Автор книги: Шон Кэрролл
Жанр: Физика, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 28 страниц) [доступный отрывок для чтения: 9 страниц]
Передача факела
Лин Эванс официально ушел из ЦЕРНа в 2010 году, уже когда машина была успешно запущена после аварии и заработала. А поступил на работу в ЦЕРН в 1969 году, отдав ему сорок лет жизни и пережив десять генеральных директоров. Еще совсем недавно, в 1981 году, он, Карло Руббиа и Серджо Читтолин (итальянский физик со своеобразным хобби – украшать лабораторные журналы эскизами в стиле Леонардо да Винчи) втроем в 4 часа 15 минут утра, находясь в пустой в диспетчерской, включили модернизированный Суперпротонный синхротрон и наблюдали первые протон-антипротонные столкновения частиц внутри ускорителя.
Ничего похожего на то, что происходило 10 сентября 2008 года, когда торжественное открытие БАКа стало международным событием, непосредственными свидетелями которого стали сотни людей, и еще тысячи наблюдали за ним благодаря Интернету по всему миру. В тот день в диспетчерской БАКа, заполненной представителями средств массовой информации, известными учеными и высокопоставленными гостями, Эванс выступал в качестве дирижера. Чтобы заставить аудиторию поволноваться, инженеры не сразу запустили протоны по всему кольцу, а стали открывать восемь секторов один за другим. После того как первые семь секторов успешно прошли испытание, Эванс начал обратный отсчет, а в это время протоны готовили к пролету полного оборота по кольцу. В назначенное время на сером экране компьютера вспыхнули две точки – это означало, что пучок успешно стартовал и успешно вернулся в ту же самую точку. Комната взорвалась аплодисментами, и в физике элементарных частиц наступили новые времена.
Физики редко уходят на пенсию в обычном смысле слова, вот и Эванс после выхода на пенсию участвует в эксперименте CMS и помогает проектировать следующее поколение ускорителей. После того как было объявлено об открытии бозона Хиггса, Эванс, размышляя о том, что все-таки произошло, сказал: «Недавно я оказался на вечере, организованном коллаборацией CMS. Там собралось около 500 человек. Увидев всех этих молодых людей, я вдруг понял, какой груз ответственности лежал на моих плечах. Я имею в виду то, сколько людей рассчитывает, что эта машина будет работать!»
Теперь в ЦЕРНе надеются, что она будет продолжать функционировать в течение будущих десятилетий. Чтобы оправиться от аварии сентября 2008 года, потребовалось больше года, но с тех пор БАК работает просто великолепно. В 2010 и 2011 годах эксперименты велись при полной энергии 7 ТэВ, в 2012 году – при 8 ТэВ, что позволило обнаружить бозон Хиггса или нечто очень похожее на него. По-прежнему конечная цель – достичь 14 ТэВ, но чтобы добиться этого, потребуется отключить БАК на два года для тестирования и модернизации оборудования. Отключение изначально планировалось начать в конце 2012 года, но после открытия бозона Хиггса Совет ЦЕРНа решил продлить работу ускорителя на 8 ТэВ еще на несколько месяцев. Это так понятно – всякий раз, получая новую игрушку, вы хотите с ней поиграть прямо сейчас, сразу и без промедлений!
Глава 6
Что открывают нам столкновения
Мы узнаем, как обнаружить новые частицы, сталкивая уже известные частицы на огромных скоростях и наблюдая за тем, что происходит.
В детстве я увлекался разными науками, но только две вещи действительно захватили меня: физика и динозавры. (В свои двенадцать лет я не знал слова «палеонтология».) Время от времени у меня случался флирт с другими науками, но отношения никогда не заходили слишком далеко. Например, я с удовольствием развлекался с подаренным мне детским химическим набором, но в основном поджигал реактивы и никогда не испытывал особенного счастья от получения новых соединений в строго контролируемых условиях.
Другое дело динозавры! Это был настоящий роман. Мой дед брал нас с братом в музей штата Нью-Джерси, расположенный в Трентоне, где мы быстро проскальзывали мимо скучных артефактов и исторических выставок, но замирали перед зловеще нависающими огромными скелетами. Я никогда всерьез не связывал свое будущее с палеонтологией, но каждый ученый из тех, что я знаю, в душе согласен, что динозавры – это по-настоящему круто.
