Электронная библиотека » Станислав Зигуненко » » онлайн чтение - страница 3


  • Текст добавлен: 20 апреля 2017, 05:31


Автор книги: Станислав Зигуненко


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 32 страниц) [доступный отрывок для чтения: 9 страниц]

Шрифт:
- 100% +
Секреты «Клипера»

Ныне мы с вами, по идее, должны стать свидетелями интересного момента в истории пилотируемой космонавтики – окончательного отказа от программы ««Буран» и открытия программы создания корабля ««Клипер».


Так что не случайно в августе 2005 года экспонатом номер один на очередном авиационно-космическом салоне в Жуковском был, конечно, макет космического корабля «Клипер». Именно к нему в первую очередь подвели президента В.В. Путина, именно возле него постоянно стояли толпы любопытствующих, желающих заглянуть внутрь.

Однако сам по себе макет производил странное впечатление. Стоило мне слегка постучать по нему костяшками пальцев, пытаясь понять, из чего он сделан, как на меня тут же набросились служители: «Вы что делаете? Ведь это же экспонат!..»

Он и в самом деле весьма смахивал на музейную реликвию. Быть может, тем, что каждого из желающих заглянуть внутрь, посидеть в одном из кресел экипажа заставляли надевать прямо-таки музейные бахилы.

Положения не спасали даже дисплеи, на которых имитировался процесс сближения и стыковки «Клипера» с орбитальной станцией. На них, кстати, к вящему удовольствию публики, провели показательную тренировку наш летчик-космонавт Толгат Мусабаев и первый китайский тайконавт Ян Ливей.

Но все равно, слишком уж «Клипер» был какой-то музейно чистенький в отличие от обгорелого посадочного модуля корабля «Союз», размещенного по соседству. Тем не менее, как уверяли представители «Роскосмоса», настоящий корабль будет выглядеть в точности так же. Вот только когда это будет?..


Пилотируемый многоразовый космический корабль «Клипер»


Тогдашний глава «Роскомоса» А.Н. Перминов, ныне уже ушедший в отставку, приглашая слетать с нашими космонавтами и Яна Ливея, сказал, что готов будет настоящий «Клипер» в 2013–2015 годах. Впрочем, Анатолий Николаевич поведал посетителям выставки и о тех трудностях, которые существуют в современной космонавтике. Эпоха пилотируемых полетов переживает ныне не лучшие времена.

Так, недавний полет шаттла «Дискавери», который столь тщательно и долго готовили, чуть не обернулся очередной трагедией – при старте от конструкции опять-таки отвалилась часть обшивки, и астронавтам пришлось вести ремонт своего корабля прямо в космосе. А потому очередной старт, намеченный было на сентябрь, перенесли на март будущего, то есть 2006 года. И есть скептики, которые утверждают, что он не состоится вообще…

Так или иначе, известно, что американцы собираются к 2010 году, а то и ранее окончательно свернуть программу «Спейс шаттл» и заняться иными разработками. Таким образом, возить людей и грузы на МКС опять-таки предстоит лишь нашим «Союзам» и «Прогрес-сам». Да вот еще Европейское космическое агентство собирается послать на орбиту свой грузовой корабль «Жюль Верн». Однако состоится ли этот старт, тоже неизвестно – французская ракета-носитель «Ариан-5» уже неоднократно подводила своих создателей.

Тем не менее А.Н. Перминов, рассказывая о будущих экспедициях, излучал сдержанный оптимизм. По его словам, начиная с 2006 года, в области пилотируемых полетов работа будет проводиться по двум проектам. Во-первых, будет завершено создание многоцелевого лабораторного модуля, который в 2008 году должен быть выведен на орбиту и пристыкован к МКС. Во-вторых, будет завершено строительство «Клипера». Причем в его создании наряду с нашими специалистами, возможно, примут участие и инженеры Европейского космического агентства. А один из вариантов запуска «Клипера» предусматривает его старт не только с Байконура, но и с космодрома Куру во Французской Гвиане.

Причем корабль планируется использовать не только в полетах к МКС. В первую очередь, как сказал Перминов, он ориентирован на новые проекты, связанные с освоением Луны, Марса и других планет.

