтронные звезды или черные дыры, в зависимости от звездной массы) постепенно потеряют энергию, и мир станет неподвижным и безжизненным. Указатель в сторону этого весьма тусклого будущего именуется «термодинамической стелой времени».
Эволюция нацелена совсем в другом направлении.
Биология говорит нам, что живые организмы развиваются в сторону увеличения, а не уменьшения сложности, по крайней мере, дело обстоит так на нашей крохотной планете. Жизнь эволюционирует миллиарды лет, и через механизмы вариации и естественного отбора одноклеточные существа стали многоклеточными, вроде дельфинов, шимпанзе, собак и их двуногих хозяев. Даже человеконенавистник согласится, что люди чуть посложнее амеб. Люди обладают удивительной способностью познавать себя, предвидеть возможности будущего, обустраивать окружающую среду, наносить на карты мироздание, и многими другими. Техника, продукт человеческого разума, становится все более и более сложной. Следовательно, эволюция – прогрессивная стрела времени.
Какая из стрел победит в конечном итоге, термодинамическая или эволюционная? Если положение вещей не изменится, то, скорее всего, первая, поскольку жизнь требует непрерывной подпитки упорядоченной энергией – от солнца или иного источника, а источники конечны. Постепенно все живые существа теряют способность поддерживать равновесие жизни и умирают. Учитывая то, насколько хрупка жизнь на Земле, она сгинет раньше, чем вселенная в целом.
Но в некоторых фантастических сценариях, например в рассказе Айзека Азимова «Последний вопрос», продвинутые цивилизации в конечном итоге учатся, как переворачивать второй закон, и в результате организованная сила жизни одерживает верх над тенденцией распада и угасания.
Расширение вселенной представляет еще одну стрелу космологического времени. Открытие Эдвином Хабблом и его коллегами того факта, что галактики удаляются от нас, стало очевидным доказательством того, что пространство увеличивается со временем. Невозможно спутать нынешнюю вселенную, с ее бесчисленным количеством звезд и галактик, раскиданным по миллиардам световых лет, с ее компактной древней предшественницей.
Все мы, даже те, кто ничего не знает о научных стрелах времени, имеем четкое ощущение того, что время движется вперед. Наше сознание несет нас с неослабевающей силой в одном направлении, от рождения к смерти, и в повседневном опыте причина всегда предшествует следствию.
Хотя время нельзя потрогать, мы не в силах избежать его удушающих объятий. Интересно, что производит этот очевидно неостановимый поток, является ли движение вперед лишь иллюзией вроде той, которая превращает серию статичных картинок в мультфильм? Или это присущий реальности феномен, связанный с какой-то из «стрел»? Может быть, с несколькими? Но вне зависимости от истока, иллюзорное или реальное, сознание можно назвать еще одной стрелой линейного времени.
Но линейного времени, как оказалось, недостаточно для описания природы на фундаментальном уровне. Как продемонстрировала совместная работа Уилера и Фейнмана, определенные процессы в квантовом мире отрицают обычную причинность. Уравнения Максвелла содержат признаки того, что можно двигаться назад во времени точно так же, как и вперед, теория поглощения Уилера – Фейнмана смешивает эти виды движения. Предположение Уилера, которое его ученик поддержал, о том, что позитроны – это те же электроны, движущиеся в противоположном временном направлении, еще сильнее отодвинуло физику частиц от концепций линейного времени.
Время как лабиринт
Вместо цикла или стрелы интеграл по траекториям предлагает третью модель времени: лабиринт вечно ветвящихся возможностей. От каждой точки во времени уходит в будущее много ветвей, и в прошлое – корней, и эти линии изгибаются, сливаются, расходятся снова. В квантовом мире следовать только одному из этих потоков в принципе невозможно, надо иметь дело с «деревом» целиком, со всеми его узлами.
Термин «лабиринт» возвращает нас к одному из самых захватывающих греческих мифов, истории Минотавра, получеловека-полубыка, обитавшего в громадном здании запутанной планировки. Построить его приказал царь Минос, а исполнителем стал Дедал, великий ученый, архитектор и изобретатель, родом из Афин, но живший в изгнании на Крите. Он соорудил исполинский комплекс из вьющихся коридоров, спиральных лестниц, высоких башен, похожих комнат без окон, и назвал его «лабиринтом» от «лабриса», церемониальной секиры с двумя лезвиями[6]6
Этимология слова «лабиринт» неоднозначна, приводимая автором версия далеко не единственная.