Вот почему я был взволнован, когда меня, уже вполне взрослого, преподавателя Университета Чикаго, пригласили поучаствовать в экспедиции по поискам динозавров. Большинство палеонтологических экспедиций прекрасно могут обойтись без физиков, но эта экспедиция была организована под эгидой некоммерческого Исследовательского проекта, предназначенного для того, чтобы увлечь наукой детей и представителей национальных меньшинств. То было специальное мероприятие для друзей организации, и меня пригласили для участия в различного вида научно-просветительских мероприятиях, связанных с экспедицией. Признаться, мне было совершенно неважно, чем там заниматься – хоть мыть посуду, я был согласен на все, лишь бы мне разрешили раскапывать кости динозавров, ведь это была мечта моего детства.
И мы нашли их – в районе геологической формации Моррисон, недалеко от городка Шелл (штат Вайоминг) с населением около 50 человек. Земля Моррисона набита окаменелостями юрского периода, и мы коротали теплые деньки, бодро выкапывая образцы камаразавра, трицератопса и стегозавра. Слово «выкапывать» может дать преувеличенное представление о достижениях нашей – в основном любительской – команды. По большому счету мы лишь нашли место, где имело смысл копать, и оставили его для другой экспедиции, которая должна была довести дело до конца.
Это был полезный опыт – я многому научился, и прежде всего понял, что заниматься теоретической физикой гораздо легче, чем палеонтологией. А еще я нашел ответ на вопрос, который не давал мне покоя в течение многих лет: чем отличается кусок окаменевшей кости от окружающей его горной породой? В течение миллионов лет эта кость всасывала минералы из окружающей скальной породы, пока в конце концов не превратилась почти в настоящий камень. Так как отличить одно от другого?
Ответ: с помощью очень тщательного анализа. У экспертов-палеонтологов есть, конечно, приемы, отточенные за годы их работы и позволяющие увидеть тонкие градации цвета и текстуры тканей, которые ускользают от внимания непосвященных. Приведите группу любителей к месту залегания ископаемых остатков динозавра, и, несомненно, самый частый вопрос, который вы услышите, будет: «А этот кусок – кость?». На него всегда есть однозначный правильный ответ, и эксперты почти всегда могут его найти.
В то время как работа по поиску костей динозавров очень далека от повседневной жизни физиков-теоретиков, сходство с экспериментальной физикой элементарных частиц очевидно. Мы говорим кратко: на Большом адронном коллайдере мы «увидели бозон Хиггса», но в реальности все не так просто. Мы никогда не видели бозонов Хиггса, и вероятность его увидеть не больше, чем вероятность встретиться с динозавром на улице. Век бозонов Хиггса очень недолог – едва ли хоть один из них переживет одну десятимиллиардную одной триллионной доли секунды. Это слишком мало, чтобы успеть поймать его даже с помощью такого технологического чуда, как все детекторы БАКа. (Время жизни прелестного кварка – одна триллионная секунды, и это предельное время жизни, за которое еще частицу можно успеть засечь, а время жизни бозона Хиггса равно одной десятимиллиардной этого значения.)
Вот почему мы надеемся найти лишь свидетельства того, что бозон Хиггса существовал, – в виде появления других частиц, возникающих при его распаде. Если продолжить аналогию с динозаврами, мы ищем окаменелости.
В предыдущей главе мы говорили об ускорителе БАК, который гоняет сотни миллиардов протонов по круговым траекториям в тоннеле, расположенном в пригороде Женевы. В этой главе мы поговорим о массивных детекторах, установленных в определенных помещениях по всему кольцу, где в сериях частых взаимодействий протоны приводятся в столкновение. В полученных данных, касающихся какого-то отдельного события, мы могли бы, например, обнаружить две струи сильно взаимодействующих частиц или высокоэнергетичную мюон-антимюонную пару. Вопрос: все это возникло при распаде бозона Хиггса или от чего-то еще? Методика правильной идентификации этих «окаменелостей» представляет собой сочетание научных методов, технических приемов и черной магии. Они и лежат в основе охоты на бозон Хиггса.