Так что лиха беда – начало! Нынешний деревянный макет – всего лишь прообраз корабля будущего. Сам же многоразовый корабль

«Клипер», который будет действовать в составе новой системы доставки грузов на орбиту «Паром», уже обретает реальные очертания в просторном цехе ракетно-космической корпорации «Энергия».

«Теперь наглядно видно, что представляет собой этот корабль, – сказал летом 2005 года заместитель генерального конструктора РКК «Энергия», летчик-космонавт и дважды Герой Советского Союза Валерий Рюмин. – Он будет существенно отличаться и от российских “Союзов”, и от американских шаттлов».

Коллектив разработчиков под руководством заместителя генерального конструктора Николая Брюханова, использовав опыт по созданию «Союзов» и «Бурана», собственные оригинальные решения, добился весьма неплохих результатов. Основные характеристики российского многоразового корабля «Клипер» таковы: длина – 7 м, масса – 14 т, экипаж – 6 человек, объем кабины – 20 куб. м. С орбиты можно возвращать 500 килограммов полезного груза. В космос корабль будет выводиться или новой ракетой «Онега», или (если ее не успеют довести) уже апробированным «Зенитом».

«Клипер» будет иметь возможность совершать при спуске маневр и приземляться на парашютах в России (а не в Казахстане, как нынешние «Союзы»). Уникальную кабину планируется отправлять в космос много раз. При соответствующем финансировании первый испытательный полет может уже произойти через пять лет…

Валерий Рюмин также особо отметил, что в передней носовой части «Клипера» установят (как и на «Союзе») двигатели системы аварийного спасения (САС). Таким образом, обеспечивается безопасность экипажа в случае возникновения любых ЧП и на старте, и на всех участках выведения корабля в космос. Шаттлы, к слову, не имеют такой системы, из-за ее отсутствия не удалось спастись семерым астронавтам при взрыве во время взлета многоразового «челнока» «Челленджер».

«Клипер», кстати, может использоваться не только для полетов на Международную космическую станцию (МКС), но и для реализации пилотируемого марсианского проекта. Межпланетный корабль, как уже говорилось, ведь придется собирать на околоземной орбите. «Клипер» сначала будет доставлять к нему грузовые контейнеры, «перехватывая» их на низкой орбите (эксплуатация в качестве такого космического буксира предусмотрена и для снабжения МКС, это позволит экономить немалые средства). А затем на том же «Клипере» в звездолет прибудут 6 участников международной марсианской экспедиции.

«Мы также будем представлять “Клипер” специалистам других стран, занимающимся пилотируемой космонавтикой, – заявил Анатолий Перминов. – Объединив усилия, земляне могут отправить пилотируемый корабль к Марсу еще до 2020 года. Одному же государству, сколь бы богатым оно ни было, осуществить такую экспедицию будет весьма тяжело…»

Однако, прежде чем совершать пилотируемую экспедицию, надо «провести большое количество экспериментальных беспилотных полетов, – считает Перминов. – И начинать надо с Луны…»

Про военное применение «Клипера», конечно, никто не говорит вслух, в открытой печати. Тем не менее, судя по самой конструкции «Клипера», корабль может быть использован для выполнения самых различных программ.

Нынешний «Клипер» состоит из двух отсеков – возвращаемого или спускаемого аппарата и агрегатного или орбитального отсека.

Возвращаемый аппарат массой 9,8 т представляет собою конус, составленный из трех частей. Причем одна из боковых сторон (нижняя при посадке) выровнена под этакую «лыжу». Самый нос затуплен для лучшего рассеивания кинетической энергии торможения в атмосфере. Вокруг носа видны узлы крепления двигателей системы аварийного спасения, срывающих корабль с ракеты в случае аварии.

В самом аппарате два отсека. Впереди – двигательный, в котором установлены ракетные двигатели системы ориентации и управления спуском и баки с топливом для них, за ним – отсек экипажа, в креслах которого разместятся шесть космонавтов. Причем только двое из них будут непосредственно заняты управлением «Клипером», так что остальные четверо могут быть научными работниками или даже просто космическими туристами. А в случае крайней необходимости их место может быть занято просто контейнерами с грузом.

Люк в задней стенке возвращаемого аппарата связывает его с агрегатным отсеком массой около 4,5 т. В нем расположены двигатели орбитального маневрирования, топливо для них, система электропитания, а также оборудование, необходимое для работы на орбите, припасы и т. д. В случае необходимости обитаемая часть агрегатного отсека будет использоваться и как шлюзовая камера для выхода в открытый космос. Таким образом, помимо транспортных рейсов к орбитальной станции, «Клипер» сможет выполнять и самостоятельные полеты продолжительностью до 10 суток.

Мечты о боевых звездолетах

И все же, несмотря на нынешний видимый всплеск, самые лучшие времена пилотируемой космонавтики, наверное, уже позади. Уже никто больше не будет смотреть на космонавтов и астронавтов как на небожителей, никто уж не будет в их честь стихийно выходить на улицы, устраивать многотысячные демонстрации. Космонавтика, как и космическая отрасль, становятся просто обыденностью наших дней.

Тем не менее, к чести наших специалистов, они не опускают рук, продолжают работать над своими проектами, в том числе порой и весьма удивительными, даже фантастичными.


«Российская пилотируемая экспедиция к Марсу может стартовать уже через десять лет», – считает, например, конструктор Ракетно-космической корпорации (РКК) «Энергия» Леонид Горшков. По его словам, в РКК уже разработан эскизный проект корабля многоразового использования, способного доставить людей к Красной планете и вернуть их на Землю.

«Для реализации первой пилотируемой экспедиции на Марс, по нашим расчетам, потребуется всего около 15 млрд долларов, тогда как американские специалисты оценивают свой проект в 150 млрд долларов», – подчеркнул специалист.

Марсианский корабль, разрабатываемый в РКК «Энергия», по своей схеме напоминает российский служебный модуль «Звезда» Международной космической станции (МКС). Собирать 70-тонный корабль предполагают на орбите, куда комплектующие части и узлы будут доставляться ракетами «Протон». А сами «космические монтажники», как считает Л. Горшков, смогут жить на борту МКС.

По межпланетному маршруту готовый корабль поведут электрореактивные двигатели, питающиеся энергией от солнечных батарей. Такие движки в свое время уже опробовали на орбитальном комплексе «Мир».

Сама марсианская экспедиция продлится 1,5–2 года. На первый раз космонавты будут работать лишь на марсианской орбите, а на Красную планету опустится автоматический спускаемый аппарат. После завершения марсианской миссии пилотируемый корабль до следующей межпланетной экспедиции останется на околоземной орбите. «В это время его можно использовать в качестве научной лаборатории», – говорит Л. Горшков.

Оптимальный состав марсианского экипажа, по его мнению, составляет от 4 до 6 человек. «Среди них обязательно должны быть инженеры, ученые и врач, который, скорее всего, и станет командиром экипажа», – считает конструктор.

И это лишь одна из разработок. Кроме марсианских проектов, существуют также планы посылки пилотируемых экспедиций к окраинам Солнечной системы, а там и, кто знает, к другим звездам…

Для таких полетов обычные ракеты на химическим топливе уже не годятся, им на смену должны прийти, как справедливо полагает Горшков, корабли с иными двигателями.

Один из таких кораблей в обстановке глубочайшей секретности разрабатывался, например, в США еще в 70-е годы прошлого века. В рамках проекта «Орион» предполагалось создать конструкцию общей массой свыше 4000 тонн.

Впрочем, первый прототип этого космического корабля был втрое меньше, он еще не мог летать самостоятельно – его использовали в стендовых испытаниях, а позднее запускали на обычных ракетах-носителях на орбиту (январь 1960 года) и к Луне (июль 1961 года).

Второй образец корабля, уже снабженный собственным двигателем, также совершил два испытательных полета: вокруг Венеры (февраль 1962 года) и к спутниками Марса (ноябрь 1963 года).

Первый полет большого аппарата готовился семь лет, и его задача куда сложнее и амбициознее, чем задачи кораблей-прототипов. Дело в том, что этот удивительный летательный аппарат должен был двигаться силой отдачи атомных взрывов, производимых на некотором удалении от него.

Однако в октябре 1970 года, как намечалось, корабль «Орион» («Orion»), который действительно существовал и разрабатывался как чисто военный, способный доставить к цели сверхмощный термоядерный заряд, готовый «поразить третью часть государства размером с США», так и не взлетел.


Военная модификация космического корабля «Орион»


Причин тому было несколько.

Одна из главных – экологическая.

Пара стартов таких кораблей с любого космодрома или военной базы, и их территория превратилась бы в запретную зону, ступить на которую было бы смертельно опасно в течение многих десятков лет.

Тем не менее проект «Orion», предложенный в 1958 году фирмой «Дженерал Атомикс», которая была основана американским атомщиком Фредериком Хоффманом с целью создания и эксплуатации коммерческих атомных реакторов, рассматривался вполне всерьез. В немалой степени тому способствовало и то обстоятельство, что одним из соучредителей фирмы и соавтором проекта «Orion» был Теодор Тейлор – легендарная личность, «отец» американской атомной бомбы.

Согласно расчетам Тейлора, схема летательного аппарата со взрывным движителем могла обеспечить колоссальный импульс, не доступный ракетам. Однако имелось существенное ограничение – энергия взрыва, направленная в плиту-толкатель, вызовет огромное ускорение, которого не выдержит никакой живой организм. Для этого между кораблем и плитой предполагалось установить амортизатор, смягчающий удар и способный аккумулировать энергию импульса с постепенной «передачей» его кораблю.

Было построено несколько рабочих моделей толкателя корабля «Orion». Их испытывали на устойчивость к воздействию ударной волны и высоких температур с использованием обычной взрывчатки. Большая часть моделей разрушилась, но уже в ноябре 1959 года удалось запустить одну из них на стометровую высоту, что доказало возможность устойчивого полета при использовании импульсного двигателя.

Тем не менее долговечность щита-толкателя все еще оставалась проблематичной. Вряд ли какой-нибудь материал способен выдержать воздействие температур в несколько десятков тысяч градусов. В конце концов пришлось придумать устройство, разбрызгивающее на поверхность щита теплозащитную графитовую смазку.

И все же проект так и не довели до конца. «Orion» был космическим кораблем, словно бы взятым напрокат из фантастического романа о далеком будущем. Команда в полторы сотни человек, которые могли с удобствами расположиться в его комфортабельных каютах, оказалась попросту без работы. Неизвестно, что ей делать на земной орбите. А для путешествий к дальним мирам человечество еще не готово.

Впрочем, в своих мечтах Теодор Тейлор был не одинок. В анналах космонавтики можно найти описания, например, межзвездного самолета американца Р. Бюссара, который намеревался использовать в качестве топлива разреженный водород, черпаемый прямо из космического пространства. Можно упомянуть и английский проект звездолета с аннигиляционным двигателем, и звездный «ноев ковчег», использующий в качестве базы некий астероид, оснащенный ракетным двигателем, и проект «Дедал»…

Мы же здесь остановимся подробно лишь на проекте «взрыволета», который составляет своеобразную пару проекту Тейлора. Хотя бы уже потому, что предложил его тоже авторитет мировой величины, «отец» советской термоядерной бомбы, академик А.Д. Сахаров.

Конструктивно звездолет Сахарова должен был состоять из рубки управления, кабины экипажа, отсека для размещения ядерных зарядов, основной двигательной установки и жидкостных ракетных двигателей. Корабль также должен был иметь систему подачи ядерных зарядов и систему демпфирования для выравнивания траектории движения ракеты после ядерных взрывов. Ну и, конечно, баки достаточной емкости для запасов топлива и окислителя. В нижней части корабля, как и в проекте «Орион», планировался экран диаметром 15–25 м, в фокусе которого должны были «греметь» ядерные взрывы.

Чтобы не загрязнять нашу планету, старт с Земли предполагалось осуществить с использованием жидкостных ракетных двигателей, размещенных на нижних опорах. С их помощью аппарат поднимался на высоту нескольких десятков километров, и лишь после этого включалась основная двигательная установка корабля, в которой использовалась энергия последовательных взрывов ядерных зарядов небольшой мощности.

В процессе работы над взрыволетом было рассмотрено и просчитано несколько вариантов конструкции различных габаритов. Соответственно менялись и стартовая масса, и масса полезной нагрузки, которую удавалось вывести на орбиту. Надо отметить, что, несмотря на значительные массы конструкции, она не отличалась большими размерами. Например, «ПК-5000» («Пилотируемый комплекс» со стартовой массой 5000 т) имел высоту менее 75 м. Полезная же нагрузка, выводимая на орбиту, составляла 1300 т! Расчет показывает, что соотношение массы полезной нагрузки к стартовой массе при этом превышало 25 %! А ведь современная ракета на химическом топливе выводит в космос не больше 7–8 % от стартовой массы.

