Текст книги "100 великих достижений в мире техники"
Автор книги: Станислав Зигуненко
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 22 (всего у книги 35 страниц)
«Глаза» войны
Эти устройства долгое время проходили в войсках под грифом «Совершенно секретно». И только недавно у нас появилась возможность рассказать о том, каким же образом воины получили возможность видеть в темноте.
Видеть ночью, словно днем… Когда мы вышли в коридор и главный конструктор Научно-производственного объединения «Геофизика» Юрий Кириллович Грузевич выключил свет, наступила тьма, хоть глаз выколи. Но не надолго. Стоило мне надвинуть на глаза прибор, во многом похожий на обычный бинокль, как я словно бы прозрел. В ночной тьме стали отчетливо видны силуэты людей, а их глаза почему-то засветились прямо-таки дьявольским светом.
Потом, в обычной обстановке, Юрий Кириллович рассказал мне, что к чему и каким образом работает подобная техника.
Люди, как известно, обладают цветным зрением, позволяющим им различать все цвета радуги и еще множество различных оттенков. Но за все надо платить. И в данном случае обилие колбочек в глазной сетчатке, отвечающих за восприятие цвета, привело к тому, что у нас мало палочек – тех самых крошечных элементов, которые позволяют кошке видеть ночью почти столь же хорошо, как и днем.
Прибор ночного видения
Недостатки природы нам приходится компенсировать техническими средствами. Еще в 1912 году конструкторы пытались крепить мощный фонарь к боевой винтовке. Однако светящий фонарь прекрасно демаскирует и самого стрелка. А потому в дальнейшем развитие ночных прицелов пошло совсем иными путями.
Первые приборы ночного видения, появившиеся еще в середине XX века, состояли из окулярной оптики, создававшей изображение наблюдаемого ландшафта на поверхности фотокатода. Затем выбиваемые светом электроны подхватывались и ускорялись электрическим полем и после фокусировки бомбардировали люминесцентный экран, создававший гораздо более яркое изображение. Оно либо просто наблюдалось глазом через окуляр, либо поступало на электровакуумный ЭОП (электронно-оптический преобразователь) – для еще большего усиления яркости.
Современные приборы ночного видения имеют еще более сложную конструкцию и позволяют обнаруживать человека, технику и зверей даже в совершенно безлунную ночь, поскольку общее усиление яркости может достигать сотен тысяч раз. Причем происходит оно в основном в микроканальном электронном умножителе, состоящем из множества тонких трубочек. Фотоэлектроны, сфокусированные и разогнанные в первичном ЭОП, попадают на вход такой трубочки и – далее, летя внутри микроканала, продолжают ускоряться и размножаться, выбивая все новые носители заряда. Раздельное усиление каждой точки существенно повышает контрастность изображения и исключает мощный ореол вокруг ярких объектов.
Понятно, что вся работа по усилению происходит в вакууме, так как только там электроны могут ускоряться и размножаться.
Кроме микроканальных умножителей в приборах ночного видения почти всегда используется сборка оптических волокон. Их функция чисто служебная – донести свет до поверхности фотокатода. Использование оптоволокна позволяет существенно улучшить качество изображения.
Пассивные и активные. Для обеспечения ночного видения часто используется инфракрасное (ИК) излучение с длинами волн от 0,7 до 3 мкм и от 3 до 5 мкм. Дело в том, что каждый человек, нагретый двигатель и т. д. являются мощным источником таких лучей, что позволяет разглядеть людей и технику даже при самой совершенной маскировке.
В основу конструкции большинства приборов опять-таки положен электронно-оптический преобразователь (ЭОП) не воспринимаемого глазом ИК-изображения в видимое. На переднем торце его трубки с внутренней стороны нанесен полупрозрачный фотокатод, на заднем, тоже изнутри, – люминесцентный экран.
Щелочное покрытие первого имеет наибольшую чувствительность именно в ИК-диапазоне длин волн. Падающие кванты света выбивают с его поверхности электроны, которые под действием электрического поля устремляются к экрану. Пучок фокусируют с помощью электростатического устройства, создающего эффект «линзы». Взаимодействие электронов с люминофором вызывает зеленоватое свечение экрана. Таким образом, ИК-изображение преобразуется в довольно четкое видимое.
Впрочем, на практике порой этого бывает недостаточно. И тогда, кроме пассивных систем наблюдения, применяют активные. Еще во Вторую мировую войну в американском «Снайперскопе» и немецком «прицеле ночного снайпера», наряду с ЭОП, использовался и ИК-прожектор, который подсвечивал невидимыми лучами объект и позволял разглядеть его получше. Для этого, правда, приходилось таскать на себе блок питания напряжением около 30 кВ. Кроме того, действовали такие приборы на дальности всего до 60 м, что для снайперов явно недостаточно. Поэтому устанавливались такие приборы в основном на автоматах штурмовых спецгрупп – «Гаранд» М1 (М2) и МР-44.
К подобным же приборам активного типа относились и советские «подсветочные» ночные прицелы типа стрелкового НСП-2, пулеметных ППН-1 и -2.
Впрочем, вскоре от таких приборов пришлось отказаться, поскольку противник научился обнаруживать и ИК-прожекторы столь же хорошо, как и обычные источники освещения. Кроме того, эффективность такой подсветки резко падала при пыли или тумане. Все это привело к тому, что ныне куда большей популярностью пользуются пассивные (бесподсветочные) устройства.
Один из образцов такой техники – отечественный ночной универсальный стрелковый прицел (НСПУ). Его ЭОП имеет два дополнительных каскада, причем экраны первого и второго являются фотокатодами соответственно для второго и третьего. В итоге на выходе получается достаточно отчетливое и яркое изображение.
Все элементы НСПУ собраны в одном корпусе. В его верхней цилиндрической части размещены ЭОП, сменные объектив и окуляр; в нижней, коробчатой, – преобразователь напряжения, высоковольтный блок, аккумуляторная батарея… Чтобы предохранить прицел от засветки при сильной освещенности, на него надета ирисовая (лепестковая) диафрагма. Для повышения контрастности изображения служит красный светофильтр.
Механизм, которым выверяют направление и высоту цели, сделан довольно хитроумно: изображение прицельной сетки проецируется в поле зрения прицела через подвижную зеркальную призму АР-90. С ее помощью можно достаточно точно смещать изображение сетки относительно оптической оси прицела. Предусмотрены две шкалы выверки – по направлению (насечена в угловых величинах) и, сменная, углов прицеливания (насечена в сотнях метров в зависимости от прицельной дальности оружия). В комплект НСПУ входят шкалы углов прицеливания для автоматов АКМН и АКН-74, ручных пулеметов РПКН и РПКН-74, пулемета ПКМН, снайперской винтовки СВДН, гранатомета РПГН-7.
В лунную ночь или при внешней подсветке дальность возрастает, при низкой облачности и задымлении – сокращается. При разрешающей способности 1,8 град., на расстоянии 400 м можно различить объект размером около 22 см.
В последние годы принят на вооружение и более совершенный отечественный ночной прицел НСПУ-3. У его трубки разные входной и выходной диаметры, подсвечиваемая прицельная сетка. Масса прибора – 2,1 кг, длина – 259 мм. При кратности увеличения 3,46 и поле зрения 9,5 град. он обеспечивает стрельбу на дальности 300–600 м.
Поколения меняются быстро. Ну а что же используют в армиях и спецслужбах за рубежом? К прицелам с трехкаскадным усилителем на ЭОП (1-е поколение) относится, в частности, американский AN/PVS-2 образца 1967 года. При массе 2,6 кг и длине 440 мм он обеспечивает дальность стрельбы 300–400 м, 4-кратное увеличение; поле зрения – 10,7 град., а 6,75-вольтовая батарея рассчитана на непрерывную работу до 100 ч.
Германский «Орион-80» того же типа имеет массу 1,8 кг, длину 290 мм, такое же увеличение, поле зрения 8 град. и обеспечивает стрельбу на дальности до 300 м. В итальянском М166 (масса – 2 кг, длина – 410 мм) увеличение уменьшено до 3, но поле зрения увеличено до 11,7 град. Так что им можно пользоваться и как прибором наблюдения на расстоянии до 500 м.
А к прицелам с МКП (2-е поколение) относится, скажем, американский AN/PVS-3A (США, образца 1974 года; увеличение в 4 раза, поле зрения – 10 град., масса 1,45 кг и длина 330 мм, дальность до 150–200 м). Английский М1500 (при увеличении в 3 раза, массе 1 кг и длине 265 мм) действует на дальности до 500 м. Израильский же ORT-T-2 имеет массу – 1,9 кг, увеличение – 3,5, дальность действия 450–700 м.
Ведутся работы и над созданием интегрированных стрелковых приборов «день/ночь». Так, в прицеле французской фирмы «Сопием», где изображение проецируется на окуляр через зеркало и призму, дневная ветвь расположена над ночной, в роли которой может использоваться ночная трубка 2-го поколения.
Однако в нашу эпоху все быстро меняется. Высокоэффективные фотокатоды из арсенида галлия уже позволили создать пассивные приборы 3-го поколения на МКП. Их отличают не только лучшее разрешение и надежная работа при меньших уровнях освещенности, но и большая компактность.
Вместо ночного прицела, крепящегося на оружии, можно использовать ночные очки на ЭОП или МКП, типа AN/ PVS-7 (США), TN2—1 (Франция), BIG-2 (Швейцария). Сочетание их с лазером дает ряд преимуществ, в частности, при использовании пистолета в ближнем ночном бою. Скажем, выпущенный швейцарской фирмой «I. T. M. AG» («Золотурн») «осветитель», размером всего 80×85×50 мм и массой 255 г, легко крепится к пистолету за спусковую скобу. Две литиевые батарейки 3,4 и 5 В или пять по 1,2 В обеспечивают излучаемую мощность 8 мВт. Пятно хорошо просматривается в ночные очки на расстоянии до 500 м, причем оттеняется темная линия, помогающая определить дальность.
Бомба, которая не убивает?
Недавно английская газета «Дейли телеграф» сообщила, что в Великобритании завершается создание устройства, взрыв которого лишь временно выводит из строя людей, но губителен для электроники. Он порождает направленную электромагнитную волну высокой частоты и гигантской мощности…
Бомба взорвется в воздухе, над целью. В окрестности перегорят или, по крайней мере, прекратят работу все компьютеры, нарушится действие теле– и радиолиний, ЛЭП и других контуров электроснабжения. Если сбросить ее над аэродромом – с него не взлетит ни один самолет. На людей волна подействует примерно так же, как на аппаратуру, – прервет работу мозга, нарушит функционирование организма. Но, поскольку природа «спроектировала» нас с очень большим запасом прочности, пострадавшие потеряют сознание лишь на короткое время и очнутся, не ощущая серьезных последствий. Таковы прогнозы.
Электромагнитная бомба А. Д. Сахарова
Мы не располагаем точными сведениями, как именно устроена английская бомба, однако принципиальная схема – не секрет. Так, по мнению профессора МГТУ, доктора физико-математических наук Михаила Киселева, основной элемент – цилиндрический резонатор из материала с хорошей электропроводностью, обложенный обычной взрывчаткой. Специальный источник (весьма маломощный), установленный либо на самой бомбе, либо на ее доставщике, инициирует в резонаторе стоячую электромагнитную волну. Ее можно поддерживать длительно или создать за несколько мгновений до взрыва. Обычно при нем развивается мощность в несколько тысяч гигаватт, а давление – более сотни атмосфер. Оно сжимает резонатор в зависимости от конструкции бомбы либо равномерно по всей боковой поверхности, либо начиная с торца – один участок оболочки за другим. Обеспечить устойчивость резонатора при сжатии, то есть сохранить его осевую симметрию и гладкость поверхности, – пожалуй, главная техническая проблема для конструкторов.
Почти мгновенно диаметр цилиндра уменьшается в десятки раз. Электромагнитное поле, не способное выйти за пределы резонатора, резко сжимается, и, как следствие, повышается частота его колебаний. То есть часть энергии взрыва переходит в энергию электромагнитную. По сравнению с первоначальной она возрастает в тысячи раз. В этот момент бомба, можно сказать, выстреливает: один из торцов резонатора преднамеренно разрушается, стоячая волна превращается в бегущую (ее мощность около 1 ГВт – сравнимо с Днепрогэсом) и парализует встречающуюся на пути электроаппаратуру. (Думается все же – для людей такое воздействие не пройдет бесследно.) Кроме того, в разные модификации бомб могут входить химикаты, разрушающие покрышки колес, или микробы, превращающие жидкое горючее в желе.
Вообще неубивающая бомба – лишь часть программы по созданию «гуманного оружия». Правда, эпитет этот весьма спорный. Например, на ряде британских военных судов уже установлены лазеры, луч которых способен ослепить экипаж атакующего самолета. Зрение потом никогда полностью не восстановится, а если луч чересчур силен, человек и вовсе ослепнет.
Представители Международного Красного Креста, ссылаясь на Женевские конвенции, настаивают на запрете подобных излучателей. Однако электромагнитная бомба под положения конвенций не подпадает и, по сообщениям западной печати, вовсю разрабатывается в США, а также и в России.
Пентагон называет эти бомбы «магическими снарядами». Председатель сенатской комиссии по вооружению Сэм Нан в свое время предложил даже использовать их против сербов, чтобы прикрывать колонны с гуманитарной помощью для Боснии и Герцеговины. А министерство обороны Великобритании официально подтвердило такую возможность.
Более того, появились сведения, что во время операции «Буря в пустыне» опытными образцами «магических снарядов» вывели из строя некоторые системы энергоснабжения и радары ПВО Ирака.
Правда, в истории с электромагнитной бомбой есть одно темное пятно, о которой военные говорят неохотно. Хотя американский вариант этого оружия основан на самой передовой технологии, террористы могут достичь той же разрушительной силы без использования hi-tech и гораздо дешевле – всего долларов за четыреста.
Ведь генератор сжатия магнитного потока (ГСМП) – оружие на удивление простое. Оно, как уже говорилось, состоит из трубки, начиненной взрывчаткой и помещенной внутри медной обмотки. За мгновение до детонации химического заряда ток от конденсаторной батареи поступает в обмотку и создает магнитное поле. Детонация заряда распространяется от заднего конца трубки к переднему. Расширяющаяся трубка касается края обмотки и создает движущееся короткое замыкание. Движущееся замыкание сжимает магнитное поле и в то же время уменьшает индуктивность обмотки статора. В результате ГСМП создает быстрорастущий импульс тока, который обрывается до окончательного разрушения устройства.
Согласно опубликованным результатам, время роста составляет десятки или сотни микросекунд, а пиковое значение силы тока – десятки миллионов ампер. По сравнению с получающимся импульсом разряд молнии выглядит как фотовспышка.
Когда оружие – звук
Говорят, во времена Средневековья существовала такая жестокая, мучительная казнь: приговоренного привязывали под большим колоколом, и набат медленно, но верно убивал несчастного…
Ныне, как считается, мы живем во времена куда более гуманные. А потому, когда прошел слух, что из США в Ирак в самое ближайшее время доставят новое супероружие, было специально подчеркнуто, что его использование не может привести к летальному исходу. В худшем случае человек, против которого оно направлено, лишится слуха.
Звуки и муки. Началось все, как это часто бывает, с обычного случая. «Проигрыватель потому так и называется, что выигрывает один, а проигрывают все соседи», – съязвил как-то известный публицист Зиновий Паперный. Согласно популярной песенке, которую пела известная всем Алла Борисовна, которой музыка проигрывателя мешала спать, решила проблему просто: отправилась на вечеринку к соседям шуметь вместе с ними.
Однако по разным причинам такое решение проблемы возможно далеко не всегда. И тогда… «Хочешь, я убью соседей, что мешают спать», – от риторического вопроса Земфиры, конечно, попахивает экстремизмом. Но многие из тех, кому соседи своим гамом не дают спокойного житья, близки иной раз к тому, чтобы осуществить такое намерение на практике.
Акустический излучатель для полицейских
Однако лучше чтить уголовный кодекс и отомстить по-другому: врага надо бить его же оружием. Для этого, например, владельцы небольшой британской фирмы по продаже всяческих хитрых устройств всего за 14,99 фунта предлагают компакт-диск с двадцатью треками. Каждый из них призван поразить уши надоевших соседей-мучителей «нечеловеческой музыкой».
Чего стоит, например, первая дорожка – звук дрели. Стоит поставить функцию replay – и горе соседям! Мало этого? Тогда перекройте шум соседских посиделок записью развеселой вечеринки персон на двести. А еще в вашем распоряжении на выбор – страстные звуки выдающегося оргазма, шум поезда, бой барабана (в исполнении ребенка), нечеловеческий визг, ходьба туда-сюда на высоких каблуках, домашний скандал, хлопанье дверью, игра в боулинг, вой и скулеж несчастной собаки. В довесок к этому прилагаются скрипичные гаммы в исполнении начинающего музыканта, звуки автомобильной пробки с сигналами клаксонов и криками разъяренных водителей, рев новорожденного младенца, непрекращающиеся телефонные звонки, игра в мяч… И в довершение всего, как напоминание о том, что хватит спать, – мощное кукареканье петуха.
Мегафон для Гулливера. И это – не единственное устройство подобного рода. Американец Элвуд Норис пошел дальше. Он не только изобрел, но и наладил производство особого устройства, с помощью которого можно воевать уже не только с соседями по дому.
«У большинства людей, даже если они заткнут уши, мое изобретение вызовет острую мигрень. Оно способно буквально поставить людей на колени», – говорит Элвуд Норрис, ныне глава фирмы-разработчика American Technology Corp.
Внешне новинка напоминает мегафон для Гулливера – его раструб размером с «тарелку» для приема передач спутникового телевидения. Гигантский громкоговоритель и ревет соответственно – он способен издавать звук мощностью до 145 децибел. Этого достаточно, чтобы все, кто находится на расстоянии 300 м от супермегафона, испытывали острую головную боль и даже глохли.
Впрочем, как утверждает разработчик и его коллеги, главная цепь оружия – «изменение поведения людей». А потому акустическое устройство способно транслировать не только пронзительный визг (столь жуткий, что толпа «добровольно» рассеется за несколько минут), но и записи, содержащие призывы к повиновению и сотрудничеству на разных языках.
Первоначально свою разработку специалисты из Сан-Диего, где расположена American Technology, собирались испытать в Афганистане – устанавливать его у входа в пещеры, где, по разведданным, скрывались талибы, и транслировать им приказы о сдаче. Ну а коль не послушаются, глушить их пронзительными воплями.
Почему этот план не сработал – неясно. Наверное, талибы сдались раньше, чем до них добралась спецтехника. Но испытать-то ее все-таки надо?. И вот супермегафон собираются применить в Ираке, причем в городах, а значит, жертвами его могут стать и мирные жители.
Однако Норрис утверждает, что такой прибор можно использовать избирательно, например против террористов в самолетах. «Остронаправленный стержневой излучатель может быть вмонтирован в трубу из композиционного материала около метра в длину и четырех сантиметров в диаметре, – рассказывает он. – Внутри находится каскад пьезоэлектрических излучателей, каждый из которых действует как миниатюрный громкоговоритель. Устройство усиливает и выстреливает звуковой импульс, который по эффективности можно сравнить с пулей».
Ради эксперимента Норрис изготовил небольшой образец звукового ружья и выстрелил сам в себя. «Эта штука чуть не сшибла меня с ног. После этого я еще долго не мог очухаться, – говорит он. – С ее помощью можно свалить и быка!»
Еще бы, ведь уровень звукового давления превышает 140 децибел при длительности одну или две секунды. А болевые ощущения начинаются уже при уровне от 120 до 130 децибел…
От танцплощадки до поля боя. Еще одно аналогичное устройство создано в лаборатории знаменитого Массачусетского технологического института, сообщает журнал New Scientist.
Изобретение получило название Audio Spotlight – звуковой прожектор. Его создатель, 28-летний Джозеф Помпей, говорит о своем детище так: «Если обычные динамики напоминают электрическую лампочку, то наш звуковой прожектор – это своеобразный лазер».
Генерировать узкий звуковой луч с помощью обыкновенных динамиков невозможно, поэтому ученые пошли по другому пути. Не раскрывая полностью свое ноу-хау, Помпей и его коллеги утверждают лишь, что удалось добиться, чтобы из источника сантиметрового диаметра испускался узкий пучок ультразвука. Нелинейно взаимодействуя с воздухом, он затем увеличивают длину своих волн до звуковой.
Сочетая разные ультразвуковые лучи, можно генерировать абсолютно все слышимые человеческим ухом звуки – голоса, музыку, шаги и т. д. Длина луча аудиопрожектора может достигать 100 м, впрочем, сила звука в нем убывает, как обычно: звук силой 80–90 децибел слышен на расстоянии нескольких метров.
Не исключено и мирное применение новинки. Так, супермаркеты теперь получат возможность размешать звуковые пояснения о новых товарах прямо на полках рядом с ними, в салоне автобуса или самолета для каждого пассажира будет звучать своя мелодия, а ваш сосед перестанет стучать в стенку, утверждая, что музыка из вашего проигрывателя мешает ему спать.
Разработкой группы Помпея тут же заинтересовались и военные. Они полагают, что звуковой прожектор даст им возможность транслировать команды на поле боя лишь непосредственно своим войскам. А на противника можно будет обрушить этакие залпы из «звуковых ружей» – целенаправленную какофонию звуков, воздействуя на психику его солдат.
Акустическая атака. Впрочем, как утверждают эксперты британской военной лаборатории QinetiQ, эффект тут не только психологический. Основной эффект от применения «звукового ружья» – острая боль в барабанных перепонках. Это крайне неприятное ощущение. Скорее всего, человек на несколько часов лишится слуха.
Акустические импульсы могут также дезориентировать людей, нанося удар по вестибулярному аппарату во внутреннем ухе, – явление, известное как эффект Туллио. Однако у различных людей он проявляется по-разному, и поэтому на него нельзя полностью полагаться…
Тем не менее создатели акустического оружия обещают, что полномасштабный образец будет эффективно «вырубать» террористов на расстоянии более чем 90 м. Ну а если при этом случайно может пострадать слух у простых пассажиров, то это несмертельно, утверждают эксперты. Ведь новое оружие официально отнесено к категории нелетального.
И все же сами американцы долгое время вообще скрывали сам факт наличия такого оружия, пока информация о нем не попала в СМИ. Возможно, политики и военные опасались реакции на новинку со стороны международных правозащитных организаций. И это несмотря на то, что супермегафон все же лучше, чем резиновые пули и слезоточивый газ, чаще всего применяемые для разгона демонстрантов. И уж точно безопаснее, чем огнестрельное оружие.
Правда, пока непонятно, как будут защищены от акустической атаки те, кто будет применять данное оружие. Ведь им волей-неволей придется находиться рядом с источником адского шума…
Впрочем, ныне появились и другие возможности использования акустических волн. Еще большие разрушения, чем гром и грохот, могут нанести звуки… неслышимые.
Дело в том, что мы с вами собственными ушами слышим лишь часть акустических колебаний – примерно от 20 Гц до 20 кГц. Звуки ниже и выше этого диапазона наши барабанные перепонки не воспринимают, хотя они и существуют. Звуки ниже 20 Гц стали называть инфразвуками, а выше 20 тыс. Гц – ультразвуками.
В технике и медицине ныне чаще используют ультразвуки. Но это не значит, что и об инфразвуках ничего не известно.
Одним из первых на инфразвуки обратил внимание «чародей эксперимента» – знаменитый американский физик Роберт Вуд. В 1901 году он по просьбе своего приятеля, театрального режиссера создал трубу с очень низким голосом. Когда Вуд задействовал ее в одном лондонском театре, надеясь, как и режиссер, вызвать этими звуками у зрителей чувство тревоги, необходимое по ходу спектакля, людей обуял самый натуральный ужас. Многие в панике бежали со спектакля.
Театральный эксперимент пришлось прекратить. Но это вовсе не значит, что об опыте Вуда тут же забыли. И во время Первой, и во время Второй мировых войн изобретатели по обе стороны фронта пытались найти военное применение инфразвуку.
Так, скажем, в 1940 году агенты абвера затеяли довольно хитроумную операцию. Они намеревались контрабандно ввезти на территорию Великобритании множество граммофонных пластинок с записями популярных мелодий. Но с одной хитростью: кроме слышимого звука, пластинки должны были исторгать и инфразвуки, которые бы вселяли панику в окружающих.
Операция с треском провалилась. А знаете почему? Оказалось, что пластинки того времени не способны воспроизводить инфразвук.
Впрочем, изобретатели Третьего рейха на том не успокоились. Некий доктор Циппермейер пару лет спустя создал «ураганное орудие». Оно должно было производить акустические вихри за счет взрывов в камере сгорания. Затем ударные волны с помощью специальных наконечников направлялись на объект и должны были, по мысли автора, сбивать самолеты противника.
Испытания, проведенные с уменьшенным прототипом звукового орудия, говорят, разнесли в щепки толстые доски на расстоянии около 200 м. Однако дальнейшие работы застопорились, поскольку тот же эффект оказалось невозможно воспроизвести на большем расстоянии от установки – самолеты спокойно летели дальше.
Тем не менее, когда в апреле 1945 года установку чудовищных размеров обнаружили союзники на полигоне в Хиллерслебене, они тут же заинтересовались, что это такое. И акустические эксперименты решено было продолжить. Тем более что у союзников были и собственные мотивы для ведения дальнейших работ.
Например, от рабочих одного из заводов на юге Франции стали поступать жалобы на странные недомогание. Проработав несколько часов в цехе, многие чувствовали головную боль, тревогу, у кого-то даже шла кровь из носа… Выявить причину явления администрация завода поручила профессору В. Гавро.
Тот провел серию исследований и понял, что причиной всему – вентилятор, с помощью которого проветривался цех. Оказалось, что лопасти его при вращении, кроме всего прочего, производили акустические колебания частотой около 7 Гц. Эти инфразвуковые волны и стали причиной недомогания рабочих.
Обнаружив необычное явление, ученые принялись и дальше исследовать его. Для этого понадобилось воспроизвести инфразвук в лаборатории. В качестве генератора звуковых колебаний использовали либо мембрану, либо пистонфон – подвижный поршень в цилиндре. Поршень соединялся с кривошипом и рукояткой. Вращая ее с различной скоростью, и получали всевозможные инфразвуки сравнительно большой мощности.
Можно генерировать звуки так же, как и во флейте, то есть направляя струю воздуха на язычок. Тогда труба будет работать как органная. Одна из таких труб протянулась аж на 24 м.
В лаборатории Гавро был построен и гигантский свисток, напоминающий многократно увеличенный полицейский. Энергия, развиваемая полисменом, дующим в свой свисток, довольно значительна: 2 л воздуха, выдуваемые за 1 секунду, – это 4 Вт. Считая КПД равным 25 %, получим, что акустическая мощность свистка – 1 Вт. В закрытом помещении такой свист выдерживается с трудом. Что же касается лабораторного инфразвукового свистка аналогичной мощности, то на расстоянии 1,5 м излучаемые им колебания были бы убийственными.
Сам профессор Гавро признавался, что не решается включить свою установку на полную мощность в 2 кВт из опасений разрушить здание лаборатории. Уже при излучаемой мощности в 100 Вт люди стремглав бежали вон, а стены и потолок покрывались трещинами.
Позднейшие опыты французского ученого подтвердили печальную славу сверхнизких колебаний. Люди, облучаемые инфразвуком, впадают в панику, страдают от сильной головной боли, теряют рассудок. При частоте 7 Гц наступает резонанс всего организма: «в пляс» пускаются желудок, сердце, легкие. Бывает, что мощные звуки разрывают даже кровеносные сосуды. И 2 кВт ведь не предел…
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.