[Закрыть], которую использовали на Крите. Работа была завершена, и Минотавра поселили в центре «резиденции», чтобы монстр не имел шансов выбраться.
Во время путешествия в Афины сын Миноса был убит быком, и жаждущий мести царь решил наказать афинян, потребовав, чтобы каждые девять лет семь юношей и семь девушек прибывали на Крит в качестве дани. Когда они попадали на остров, их отправляли в лабиринт, где они ожидали ужасной смерти в руках Минотавра. Искусно построенное сооружение не давало шансов найти выход, и его пленники блуждали по вьющимся коридорам, бесконечным комнатам, не зная, когда и где нападет чудовище. И в конечном итоге оно находило их, отчаявшихся и ослабевших, хватало и пожирало.
Тезей, афинский герой, сочувствовавший обреченным на гибель землякам, вызвался убить Минотавра. Юная дочь Миноса, Ариадна, помогла ему выполнить задачу. По совету Дедала она дала афинянину моток ниток, чтобы привязать его конец к дверям.
Тезей так и поступил и, разматывая клубок, отправился на поиски чудовища. Обнаружив его спящим, герой прикончил Минотавра голыми руками, а затем вернулся к выходу, чтобы благополучно бежать с Крита вместе с Ариадной и объявить о победе. Позже Тезей стал царем в Афинах.
Многие ученые, например специалист по семиотике Умберто Эко, рассматривали миф о лабиринте как метафорическую картину попыток человека изобразить и описать сложность мироздания. Дедал в подобной интерпретации – прототип, архетип ученого.
Эко в своей работе «Заметки на полях “Имени розы”» указал, что лабиринт может иметь много степеней сложности: в уникурсальном лабиринте существует лишь один возможный маршрут, в мультикурсальных их множество, а в самых сложных, ризомических – бесконечное количество.
В квантовом лабиринте Тезею пришлось бы пройти не один путь к центру, а все одновременно. Оставив за спиной переплетающуюся паутину из нитей вместо одной, он бы исследовал многочисленные маршруты и на некоторых набрался бы достаточно мужества, чтобы убить чудовище. На других, более извилистых, он мог бы утомиться до такой степени, что не выполнил бы задачу.
Когда афиняне позже пересказывали бы эту историю, им понадобилось бы описать каждую из возможностей, подчеркнув, какая из них выглядит более вероятной, а какая менее. Возможно, большая часть пересказов заканчивалась бы тем, что Тезей выбрал самый мудрый, короткий путь, но в другие дни миф показывал бы его неудачником, сделавшим неверный выбор и обрекшим себя на поражение.
Вместо одной классической легенды сложился бы квантовый интеграл по траекториям, до сих пор смущавший тех, кто знакомится с греческой мифологией.
«Сад расходящихся тропок»
По чистому совпадению, в 1941 году, когда Фейнман разрабатывал концепцию интеграла по траекториям, аргентинский писатель Хорхе Луис Борхес опубликовал «Сад расходящихся тропок», получивший впоследствие известность рассказ, в котором время предстает как лабиринт. Действие происходит во время Первой мировой, и это история об убийстве, в котором замешан китайский шпион по имени Ю Цун, подружившийся с известным английским синологом Стивеном Альбером, а позже убивший его.
Внезапный и неожиданный поворот сюжета раскрывает то, насколько нестабилен поток времени. Если время обладает большим количеством ответвлений, как предполагает рассказ, то случайное событие может отразить чье-либо жизненное путешествие от потока удачи до реки обреченности.
Ю Цун приходит к Альберу, чтобы получить консультацию по поводу своего предка, ученого китайского губернатора Цюй Пэна, который был экспертом по астрономии, мистике и математике. Тот отказался от должности таинственным образом, поскольку имел намерение написать роман и построить лабиринт. Книгу он создал, но никакого следа лабиринта после себя, по всей видимости, не оставил.
Как выясняется, лабиринт – это книга сама по себе, хроника, в которой в любой критической точке происходят сразу все противоречащие друг другу исходы. Возьмем одну главу, в ней персонаж мертв, но в следующей он неким образом оживает. Два описания одной и той же битвы излагают, как деморализованные войска приносят себя в жертву ради победы и как воодушевленная армия умело доводит дело до конца. Последняя страница романа совпадает с первой, предполагая, что его можно перечитывать и интерпретировать бесчисленное количество раз.
Честно говоря, это куда сложнее, чем лабиринт из стен и перекрытий.
Показав Ю Цуну книгу, Альбер объясняет китайцу мотивацию ее создателя: «Сад расходящихся тропок» – это недоконченный, но и не искаженный образ мира, каким его видел Цюй Пэн. В отличие от Ньютона и Шопенгауэра ваш предок не верил в единое, абсолютное время. Он верил в бесчисленность временных рядов, в растущую, головокружительную сеть расходящихся, сходящихся и параллельных времен. И эта канва времен, которые сближаются, ветвятся, перекрещиваются или век за веком так и не соприкасаются, заключает в себе все мыслимые возможности. В большинстве этих времен мы с вами не существуем; в каких-то существуете вы, а я – нет; в других есть я, но нет вас; в иных существуем мы оба»[7]7
Перевод Б. Дубина.
[Закрыть].
Доказывая неким образом тезис предка, что вселенная не более чем сеть случайных возможностей, Ю Цун убивает Альбера. На первый взгляд этот шаг не имеет смысла. Только выходит так, что китаец шпионит для Германии и хочет сообщить берлинскому военному командованию название городка Альбер, который должен стать целью следующего бомбового удара.
Он верит, что это единственный способ (имя убитого и убийцы обязательно попадет в газеты) передать немцам информацию. Решение Ю Цуна вскрывает вероятностную, лабиринтообразную природу времени. В другой ветви китаец может стать для Альбера другом на всю жизнь, но в этой он вынужден убить синолога.
Сегодня мы назовем рассказ с многочисленными возможными исходами образцом гипертекста. Благодаря Интернету большинство из нас сталкивается с ним каждый день. Когда мы читаем новости или решаем щелкнуть по ссылке, которая приведет нас на другой сайт, мы отправляемся в путешествие по текстовому лабиринту возможностей. Через некоторое время мы можем задуматься, почему, начав с намерения изучить последствия Второй мировой, мы закончили статьей о тувинском горловом пении или игре на бонго.
Выборы, которые мы делали в процессе интернет-серфинга, образуют уникальный, персональный маршрут. С помощью ежедневных странствий по мировой паутине, где каждый набор ссылок представляет собой бифуркацию альтернатив, лабиринтообразное время становится частью нашей жизни.
Трещины и расщепления
Один из ужасов войны, и Борхес это описал, состоит в том, что она делает друзей врагами. Вторая мировая разделила международное сообщество физиков на оппонентов и сторонников Оси – первые были куда более многочисленными, но в число вторых попали значительные фигуры вроде Вернера Гейзенберга.
Он был категорически настроен против нацистов, но решил остаться в Германии и заниматься наукой. В результате Гейзенберг стал главой команды ученых, исследовавших перспективы использования энергии ядерного распада и создания оружия на ее основе. Ресурсов им не хватало, и, как мы упоминали, какого-либо прогресса немцы не добились.
Но действия Гейзенберга крайне озаботили Нильса Бора и других коллег. Несмотря на прежнее уважение к Гейзенбергу, многие стали относиться к нему с презрением. Другие продолжали верить – и он старался поддерживать эту веру после войны – что он намеренно дал себя вовлечь в немецкий ядерный проект, чтобы саботировать его.
«Манхэттен», наоборот, получил беспрецедентную поддержку, изобилие ресурсов, технологий и персонала, сосредоточенного в нескольких локациях по Соединенным Штатам. Поначалу основными центрами стали лаборатории Чикагского университета и Колумбийского университета в Нью-Йорке (от последнего проект и получил название). Радиационная лаборатория Эрнеста Лоуренса в Беркли, где были разработаны циклотроны, и лаборатория того же имени в МТИ тоже сыграли важные роли.
Позже, из соображений секретности, многие тысячи исследователей и обслуживающего персонала были перевезены в Лос-Аламос (штат Нью-Мексико), Ок-Ридж (Теннесси), Хэнфорд (Вашингтон) и несколько других мест.
За время, прошедшее между публикацией статьи Бора и Уилера о ядерном распаде и вступлением США в войну, ядерный химик Гленн Сиборг с помощью циклотрона получил первые образцы искусственного радиоактивного элемента плутоний. Согласно расчетам Бора и Уилера, плутоний-239 и уран-235 выглядели равно многообещающими материалами для создания атомной бомбы.
После публикации статьи Уилер продолжил изучать ядерную структуру вместе с коллегами по Принстону Рудольфом Ладенбургом и аспирантом Ладенбурга Генри Баршаллом. Тем не менее основные усилия, как исследователь, он тратил на рассеяние и на совместные проекты с Фейнманом.
Вступление США в войну все изменило, востребованными стали знания об атомном ядре.
В январе 1942 года Уилера пригласили в Чикагский университет, чтобы рассмотреть идею создания промышленного ядерного реактора, который сможет выдать достаточное количество плутония. Под руководством Артура Комптона Чикаго быстро стал центром изучения свойств плутония в приложении к военным целям. Энрико Ферми завербовали из Колумбийского университета, где он уже добился цепной реакции в ядерном котле. Туда же пригласили Юджина Вигнера из Принстона.
Эта группа получила кодовое название «металлургический проект», и она нуждалась во многих блестящих умах для того, чтобы определить наиболее эффективный способ производства плутония в урановых реакторах в количестве, достаточном, чтобы изготовить бомбу.
Вскоре занятость в Чикаго заставила Уилера завершить работу с Фейнманом. Пришлось отложить в сторону научные мечты, о чем Джон сильно сожалел, и сосредоточиться, пусть временно, на военных исследованиях. Но чувство долга победило.
После этого Роберт «Боб» Уилсон, молодой исследователь из Принстона и бывший студент Лоуренса, явился к Фейнману со срочным запросом. Непосредственно в Принстоне стартовал секретный военный проект, связанный с разделением изотопов урана для изготовления той же бомбы. Уилсон спросил у Ричарда, не интересно ли тому принять участие, и если интересно, он должен посетить совещание в 15:00 сегодня же.
Фейнман тогда завершил исследования для диссертации и находился в шаге от получения степени. Он успешно сдал устный квалификационный экзамен, включавший вопрос о порядке цветов в радуге, и тут Ричарду пришлось задуматься, поскольку он не помнил. Кроме того, он написал толкование теории действия на расстоянии в двадцать семь страниц в классической и квантовой формах, отредактировал так, что текст был готов для публикации и мог послужить основой диссертации.
Ну и затем, получив степень, Фейнман мог наконец вступить в брак с Арлайн и найти работу – лучше всего в академической области, связанную с преподаванием, но может быть и исследовательскую в промышленности.
Само собой, поначалу, услышав предложение Уилсона, он решил отказаться. Абсолютно необходимо завершить диссертацию – объяснил он, сначала степень, потом все остальное. Более того – хотя Ричард этого не сказал – меньше всего на свете ему хочется работать над оружием.
Не для этого он пришел в физику.
Вернувшись к себе, Фейнман продолжил работать над рукописью, и тут в голову ему пришли мысли о том, какими могут оказаться последствия победы стран Оси. Что, если немцы создадут ядерную бомбу и используют ее для нападения на Британию? Как он сможет жить после того, когда огромные города окажутся уничтожены чудовищными взрывами? И эти мысли заставили его засунуть диссертацию в ящик стола.
Встреча в 15:00 оказалась короткой, но информативной, Уилсон и другие говорили о том, как разделять изотопы урана, используя электромагнитное устройство, именуемое изотрон. После встречи, оставшись в комнате с маленьким баром и большой пачкой бумаги, Фейнман немедленно погрузился в вычисления.
Он решил отдать приоритет этому проекту.
Вскоре, отчасти благодаря вычислениям Ричарда, группе Уилсона удалось произвести достаточное количество урана-235. Образцы поехали в Колумбийский университет и другие места для тестирования, а в Принстон двинулся нескудеющий поток визитеров, желающих оценить условия сепарации. Кто бы ни прибывал, Уилсон немедленно приглашал Фейнмана, чтобы тот растолковал технические детали процесса.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?