Идентификация частиц
Физика элементарных частиц подобна работе следователей. Прибывшие на место преступления детективы редко находят там видеозапись с кадрами, на которых запечатлен преступник в момент убийства, нечасто их ждут и непротиворечивые показания очевидцев или подписанные преступником признания. Скорее всего, есть несколько разрозненных улик: там – фрагменты отпечатков пальцев, здесь крошечный образчик ДНК. Самая сложная часть работы – сложить эти фрагменты вместе и восстановить полную картину преступления.
Аналогично, когда физик-экспериментатор, работающий с элементарными частицами, анализирует результаты, полученные на коллайдере, он и не надеется увидеть приколотый к частице значок, на котором написано: «Я – бозон Хиггса!». Мы уже говорили, что бозон Хиггса быстро распадается на другие частицы, поэтому у нас должно быть четкое представление о том, какими эти частицы должны быть, а это – задача для теоретиков. А экспериментаторы сталкивают протоны друг с другом и смотрят, что получается. Большая часть внутренности детектора частиц заполнена материалом, проходя через который частицы оставляют следы. Конечно, не все частицы так делают: например, нейтрино не чувствуют ни электромагнитное, ни сильное взаимодействие, поэтому они не оставляют никаких следов, и нам приходится напрячь умственные способности, чтобы их обнаружить.
К сожалению, и треки частиц, которые мы все-таки наблюдаем, тоже не снабжены табличками с надписями: «Я мюон, и лечу со скоростью, равной 0,958 от скорости света!». Мы сами должны определить, что за частицы возникли в результате столкновений и что это означает для процессов, благодаря которым стало возможным рождение этих частиц. Мы должны знать, был ли этот мюон произведен в результате распада хиггсового бозона, Z-бозона, или каких-либо еще подозреваемых. И при этом сами частицы совершенно не горят желанием сделать чистосердечное признание.
Хорошей новостью является то, что общее число частиц в Стандартной модели относительно невелико, так что у нас набирается не слишком много подозреваемых, которых придется проверять. В этом смысле мы больше похожи на шерифа из Мэйберри[4]4
Вымышленный городок в Северной Каролине, фигурирующий в двух популярных американских ситкомах.
[Закрыть], чем на детектива с Манхэттена. У нас есть шесть кварков, шесть лептонов и несколько бозонов: фотоны, глюоны, W– и Z-бозоны, и, наконец, сам бозон Хиггса. (Гравитоны по существу никто никогда не видел, потому что гравитация – очень слабое взаимодействие.) Определив массу и заряд частицы, а также то, чувствует ли она сильное взаимодействие, мы почти наверняка однозначно идентифицируем ее. И задача экспериментатора – отследить как можно точнее треки частиц, образующихся при столкновении, а также определить их массы, заряды и взаимодействие с другими частицами. Это позволит нам воспроизвести основной процесс, который вызвал всю эту неразбериху.
Определить, ощущает частица сильные взаимодействия или нет, довольно легко, поскольку по счастливому стечению обстоятельств эти взаимодействия являются по-настоящему сильными. Кварки и глюоны оставляют совершенно не такие следы в детекторе, как лептоны и фотоны. Они быстро группируются и запирают себя в различные виды адронов – либо в комбинации из трех кварков, так называемые «барионы», либо в пары из одного кварка и одного антикварка – «мезоны». Эти адроны лихо врезаются в атомные ядра, поэтому их легко отличить. На самом деле, когда вы производите один кварк или глюон с высокой энергией, сильные взаимодействия, как правило, приводят к тому, что они превращаются в целый букет адронов, называемый «струей» или «джетом». Соответственно, очень легко увидеть, что был получен кварк или глюон, но выяснить его точные свойства немного сложнее.
Зато с помощью волшебных магнитных полей довольно легко выяснить, какой у частицы электрический заряд. Детекторы БАКа, как и его туннель, заполнены разными магнитными полями, которые направляют частицы в разных направлениях. Если движущаяся частица отклоняется в одном направлении, она имеет положительный заряд, если в другом – ее заряд отрицательный, ну, а если частица движется по прямой, значит, она нейтральна.
Детекторы бака
Когда Карл Андерсон в 1930-х годах открыл позитрон, он сделал это с помощью облачной камеры, имевшей около 1,5 м в поперечнике и весившей 2 т. Детекторы БАКа немного больше. Два крупнейших детектора – мастодонты, предназначенные для поисков бозона Хиггса, – называются ATLAS (аббревиатура слов A Toroidal LHC Apparatus – Тороидальный детектор БАКа) и CMS (Compact Muon Solenoid – Компактный мюонный соленоид). Они расположены на противоположных сторонах кольца, причем ATLAS – недалеко от основного здания ЦЕРНа, а CMS – за границей, во Франции. Слово «компактный» применимо к детектору CMS, конечно, условно – его длина около 22 м, а вес – около 13 800 т. ATLAS больше по размеру, но легче – в длину примерно 43 м, а вес – всего 7700 т. Это своего рода масштаб, показывающий, как глубоко нужно «копать», чтобы «выкопать» скрывающийся от нас бозон Хиггса.
На БАКе имеется еще пять других детекторов («экспериментов»): два из них имеют средний размер – ALICE и LHCb, и три маленьких – TOTEM, LHCf и MoEDAL. LHCb специализируется на изучении распадов прелестных кварков, которые используются для точных измерений. Детектор ALICE (A Large Ion Collider Experiment) сконструирован для изучения столкновений тяжелых ядер, а не протонов, чтобы воспроизвести процесс образования кварк-глюонной плазмы, заполнившей Вселенную сразу после Большого взрыва. Вот почему церновский ускоритель – Большой «адронный» коллайдер, а не Большой «протонный» коллайдер – один месяц в году БАК ускоряет и сталкивается ионы свинца вместо протонов. ТОТЕМ (TOTal Elastic and diffractive cross-section Measurement), расположенный недалеко от CMS, изучает внутреннее строение протонов и будет проводить точные измерения вероятности их взаимодействий друг с другом. Детектор LHCf («f» означает «forward» – «вперед»: имеется в виду рассеяние вперед нейтральных частиц) сконструирован для того, чтобы с помощью выбросов частиц при столкновениях изучать условия, в которых космические лучи распространяются через атмосферу. Он гораздо меньше по размеру, чем другие детекторы, и состоит из двух калориметров, расположенных по обе стороны ATLASа. Детектор MoEDAL (Monopole and Exotics Detector At the LHC) специализируется на поиске очень необычных частиц.
Именно два самых больших детектора, ATLAS и CMS, играют ведущую роль в охоте на бозон Хиггса. В отличие от небольших детекторов, которые предназначены для весьма конкретных целей, эти два детектора сделаны для того, чтобы сталкивать протоны друг с другом, смотреть на то, что получается в результате, и стараться как можно точнее определить, что происходит при столкновениях. Конструкторы двух детекторов по-разному подошли к проблемам дизайна, но возможности установок в конечном итоге оказались сопоставимыми. Само собой разумеется, иметь два детектора несоизмеримо полезнее, чем один, – открытие, сделанное на одном из детекторов, не будут принято всерьез, пока другой не подтвердит его.
Трудно ощутить необъятность CMS или ATLAS, не увидев их воочию, и в этом я смог убедиться, посетив их еще в стадии строительства. Человек настолько мал по сравнению с этими машинами, что на фотографиях его не замечаешь, пока кто-то специально не укажет. Но поражают не только размеры детектора, но и сложность их устройства. Каждый элемент важен, причем, учитывая международный характер коллабораций, вполне вероятно, что два соседних элемента изготовлены в лабораториях, расположенных в противоположных концах земного шара.
Детектор CMS расположен достаточно далеко от ЦЕРНа – нужно ехать на машине, и довольно долго, но в свое время геологоразведка показала, что рядом с ЦЕРНом есть только одно место для детектора, и в нем установили более громоздкий детектор ATLAS. CMS – чрезвычайно плотная и компактная конструкция из металла, кристаллов и проволоки. Размер основных магнитов CMS – самых мощных из всех когда-либо сконструированных магнитов такого типа – пришлось ограничить 7 м в поперечнике по очень прозаической причине: конструкции большего размера не поместились бы на грузовик, который мог проехать по улицам Сесси – крошечного французского городка, рядом с которым расположился детектор. (На странице Википедии, посвященной Сесси, явно написанной физиками, работающими на CMS, содержится совет пообедать в местной пиццерии, и предупреждение, что «обслуживание может затянуться, так что туда не стоит идти, если вы торопитесь».) Вообще финансовые ограничители, наряду с логистическими, сыграли решающую роль в проектировании и строительстве: например, латунь на гигантские цилиндрические торцевые крышки, закрывающие оба торца детектора, была получена из отходов от утилизации российских артиллерийских снарядов[5]5
На сайте CMS приводится интересная история о том, как в подмосковной Дубне изготавливались эти торцевые поглощающие заглушки, для которых требовался достаточно прочный материал, способный выдержать сильное механическое напряжение в течение долгого времени. По набору характеристик подошла латунь, однако латунь высокого качества была в те времена (1990-е годы) слишком дорогой. Один из инженеров вспомнил, что ему в свое время приходилось сталкиваться с расчетами прочности латунных гильз для снарядов Балтийского флота. Оказалось, что на складах ВМФ сохранились неиспользованные запасы орудийных гильз из высококачественной латуни. Было получено разрешение на их переплавку, и в результате около миллиона гильз пошло на создание поглотителей для адронного калориметра CMS.
[Закрыть]. Важной частью детектора являются 78 000 сцинцилляторов – кристаллов вольфрамата свинца, которые выращивали в России и Китае целых десять лет, поскольку каждый искусственный кристалл растет около двух дней.
Однако чаще всего на рекламных фотографиях БАКа изображен не CMS, а ATLAS, и по простой причине: он очень фотогеничен и выглядит как инопланетный корабль. Отличительной особенностью детектора являются восемь гигантских тороидальных магнитов, которые и дали свое имя детектору. Вы могли бы не признать в магните ATLASа классический «тор», похожий на бублик. Магниты детектора – это конструкция из труб, имеющая скорее прямоугольную форму со скругленными углами. Но физики учатся у математиков-топологов, для которых важны общие закономерности, а не конкретные формы, и для них тором является любой изогнутый цилиндр, у которого торцы совпадают. В ATLASе тороиды создают гигантскую область, в которой магнитное поле огромно, используемую для отслеживания высокоэнергетичных мюонов, созданных во внутренних областях детектора. Когда магниты включены, общий запас энергии в них составляет более одного миллиарда джоулей – эквивалент примерно 150 кг тротила. К счастью, это не опасно – взрыв с высвобождением этой огромной энергии невозможен, поскольку нет способа ее высвободить. (Энергия не представляет опасности, если нет способа ее сбрасывания. Например, энергия покоя яблока эквивалентна примерно миллиону тонн тротила, но это не очень опасно до тех пор, пока вы не приведете в соприкосновение ваше яблоко и антияблоко.)
Огромный геометрический размер детекторов ATLAS и CMS вполне соответствует численности коллабораций, которые построили их и работают там. Это примерно две одинаковые группы, примерно 3000 ученых в каждой, представляющих более 170 учреждений из 38 стран. Вся группа никогда не собирается в одном месте в одно и то же время, но различные подгруппы находятся в постоянном контакте, непрерывно обмениваясь письмами и устраивая видеоконференции.
Если есть две большие коллаборации, ведущие очень похожие эксперименты по изучению одних и тех же явлений, значит ли это, что они конкурируют друг с другом? И вы еще спрашиваете? Разумеется, между командами двух детекторов идет постоянное соревнование за приоритет в открытии, и ставки тут очень высоки. И поскольку сами команды очень большие, существует конкуренция и внутри команды каждого детектора, так как физики – члены команды – борются за командные места, а также пытаются доказать превосходство своих способов анализа данных над другими.
Но система работает. Эта гонка может привести у некоторых ученых к расшатыванию нервной системы и потере сна, но дружеское соперничество, существующее между группами и внутри них, помогает получать первоклассные научные результаты. Каждый хочет быть первым, но никто не хочет ошибиться, и в условиях такой конкуренции если кто-то проявит небрежность или нечестность, его быстро выведут на чистую воду. Профессиональная квалификация хорошо подобранных коллабораций CMS и ATLAS – одна из главных причин того, почему мы можем доверять любым результатам, которые подтверждают обе команды. В том числе, и в особенности – открытию бозона Хиггса.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?