В качестве стартовой площадки для «взрыволета» выбрали один из районов на севере Советского Союза – конструкторы полагали, что для старта нового космического корабля придется строить специальный космодром в малолюдном месте; в случае аварии это позволяло избежать лишних жертв. Кроме того, запуск ядерного двигателя вдали от плоскости экватора, вне зоны так называемой геомагнитной ловушки позволял избежать появления искусственных радиационных поясов.

Однако и этот проект не выдерживает критики с точки зрения сегодняшних представлений об экологии и безопасности. Так что он тоже вряд ли будет когда-нибудь осуществлен на практике.

Сегодняшних специалистов больше интересуют способы перемещения в космическом пространстве с помощью лазерных установок, солнечных парусов или вообще с использованием телепортации. Но о них мы поговорим как-нибудь в дальнейшем, как только представится удобный случай.

Здесь же давайте вернемся к более близким перспективам и проектам.

«Гиперболоиды» XXI века

Современные «гиперболоиды» – лазерные установки рекордной мощности – способны поразить противника даже на орбите. Хотя и работают они совсем на иных физических принципах, чем было описано в романе Алексея Толстого.

Царь-лазер

По причинам секретности советские достижения в проектировании чудо-оружия в то время не афишировались. Но теперь можно уже сказать, что СССР в свое время потратил на разработки лазерного и ему подобного оружия не меньше сил и средств, чем США. И продвинулись наши специалисты достаточно далеко. Насколько – мир узнал в 90-х годах ХХ века, когда покров военной тайны был сброшен со многих, ранее сверхзасекреченных разработок.


Первый крупный советский гиперболоид военного назначения был установлен в начале 80-х годов на полигоне Сары-Шаган близ озера Балхаш. И американцы получили возможность лично убедиться в его существовании 10 октября 1983 года во время тринадцатого витка космического корабля «Челленджер», когда траектория его полета пролегла аккурат над полигоном. Высота орбиты составляла 365 км. Тем не менее, когда советский лазер произвел экспериментальный выстрел на минимальной мощности, на «Челленджере» тотчас отключилась связь, возникли сбои в работе аппаратуры, а астронавты почувствовали странное недомогание.

После дипломатической ноты из Вашингтона подобные испытания были прекращены. А на базе того лазера был затем создан мобильный лазерный технологический комплекс МЛТК-50.

…Представьте себе картину: в вечерних сумерках к краю поля подъезжает «Газель» с оборудованием. Сначала включается прожектор со специально подобранным ультрафиолетовым светофильтром. На свет, как известно, очень любит собираться всякая мошкара, насекомые, даже птицы прилетают. Так вот, светофильтры нужны для того, чтобы в данном случае особо привлекать хлопковую или табачную совку – бич плантаций. А когда та поднимется на крыло, тут же ударят по ней лучом лазера.


Мобильный лазерный технологический комплекс МЛТК-50


О столь оригинальном способе борьбы с сельскохозяйственными вредителями, разработанном сотрудниками Троицкого института инновационных и термоядерных исследований (ГНЦ РФ ТРИНИТИ) совместно со специалистами НПО «Биотехнология», мне рассказал один из разработчиков, заместитель директора отделения, кандидат физико-математических наук Александр Григорьевич Красюков.

Бороться с вредителями сельского хозяйства с помощью лазера мощностью в 2 КВт оказалось намного эффективней, чем с помощью ядохимикатов. Да и экология полей, и так уж основательно загаженных химией, не страдает.

И это лишь одно из применений системы, созданной на базе бывшего боевого лазера.

Вспомните, одной из ключевых позиций знаменитой в свое время стратегической оборонной инициативы, или программы СОИ, разработанной в США, был проект создания лазерного оружия, способного поражать технику противника не только и не столько на Земле, в атмосфере, но и в космическом пространстве, где обычное оружие малоэффективно.

Однако в скором времени, как известно, программа «звездных войн» была свернута. Одной из причин тому стало «сверхсекретное русское чудо» – СО2-лазер мощностью в 1 миллион ватт. Говорят, это и был наш знаменитый «асимметричный ответ», обещанный М.С. Горбачевым американцам.

И когда сенаторы США, побывавшие на одном из наших полигонов, своими глазами увидели действенность этого лазера, финансирование программы СОИ тут же было свернуто. Зачем гробить кучу денег на космическую технику, которая довольно просто нейтрализуется с Земли?

Когда же выяснилось, что этот чудо-лазер в качестве оружия, скорее всего, не понадобится, команда специалистов, в которую, помимо сотрудников ТРИНИТИ, вошли представители НПО «Алмаз», а также НИИ электрофизической аппаратуры имени Д.В. Ефремова и Государственного внедренческого малого предприятия «Конверсия», разработала на его основе мобильный лазерный технологический комплекс МЛТК-50.

На испытаниях он показал, что может использоваться, например, при ликвидации пожаров на газовых скважинах, срезая сквозь дым и гарь мешающие пожарным стальные конструкции. Испробовали его и при резке корабельной стали, разделке скального массива в каменоломнях, при дезактивации поверхности бетона на АЭС методом шелушения поверхностного слоя и т. д.

Базируется такой комплекс, создатели которого недавно были удостоены премии Правительства России, на двух модулях-платформах, созданных на основе серийных автоприцепов челябинского завода. На первой платформе размещается генератор лазерного излучения, включающий в себя блок оптического резонатора и газоразрядную камеру. Здесь же устанавливается система формирования и наведения луча. Рядом располагается кабина управления, откуда ведутся программное или ручное его наведение и фокусировка. На второй платформе находятся элементы газодинамического тракта: авиационный турбореактивный двигатель Р29—300, выработавший свой летный ресурс, но еще способный послужить в качестве источника энергии, эжекторы, устройство выхлопа и шумоглушения, баллон со сжиженной углекислотой, топливный бак с авиационным керосином.

Каждая платформа оснащена своим тягачом марки «КрАЗ» и транспортируется практически в любое место, куда он пройдет. Так что, как видите, российский «гиперболоид» с одинаковым успехом может применяться как для военных, так и для гражданских целей.

Интересная деталь: в разговоре со мной А.Г. Красюков сказал, что гражданский вариант создать оказалось труднее, чем военный. Дело в том, что военная техника чаще всего эксплуатируется в экстремальном режиме. И конструкторов мало заботят такие параметры, как экономичность, долговечность, простота изготовления и обслуживания… Главное для них – выполнить поставленную боевую задачу. А вот на «гражданке» критерии несколько иные. Тут техника должна работать долго, не капризничать, не требовать для своего обслуживания особо высококлассных специалистов. И стоить как можно дешевле, поскольку денег в нашем народном хозяйстве вечно не хватает.

Кстати, несмотря на высокую награду, сами создатели комплекса уже не очень довольны своим детищем. Они полагают, что за прошедшее с 90-х годов прошлого века время, когда создавалась эта техника, появились новые возможности, которые позволяют значительно улучшить комплекс. Например, базировать его не на автоприцепах, а в стандартных грузовых контейнерах.

Контейнеры без особых хлопот можно переправлять водным или железнодорожным транспортом. Или даже подвесить такой контейнер квертолету.

А поскольку пожары на российских скважинах случаются далеко не каждый день, специалисты ТРИНИТИ начали претворять в жизнь еще одну оригинальную задумку. На основе МЛТК-50 они теперь создают целую гамму подобных комплексов различной мощности. Особенно хвалил А.Г. Красюков МЛТК-5, то есть комплекс с мощностью в 10 раз меньшей, чем его старший собрат.

Тем не менее и такой силы вполне достаточно, чтобы решить, например, задачу ремонта прямо на месте забарахлившей турбины большой ГЭС. Весит такая махина 150–200 т, да и габариты ее соответствующие. Так что транспортировать агрегат для ремонта в заводской цех замаешься.

Между тем выясняется, что турбина могла бы еще поработать, да вот поверхности особо интенсивного трения – там, где подшипники – начали стираться. Вот тогда прямо в машинный зал ГЭС доставляют МЛТК-5 и с его помощью проводят лазерное напыление, восстановление истертых поверхностей. Турбина после такого ремонта способна проработать еще почти столько же, сколько и новая…

В общем, не перевелись еще умельцы на Руси.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации