Электронная библиотека » Пол Халперн » » онлайн чтение - страница 6


  • Текст добавлен: 29 декабря 2021, 01:51


Автор книги: Пол Халперн


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 28 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
В поиске места для маневра

В МТИ Фейнман с жадностью прочитал учебник Дирака и принял вызов англичанина. Особенно интересными ему показались загадки последней главы «Квантовая электродинамика». Дирак методично вывел в ней выражения того, как релятивистская квантовая механика прилагается к электромагнитным взаимодействиям между электронами.

Уравнения выглядели безупречно, вот только результат казался невозможным.

Рассчитывая суммарную энергию, Дирак нашел, что ему требуется добавить бесконечное количество математических членов. Это не обязательно ловушка, иногда даже бесконечная сумма сводится к конечному значению, но тут все выглядело наоборот. Все расходилось до бесконечности – словно один плюс два плюс три и т. д., пытаясь добраться до конца. Только произвольно ограничив сумму, можно было получить реалистичный, конечный ответ.

И блестящий физик не смог найти выхода из этого затруднения.

Фейнман тщательно проверил расчеты Дирака, пытаясь найти лучший метод. Как указал британец, если два электрона взаимодействуют со световой скоростью, то сигнал между ними должен следовать вдоль одной из линий светового конуса. Хотя такая причинно-следственная связь реализуется вперед во времени, с точки зрения математики с таким же успехом можно рассматривать обратные во времени сигналы. На том языке, на котором говорили ученые во времена Фейнмана, направленный в будущее сигнал называли «запаздывающим», а направленный в прошлое – «опережающим».

Поскольку электромагнитные волны путешествуют со скоростью света, световой конус выходит из электрона, определяя набор прочих электронов, которые в разное время могут взаимодействовать с этим первым электроном. Они все как бы находятся на его «радаре». С другой стороны, если один электрон в какой-то момент времени не является частью светового конуса другого электрона, то они не на «радарах» друг у друга и не могут взаимодействовать.

Вообразите два взаимодействующих электрона как пару высоких кресел-качалок, соединенных бельевой веревкой, которая символизирует линию светового конуса. Поскольку световой конус – чисто математическое понятие, представляющее временные задержки и пространственные дистанции, связанные со скоростью света, мы используем нечто более осязаемое, чтобы изобразить его.

Веревка просто показывает, как связаны причина и следствие.

Покачаем одно кресло вперед-назад, и сигнал посредством веревки на мгновение позже достигнет другого кресла, заставив его тоже качнуться. Рассматривая электроны, стоит учитывать, что в их случае сигнал передается со скоростью света.

И хотя теория электромагнетизма Максвелла ни в чем не ошибается, нашей аналогии недостает важного ингредиента: электромагнитных волн, или, говоря на квантовом языке, фотонов. Нить светового конуса символизирует задержку, но она автоматически не включает электромагнитную трансляцию, которая следует по линии сигнала. Логика говорит нам, что если два события разделены таким образом, что электромагнитные волны могут путешествовать между ними, это вовсе не означает, что волны будут это делать.

И тем не менее, следуя стандартным предписаниям Максвелла – принятым как тогда, так и сейчас подавляющим большинством физиков, – Дирак включил в схему электромагнитные волны как средство взаимодействия электронов. Как еще могут они «говорить» друг с другом, как один «сообщает» другому, что делать?

Дирак охарактеризовал волны – пульсирующие электромагнитные поля – как набор синусоидальных колебаний, в сущности струн, различных частот (скорость вибрации). Почему струны? Как простейшее отображение чего-либо колеблющегося их легко представить. Квантовая механика предсказывает, что их энергия пропорциональна частоте.

К собственному разочарованию, Дирак нашел бесконечное количество возможных типов колебаний (технически именуемых «степенями свободы»), что вело к расходящейся сумме для энергетических вкладов. Следовательно, рассчитанная суммарная энергия выходила бесконечной, что невозможно с физической точки зрения.

Получить реалистичный ответ Дирак мог, лишь произвольно ограничив сумму.

В нашей веревочной аналогии не очень удобно использовать струны, поэтому давайте вообразим набор простыней, хлопающих в разных ритмах. Мы вешаем простыни по одной, и каждая вибрирует особенным образом. Вскоре мы обнаруживаем, что у нас есть безмерное число возможностей, веревка выдержит очень много простыней. Однако мы хотим постичь явление целиком, изучить все виды колебаний, и мы торопливо добавляем новые и новые простыни, пока не падаем от усталости.

Веревка покрывается все более и более толстым слоем ткани, и процесс не останавливается!

Прочтя выкладки Дирака, Фейнман начал думать, что нити светового конуса будет достаточно самой по себе. Что если нет никаких электромагнитных волн, просто прямая причинная связь между двумя электронами?

Результатом будет отсроченное действие на расстоянии.

Классическое действие на расстоянии Ньютона не имело временной задержки, а новые теории, такие как общая теория относительности, позволили включить этот параметр в рассмотрение. Тогда электроны будут взаимодействовать на расстоянии с временной задержкой, определяемой световым конусом. Это обеспечило бы соответствие между причиной и следствием, чтобы они передавались с правильной скоростью – скоростью света – даже если в самом деле между электронами ничего не перемещалось.

Оставив в стороне поля, отважно думал Фейнман, может быть, удастся выйти из ловушки бесконечного суммирования, а прямое взаимодействие между электронами сведется к сигналу. Просто потрясите один электрон, и другой затрясется в свой срок, подобно креслам-качалкам, соединенным бельевой веревкой безо всякой ноши из простыней.

Попытка оживить действие на расстоянии – после Максвелла, Эйнштейна и других, доказавших, что оно невозможно – может выглядеть безрассудством. Попытка избавиться от посредника, а именно, полей, который переносит силу из одного места в другое, может выглядеть нелогичной. Но это было время невероятной революции в науке. Громадное количество аспектов субатомной физики казались странными поначалу, например, электроны, внезапно перепрыгивающие с одного атомного уровня на другой.

Фейнман все равно верил, что действие на расстоянии с введением временной задержки стоит того, чтобы его рассматривать – особенно учитывая альтернативу, где приходится возиться с бесконечными величинами. Может быть, в квантовом мире – для крошечных дистанций, недоступных наблюдению – законы Максвелла требуют поправки. Веря только тому, что он мог доказать сам, Фейнман обладал достаточно открытым умом, чтобы проверять самые радикальные гипотезы и отставить в сторону классическую теорию электромагнетизма.

Другой хорошо известный факт из области электродинамики тоже подвигнул Ричарда на то, чтобы забыть про поля. В расчетах, включающих либо классическую, либо квантовую электродинамику (как было известно в то время), электрон, по всей видимости, имел бесконечную собственную энергию. Собственная энергия – это объем энергии, необходимый, чтобы создать частицу или ее конфигурацию с нуля, что-то вроде перечня ресурсов, требующихся для постройки здания, включая материалы и труд.

По стандартному определению, собственная энергия включала энергию покоя частицы (связанную с ее массой посредством знаменитой формулы Эйнштейна), а также энергию ее взаимодействия с собственным электромагнитным полем. Для частицы конечного размера расчет этой величины возможен, поскольку сила поля уменьшается по мере увеличения расстояния от его центра. Можно определить, сколько энергии нужно, чтобы возник шарик с определенным зарядом, учитывая силы, производимые этим шариком самим по себе посредством полей, которые он создает.

Тем не менее если принять, что электрон обладает параметрами точки, то есть он бесконечно мал, его поле в этой самой точке должно быть бесконечно сильным. Следовательно, сила взаимодействия между электроном и его собственным полем будет тоже бесконечно большой.

Выходит, что расчет собственной энергии электрона приносит нам бесконечную величину и это откровенно нереальный физический результат.

Простое средство справиться с этим, по мнению Фейнмана, состояло в том, чтобы запретить электрону взаимодействовать с его собственными полями. Поля надо убрать. Электроны будут взаимодействовать друг с другом и никоим образом сами с собой. Отсюда величина их собственной энергии легко определима, исходя из их массы, с помощью того же уравнения Эйнштейна.

Она будет конечной и осмысленной.

Лицом к лицу с сопротивлением

Когда Фейнман уже работал вместе с Уилером в Принстоне, он открыл главную проблему, возникающую при попытке убрать поля из рассмотрения при построении гипотезы действия на расстоянии. Хорошо известный феномен, именуемый радиационным сопротивлением, демонстрировал, что электроны и другие заряженные частицы куда сложнее ускорить, чем лишенные заряда.

Ускорить протон, например, намного тяжелее, чем нейтрон, хотя их массы сравнимы.

Логическое объяснение состояло в том, что заряженные частицы генерируют излучение в форме электромагнитного поля, которое влияет на них самих и замедляет их движение. Если вспомнить нашу аналогию с креслами и веревкой, это были бы простыни, повешенные на кресло и замедляющие его качание. Нейтральные объекты не обременены таким «довеском» и поэтому сравнительно более мобильны.

Но опять же, нужны ли поля и взаимодействие между ними, думал Фейнман, чтобы описать процесс радиационного сопротивления? Или может быть совсем иной способ?

Когда в их совместной с Уилером работе в области рассеяния наступила пауза, Ричард решил взяться за мучающее его затруднение и в конечном итоге отыскать ответ. Результатом стало вполне удобоваримое объяснение: предположим, что радиационное сопротивление было прямым воздействием на электрон со стороны всех других заряженных частиц в пространстве, а вовсе не электромагнитного поля.

Потряси электрон, и все другие заряженные частицы прореагируют, отправляя сигналы обратно к источнику, и они неким образом доберутся до него безо всякого поля. Комплекс реакций со стороны других заряженных частиц произведет воздействие на исходный электрон, и именно оно помешает тому ускоряться.

Оживляя нашу аналогию, мы должны прикрепить кресло к бесконечному числу других множеством веревок. Покачав его, мы вынудим качаться и все остальные, а затем их движение передастся по веревкам обратно и станет тормозить колебания первого.

И никаких висящих на спинке простыней, чтобы объяснить эффект!

Выслушав ученика с большим вниманием, Уилер немедленно указал на несколько слабых мест.

Если радиационное сопротивление зависит от того, как другие заряженные частицы влияют на электрон, то будут иметь значение их свойства – масса, заряд, расстояние до исходного электрона. Следовательно, теоретически каждый электрон должен характеризоваться уникальным радиационным сопротивлением, определяемым его окружающей средой, а этого не наблюдается. Более того, радиационное сопротивление каждого электрона, если оценивать по его движению, выглядит тем же самым.

Кроме того, сигналам понадобится время, чтобы добраться от электрона к другим заряженным частицам, а затем вернуться. Но эксперименты показали, что радиационное сопротивление возникает мгновенно, без какой-либо задержки.

Наконец, если суммировать реакции на все другие заряды во вселенной, то с этим можно возиться до бесконечности. Одна невозможная ситуация заменится другой. Стоит ли огород городить?

Фейнман был ошеломлен тем, насколько быстро Уилер обнаружил ключевые недостатки модели – все выглядело так, словно Джон потратил бесконечное количество часов, тестируя гипотезу, проверяя ее как новую машину на предмет недоработок и недостатков. Но ведь Фейнман только что представил ее… и оказался полным идиотом! По крайней мере, так он почувствовал себя.

На самом деле Уилер много лет размышлял над тем, как заменить полевой подход к электромагнетизму на более прямую концепцию действия на расстоянии. Чтобы упростить физическое описание процесса, он решил оживить оригинальную идею Ньютона о силе как «невидимой нити», соединяющей объекты через огромные расстояния. Майкл Фарадей и Джеймс Максвелл развили идею физического поля, чтобы сделать электромагнетизм локальным и осязаемым, но, возможно, на квантовом уровне их идеи просто не работали.

Действие на расстоянии, думал Уилер, упростило бы физику частиц, сделав электроны исключительными хозяевами своей судьбы. Они бы сами управляли собственными взаимодействиями безо всяких посредников. Он долго мусолил идею «всего как электронов», включая в рассмотрение не только электромагнетизм, но и другие частицы и силы.

Если ее воплотить, то во вселенной воцарились бы единство и простота.

Частью желание исследователей возродить идею действия на расстоянии в приложении к квантовой электродинамике происходило из растущего понимания того, что многие квантовые феномены проявляют свои эффекты дистанционно. Такое отдаленное взаимовлияние, названное «квантовой запутанностью», возникает, когда две частицы с комплементарным значением квантового числа (параметр, определяющий конкретное квантовое состояние), таким как спин, связаны в одной и той же системе, и не важно, насколько они удалены физически.

Возьмем, для примера, пару электронов, находящихся на низшем уровне энергии в атоме водорода. Принцип исключения Паули объявляет, что они не могут иметь одно и то же квантовое число, следовательно, они должны иметь разное значение спина: если один спином вверх, то другой спином вниз.

Но до тех пор, пока ученые не измерят состояния спина, неизвестно, какой электрон обладает каким спином. Следовательно, до момента измерения каждый электрон находится в суперпозиции (смесь квантовых состояний) из двух возможных значений спина.

Теперь вообразите, что ученые сумели развести эту пару электронов, и только потом стали делать замеры. Первый отправили на Луну, а второй остался на Земле. Невзирая на огромное расстояние, если космонавт определит значение спина как «вверх», то другой электрон непременно окажется со спином «вниз», и наоборот: некий вид квантовых качелей.

Эйнштейн, например, верил, что такого рода мгновенная координация невозможна, поскольку сохранял приверженность принципу физической коммуникации и называл ее «сверхъестественное дальнодействие». Как может один электрон заранее знать, что покажет эксперимент относительно другого?

Статья 1935 года, написанная австрийским физиком в соавторстве с Борисом Подольским и Натаном Розеном (на самом деле материал подготовил большей частью Подольский) описывала «ЭПР-парадокс» (Эйнштейна – Подольского – Розена) и подчеркивала противоречия, возникающие в процессе запутанности, такие как умение частиц предсказывать, какие из их параметров будут измерены.

Квантовые физики по большей части проигнорировали критику Эйнштейна. Например Бор – «философский король» научного сообщества, если его можно так назвать – признавал, что поля объемлют противоположные аспекты, такие как свойства волны и частицы одновременно. Он называл единство противоположностей «дополнительностью», и в качестве эмблемы использовал знаменитый даосский символ инь-ян, свитые в единстве капли черного и белого цветов.

С философской точки зрения Уилер начал карьеру как сторонник Бора, принимая квантовую неопределенность и дополнительность как факт. Но затем он познакомился с Эйнштейном и тоже начал ценить его размышления.

Эйнштейн жил в нескольких кварталах от Уилера, и Джон часто видел, как пожилой ученый прогуливается по улице в компании ассистентов, Питера Бергмана и Валентина Баргмана. Они трое пытались создать унифицированную теорию природных сил, которая, по их мнению, смогла бы отправить нелокальные, вероятностные аспекты квантовой физики в мусорный ящик, заменив их на локальное, детерминистическое приложение общей теории относительности.

Соглашаясь с Бором в том, что подобные усилия бесплодны, Уилер, тем не менее, восхищался независимостью мысли Эйнштейна. Он надеялся, что прогресс в теоретической физике в конце концов позволит снять противоречия между гипотезами австрийца и датчанина.

В отличие от Эйнштейна, Уилер не воспринимал действие на расстоянии как табу. Более того, с его точки зрения, запутанность ясно показывала, что квантовая физика является нелокальной. Признавая дистантную координацию электронов по состоянию спина, Джон хотел описать их электромагнитные взаимодействия на той же нелокальной основе.

Потряси один электрон, и другой тоже задвигается, словно они висят на единой нити. Ключевое отличие лишь в том, что в случае электромагнетизма должна быть временная задержка. Специальная теория относительности предписывала, что сигнал по нити не может двигаться быстрее света.

Зигзаги через время

Как только Уилер взялся за проблему радиационного сопротивления для электронов, он и Фейнман объединили усилия, чтобы попытаться смоделировать эффект без участия электромагнитных полей. Им требовалось найти объяснение тому, что любой электрон, ускоряемый с определенным усилием, испытывает то же самое сопротивление вне зависимости от расположения всех других зарядов во вселенной.

Это словно тормоза машины, срабатывающие одинаково во всех ситуациях, вне зависимости от условий на дороге и действий других автомобилей.

Пытаясь создать более реалистичную гипотезу, Уилер представил, что произойдет, если электрон, ускоряясь, встретит сопротивление, определяемое соседними частицами. Ускоряющийся электрон первым делом отправит в стороны некий сигнал, затем, словно зеркало, нечто в окружающей среде отразит этот сигнал, и отражение и будет препятствием для движения.

Поскольку эффект возникает мгновенно, не может быть временной задержки между отправкой первого сигнала и получением второго, второй должен прибыть в точности в то мгновение, когда отправляется первый. И это может происходить только в том случае, если второй сигнал совершит обратное путешествие во времени.

Уилер знал, что уравнения Максвелла полностью симметричны во времени.

Любое решение описывает не только волну, двигающуюся в будущее, но одновременно и другую, катящуюся в прошлое. Последнее, именуемое «опережающим решением», традиционно игнорируется, поскольку все знают, что часы идут вперед, а не назад.

Тем не менее наш герой обладал на редкость открытым умом и хотел узнать, что случится, если включить в рассмотрение опережающее решение. В то мгновение, когда электрон посылает сигнал посреднику (окружающей среде, по сути, суммарному эффекту всех частиц вселенной), анонсируя свое присутствие, посредник отправляет назад сигнал, прибывающий точно в тот момент, когда отправляется первый.

По техническим причинам посредник должен быть идеальным поглотителем, принимающим каждый сигнал. Следовательно, в обращенном назад во времени решении он будет действовать как идеальный излучатель, отправляя обратно чистый сигнал, не замутненный какими-либо материальными эффектами посредника. Результатом станет мгновенное замедление пытающегося ускориться электрона независимо от свойств иных частиц.

Оживляя аналогию с веревкой – мы словно привязываем один ее конец к креслу-качалке, а другой – к стене (она представляет посредника). Покачаем кресло, и вибрация побежит по веревке, добравшись до стены, она отразится и вернется к креслу, препятствуя его колебаниям. Теперь вообразим, что неким образом стена посылает отраженный сигнал обратно во времени, чтобы тот повлиял на кресло в тот момент, когда оно начинает качаться.

Так мы получим странный эффект опережающего сигнала.

Предположения Уилера заинтриговали Фейнмана, и он немедленно принялся выражать их математически, пробуя разные комбинации исходящих и входящих пульсаций, чтобы получить суммарный эффект, способный объяснить радиационное сопротивление. Вскоре он нашел правильную пропорцию: смесь пятьдесят на пятьдесят из сигналов, идущих вперед и назад во времени, полностью симметричную относительно настоящего.

Он смог описать радиационное сопротивление, не используя электромагнитные поля, и тем самым избежал проблемы расходящейся энергии, причинившей столько неудобств Дираку и остальным. С изгнанными фотонами свет стал прямым взаимодействием между электронами, ясно и просто.

Гипотеза стала известной как «теория поглощения Уилера – Фейнмана».


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации