Электронная библиотека » Стивен Строгац » » онлайн чтение - страница 2


  • Текст добавлен: 12 мая 2014, 16:15


Автор книги: Стивен Строгац


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 12 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +
4. Коммутативность: перемена мест сомножителей

Приблизительно каждые десять лет появляются новые методы преподавания математики, что лишний раз заставляет родителей почувствовать себя отставшими от жизни. Еще в 60-е годы прошлого века мои родители были в шоке оттого, что не могли мне помочь выполнить простое домашнее задание – они никогда не слышали о троичной системе счисления и диаграммах Эйлера-Венна.

Сегодня ситуация не изменилась. «Папа, ты можешь показать мне, как делать эти примеры на умножение?» «Конечно могу», – самонадеянно заявил я, пока не довел дочь до истерики. «Нет, папа, сейчас это делают не так! Это устаревший способ! Разве ты не знаешь умножения методом решетки? Нет? Ну а как насчет частичных произведений?»

Эта унизительная ситуация побудила меня пересмотреть процесс умножения с самого начала{9}9
  Кит Девлин написал провокационную серию очерков о природе умножения: что это такое, что в нем не так и почему определенные виды мышления более ценны и надежны в процессе умножения, чем другие. Он рассматривает умножение как масштабирование, не сводя его к процессу суммирования, и показывает, что эти два понятия (умножение как масштабирование и умножение как суммирование) существенно разнятся в реальных условиях. См. его январскую (2011 года) статью What exactly is multiplication? на http://archive.is/qCkK, а также три более ранних 2008 года: It ain’t no repeated addition (http://www.maa.org/devlin/devlin_06_08.html), It’s still not repeated addition (http://www.maa.org/devlin/devlin_0708_08.html) и Multiplication and those pesky British spellings (http://www.maa.org/devlin/devlin_09_08.html). Эти статьи активно обсуждались в среде блогеров, особенно среди учителей.


[Закрыть]
. И оно, как только вы вникнете в него глубже, действительно оказывается очень тонкой вещью.

Возьмите, например, терминологию. Равно ли трижды семь сумме трех по семь? Или сумме семи по три?

В некоторых культурах язык менее неоднозначен. Один мой друг из Белиза привык читать таблицу умножения так: «Семь один раз – это семь, семь дважды – четырнадцать, семь трижды – двадцать один» и так далее. Такая формулировка позволяет понять, что первое число это множимое, а второе – множитель. Аналогичная игра слов есть и в бессмертных стихах песни Лайонела Ричи[3]3
  Американский исполнитель поп-музыки, снискавший мировую славу в 1980-х годах. Прим. ред.


[Закрыть]
«Она однажды, дважды, трижды леди». (Слова «Она леди три раза» никогда не стали бы хитом.)

Может быть, вся эта суета вокруг семантики кажется вам глупой, так как порядок, в котором числа перемножаются, не имеет никакого значения, то есть в любом случае 7 × 3 = 3 × 7. Хорошо, но тут напрашивается вопрос, на котором я хотел бы остановиться подробнее. Является ли этот переместительный (коммутативный) закон умножения a × b = b × a действительно таким очевидным? Помню, меня еще в детстве он удивил, возможно, и вас тоже.

Чтобы привнести немного магии, представьте себе, что вы не знаете, чему равно 7 × 3, и поэтому складываете семерки: 7, 14, 21. Теперь поменяйте местами сомножители и складывайте тройки, получается 3, 6, 9… Чувствуете ли вы все нарастающее недоумение? До сих пор ни одно из чисел в этих перечнях не совпало, но пройдем дальше… 12, 15, 18, и затем – ах! – 21.

Я хочу сказать, что если вы считаете, что умножение соответствует многократному суммированию определенного числа (другими словами, многократному сложению), то коммутативный закон не совсем понятен. Но все проясняется, если представить умножение визуально. Допустим, 7 × 3 – это число точек в прямоугольной матрице с семью строками и тремя столбцами.



Если поставить матрицу набок, она превращается в матрицу, состоящую из трех строк и семи столбцов. Поскольку сама картинка при вращении не изменяется (то есть количество точек сохраняется), то похоже на то, что действительно 7 × 3 = 3 × 7.



Тем не менее, как ни странно, во многих реальных ситуациях, особенно когда дело касается денег, люди, кажется, забывают о коммутативном законе умножения. Позвольте привести два примера.

Предположим, вы собрались купить новые джинсы. Их продают со скидкой 20% от цены 50 долларов, указанной на этикетке, что выглядит заманчиво, но имейте в виду, что вам также придется заплатить 8% налога с продаж. После того как продавщица закончит нахваливать, как великолепно джинсы на вас сидят, и начнет оформлять покупку, она сделает паузу и заговорщицки шепнет: «Позвольте мне сэкономить ваши деньги. Я сначала посчитаю налог, а затем 20%-ную скидку от полученной суммы. Хорошо?»

Но что-то вас смущает. «Нет, спасибо, – говорите вы. – Не могли бы вы сначала вычесть 20%-ную скидку, а затем снять налог с цены покупки? Тогда я заплачу меньше».

Какой способ более выгоден для вас? (Предположим, что оба законны.)

Столкнувшись с подобной задачей, многие решают ее последовательным суммированием. Они вычисляют налоги и скидки в соответствии с заданным сценарием, а затем, чтобы определить окончательную цену, выполняют необходимое сложение или вычитание.

Если вы согласитесь с продавцом, то налог составит 4 доллара (8% от цены на этикетке). И цена джинсов увеличится до 54 долларов. Тогда при 20%-ной скидке от 54 долларов возвращенная сумма будет равняться 10,80 доллара. Итак, в конечном счете вы заплатите 54 доллара минус 10,80 доллара, что в сумме даст 43,20 доллара.

В соответствии же с вашим сценарием сначала будет вычитаться 20% скидки (на чем вы сэкономите 10 долларов от цены на этикетке). Тогда 8% налога на льготную цену в 40 долларов составят 3,20 доллара, так что вы все равно в конечном итоге заплатите 43,20 доллара. Удивительно?!

Но это же просто коммутативный закон в действии. Чтобы это понять, необходимо думать в стиле последовательного умножения, а не последовательного сложения. 8% налога и последующая за ним 20%-ная скидка вычисляются путем умножения цены на этикетке на 1,08 и последовательным умножением полученного результата на 0,80. Изменение порядка вычисления налога или скидки просто меняет местами сомножители, но, поскольку выполняется равенство 1,08 × 0,80 = 0,80 × 1,08, окончательная цена получается одинаковой{10}10
  В примере с джинсами порядок применения налогового сбора и скидки для вас не имеет значения – в обоих сценариях вы в конечном итоге платите 43,20 доллара. Но для правительства и магазина он весьма существенен! В сценарии продавщицы (при котором вы платите налог в зависимости от первоначальной цены) вы заплатите 4 доллара налога, в вашем сценарии – всего 3,20 доллара. Я не знаю, одинаков ли закон о налоге на продажи во всех штатах, но рациональнее всего взимать его на основе фактической цены в магазине. Дальнейшее обсуждение этих вопросов см. http://www.facebook.com/TeachersofMathematics/posts/166897663338316.


[Закрыть]
.

Соображения, подобные этим, возникают и при принятии решений о больших финансовых сделках. Лучше или хуже традиционного пенсионного плана новый план недавно, принятый Конгрессом США (закон Roth 401(k)){11}11
  Обсуждение достоинств и недостатков закона Roth 401(k) см. публикации Commutative law of multiplication (http://thefinancebuff.com/commutative-law-of-multiplication.html) и The new Roth 401(k) versus the traditional 401(k): Which is the better route? (http://www.thesimpledollar.com/2007/06/20/the-new-roth-401k-versus-the-traditional-401k-which-is-the-better-route/).


[Закрыть]
? И вообще, если у вас есть куча денег, которые вы намерены инвестировать, но на них нужно платить налоги, то когда лучше это делать – в начале инвестиционного периода или в конце?

Повторяю еще раз: коммутативный закон показывает, что при всех прочих равных условиях (которые, к сожалению, часто таковыми не являются) вы ничего не выигрываете. Если при обоих сценариях факторы роста денег и размеры налога одинаковы, то не имеет никакого значения, когда вам платить налоги – авансом или в конце периода.

Пожалуйста, не принимайте эти математические рассуждения за финансовый совет. Тем, кто сталкивается с решением подобных проблем, нужно учитывать, что в реальной жизни все не так просто. После выхода на пенсию вы предполагаете оказаться в верхней или нижней точке налоговой шкалы? Намерены ли вы полностью обнулить свой банковский депозит? Как думаете, правительство изменит налоговую политику при снятии денег со счетов к тому времени, когда вы соберетесь их взять, или нет? Но хватит об этом. И не поймите меня неправильно, это все важно и для меня, но здесь я пытаюсь сосредоточиться на более простых математических задачах и просто хочу показать, что коммутативный закон имеет отношение к анализу таких решений.

Об этом ведутся горячие споры на различных финансовых сайтах в интернете. Но даже после того как была показана актуальность коммутативных законов, некоторые блогеры с этим не согласились. Что, по большому счету, противоречит здравому смыслу.

Возможно, мы запрограммированы не доверять коммутативному закону, потому что в повседневной жизни, как правило, имеет значение то, что мы делаем в первую очередь. Нельзя одновременно брать кусок пирога и есть его. И снимать ботинки и носки тоже нужно в правильной последовательности.

Физик Мюррей Гелл-Манн как-то в ходе тревожных размышлений о своем будущем тоже пришел к аналогичному выводу. Закончив Йельский университет, он отчаянно хотел остаться в Лиге плюща[4]4
  Лига плюща – группа самых престижных частных колледжей и университетов на северо-востоке США, которые славятся высоким уровнем обучения и научных исследований. Название связано с тем, что по английской традиции стены университетов – членов Лиги увиты плющом. Прим. ред.


[Закрыть]
. К сожалению, в Принстон его не приняли. В Гарвард взяли, но без финансовой помощи он протянул бы ноги. Лучшим из возможных вариантов оказался Массачусетский технологический институт (но он не входил в Лигу плюща). В глазах амбициозного Гелл-Манна это учебное заведение было не очень престижным. Тем не менее он принял предложение. Много лет спустя он признался, что в тот момент подумывал о самоубийстве, но решил этого не делать, как только понял, что посещение Массачусетского технологического института и самоубийство нельзя переставить (поменять местами){12}12
  Эта история о Мюррее Гелл-Манне рассказывается в G. Johnson, Strange Beauty (Knopf, 1999), p. 55. По словам самого Гелл-Манна, хотя его приняли в «страшный» Массачусетский технологический институт, он «рассматривал самоубийство как единственный выход из положения, если пролетаешь мимо Лиги плюща». «Мне пришло в голову (и это интересный пример некоммутирующих операторов), что можно попробовать учебу в Массачусетском технологическом институте и убить себя позже, в то время как обратный порядок событий невозможен». Этот отрывок приведен в H. Fritzsch, Murray Gell-Mann: Selected Papers (World Scientific, 2009), p. 298.


[Закрыть]
. Он мог бы пойти учиться в Массачусетский технологический институт, а потом убить себя, но не наоборот.

Гелл-Манна, вероятно, впечатлила важность принципа коммутативности. Но в квантовой физике он бы обнаружил, что на самом глубинном уровне природа не подчиняется коммутативному закону. И это тоже хорошо, поскольку благодаря нарушению коммутативного закона мир таков, каков он есть. Именно поэтому материя является твердой и атомы не разрушаются.

Еще на заре появления квантовой механики{13}13
  Рассказ о том, как Гейзенберг и Дирак открыли роль некоммутирующих переменных в квантовой механике, см. G. Farmelo, The Strangest Man (Basic Books, 2009), pp. 85–87.
  Прим. ред.: По истории квантовой механики см., например: Пономарев Л. И. Под знаком кванта. М.: ФИЗМАТЛИТ, 2005; Милантьев В. П. История возникновения квантовой механики и развитие представлений об атоме. М.: Книжный дом «ЛИБРОКОМ», 2009.


[Закрыть]
Вернер Гейзенберг и Поль Дирак обнаружили, что в природе p × qq × p, где p и q – импульс и координата квантовой частицы. Без этого нарушения коммутативного закона не было бы принципа неопределенности Гейзенберга, атомы бы взорвались и ничего не существовало бы.

Вот почему вам лучше позаботиться о своих p и q. И наказать делать это своим детям.

5. Деление и его проблемы

Через все повествование о числовых основах математики красной нитью проходит одна идея. Речь идет о создании (или поиске) все более универсальных чисел.

Нам достаточно натуральных чисел 1, 2, 3 и т. д., если нужно что-то сосчитать, сложить или перемножить. Но как только мы переходим к вычитанию, мы вынуждены создать новый вид числа – ноль, а также отрицательные числа. Эта расширенная вселенная чисел, называемых целыми, так же замкнута, как и натуральные числа, но она более мощная, поскольку охватывает еще и результаты операции вычитания[5]5
  Математики говорят, что множество натуральных чисел замкнуто относительно операций сложения и умножения, то есть результаты этих операций, совершенные над натуральными числами, тоже будут натуральными числами. Аналогично множество всех целых чисел замкнуто относительно операций сложения, вычитания и умножения. Прим. ред.


[Закрыть]
.

Новый кризис наступает при попытке выполнить математическую операцию деления. Деление целого числа без остатка не всегда возможно… если мы не расширим вселенную чисел еще раз, своевременно изобретя дроби. Дроби – это отношение целых чисел, следовательно, их математическое название – рациональные числа. К сожалению, это то место, где многие студенты бьются головой о математическую стенку.

Есть много непонятных вещей, связанных с делением и его последствиями, но, пожалуй, больше всего выводит из себя существование множества различных способов, чтобы описать часть целого.

Разрезав торт, прослоенный шоколадом, ровно посередине на две равные части, вы, скорее всего, скажете, что каждая часть равна половине торта. Или можете выразить ту же идею дробью ½, что означает «1 из 2 равных частей». (Косая черта между 1 и 2 визуально напоминает, что что-то разрезали.) Третий способ выражения – сказать, что каждая часть составляет 50% от целого, что буквально означает «50 частей из 100». Всего этого было бы уже достаточно, но есть еще один вариант – представить идею в десятичной системе счисления и описать каждую часть как 0,5 от всего торта.

Такое обилие выбора, возможно, отчасти становится причиной недоумения, которое многие из нас испытывают, сталкиваясь с дробями, процентами и десятичными дробями. Ярким примером этому служит фильм «Моя левая нога» (My Left Foot), подлинная история мужественного ирландского писателя, художника и поэта Кристи Брауна. Он родился в большой рабочей семье и страдал от церебрального паралича, не мог говорить и контролировать свои конечности, кроме левой ноги. В детстве его часто называли умственно отсталым, особенно отец, который злился на сына и жестоко с ним обращался.

В ключевой сцене фильма семья сидит за столом. Одна из старших сестер Кристи делает домашнее задание по математике, устроившись рядом с отцом. Кристи, как обычно, сидит в углу комнаты, вертясь на кресле. Его сестра нарушает тишину. «Что такое 25% от четверти?» – спрашивает она. Отец обдумывает вопрос. «Двадцать пять процентов от четверти? Ух-х-х… Дурацкий вопрос, а? В смысле 25% – это и есть четверть. Вы не можете иметь четверть четверти». Сестра отвечает: «Можем. Кристи, разве у тебя не так?» Отец хмыкает: «Ха! Да что он знает?!»

Действительно, удел Кристи – пытаться захватить кусочек мела пальцами левой ноги. Прижав мел к грифельной доске, которая лежит на полу, мальчик сумел нацарапать каракуль, похожий на цифру 1, затем косую черту и еще что-то непонятное. Это число 16, но задом наперед. Расстроенный, он стирает пяткой 6 и пробует снова, но на этот раз мел движется слишком далеко, пересекая 6 и превращая ее во что-то невразумительное. «Это просто какие-то нервные загогулины», – ехидничает отец, отворачиваясь. Кристи закрывает глаза и откидывается, совершенно обессиленный{14}14
  Сцену, где молодой Кристи пытается мужественно ответить на вопрос «Сколько будет 25 процентов от четверти?» можно найти на сайте http://www.tcm.com/mediaroom/video/223343/My-Left-Foot-Movie-Clip-25-Percent-of-a-Quarter.html.


[Закрыть]
.

Кроме мощного драматического воздействия, эта сцена поражает принципиальной жесткостью отца. Непонятно, почему он так убежден, что нельзя иметь четверть четверти? Может быть, он думает, что четверть можно взять только от целого или от чего-то, состоящего из четырех равных частей. Но он не в состоянии понять, что все делится на четыре равные части. В случае если объект уже является четвертью чего-то, его четыре равные части будут выглядеть следующим образом:



Так как эти 16 тонких ломтиков составят целый объект, каждый ломтик, то есть 1/16 от целого, и является ответом, который Кристи пытался нацарапать.

Другой случай такой же психической жесткости, но в современном мире цифровых технологий, обошел несколько лет назад весь интернет. Обиженный клиент по имени Джордж Ваккаро записал и разместил в сети свой телефонный разговор с двумя сотрудниками компании Verizon Wireless. Ваккаро жаловался на то, что ему обещали взимать плату за использование данных в размере 0,002 цента за килобайт, но в полученном счете он обнаружил, что с него взяли по тарифу 0,002 доллара за килобайт (в 100 раз больше). Последовавшая за этим беседа возглавила рейтинг лучших пятидесяти комедийных роликов в YouTube.{15}15
  В блоге Джорджа Ваккаро (http://verizonmath.blogspot.com/) можно узнать подробности его встречи с представителями Verizon Wireless. Стенограмма разговора доступна на http://verizonmath.blogspot.com/2006/12/transcription-jt.html. Аудиозапись – на http://imgs.xkcd.com/verizon_billing.mp3.


[Закрыть]

Вот разговор, который происходит примерно в середине записи между Ваккаро и Андреа, дежурным менеджером компании Verizon Wireless:


В. Признаете ли вы, что есть разница между одним долларом и одним центом?

А. Определенно.

В. Вы согласны, что между половиной доллара и половиной цента тоже есть разница?

А. Конечно.

В. Тогда вы наверняка признаете и существование разницы между 0,002 доллара и 0,002 цента?

А. Нет.

В. Нет?

А. Я имею в виду, есть разница… но нет 0,002 доллара.


Несколько мгновений спустя Андреа говорит: «Очевидно, что доллар можно представить как “одну десятую и ноль, ноль”, правильно? Но, чтобы “ноль, запятая, ноль, ноль и два”, так?.. Я никогда не слышал о 0,002 доллара. Это просто неполный цент».

Неумение преобразовывать доллары в центы – это только часть проблемы Андреа. Основная его беда в том, что он не способен представить себе их части.

Из личного опыта могу сказать, что так происходит из-за заблуждений в отношении десятичных дробей. В восьмом классе мисс Стэнтон начала учить нас преобразовывать обыкновенные дроби в десятичные. При делении в столбик мы обнаружили, что некоторые дроби могут быть представлены в виде десятичных, оканчивающихся нулями. Например, 1/4 = 0,2500… ее можно переписать как 0,25, поскольку все нули справа не имеют значения. Другие дроби при преобразовании дают десятичные дроби с повторяющимися в конце цифрами, как, например (цифра 3 в периоде),


5/6 = 0,8333…


Моей любимой была дробь 1/7; в ней при преобразовании в десятичную дробь повторялись каждые шесть цифр (шесть цифр в периоде):


1/7 = 0,142857142857…


Недоумение возникло, когда мисс Стэнтон сказала, что если умножить на 3 обе части простого равенства


1/3 = 0,3333…,


то 1 должна равняться 0,9999…

Я возразил, что это неверно. Неважно, сколько девяток написала бы она, я мог бы поставить столько же нулей после 1,0000… а затем, если вычесть ее число из моего, всегда оставалась бы какая-нибудь маленькая разность вроде 0,0000…01{16}16
  Для читателей, которым все еще трудно принять, что 1 = 0,9999…, аргументом (убедившим в конце концов и меня) может быть такое рассуждение: они должны быть равны, потому что между ними нельзя вставить никакого другого десятичного числа. (В то же время, если два десятичных числа не равны, то между ними можно вставить их среднее, а также бесконечно много других десятичных чисел.)


[Закрыть]
.

Так же как отец Кристи и представитель Verizon, я не мог принять то, что мне только что доказали. Я видел, что это правильный логичный вывод, но отказывался его принимать. (Это может напомнить вам кое-кого из ваших знакомых.)

Насколько бурно человек реагирует в подобной ситуации, зависит от его нервной системы. Но вернемся снова в класс мисс Стэнтон. И все-таки, почему же мы считали десятичными только периодические десятичные дроби? Легко составить подходящий пример. Вот он:


0,12122122212222…


Последовательность подобрана так, чтобы ряд двоек в каждом периоде по мере продвижения вправо был длиннее. Такую дробь невозможно преобразовать в обыкновенную, то есть в отношение двух целых чисел. Можно доказать, что обыкновенные дроби всегда преобразуются в конечные или периодические десятичные дроби. А так как эта десятичная дробь не является ни периодической, ни конечной, то она не может быть равна отношению некоторых целых чисел. Поэтому данное число иррационально.

Учитывая, что показанное десятичное число подобрано специально, можно было бы предположить, что такие числа встречаются крайне редко. Но на самом деле подобное число типично. В определенном смысле можно сказать, что почти все десятичные числа – это иррациональные числа{17}17
  Удивительные свойства иррациональных чисел обсуждаются на более высоком математическом уровне на странице Irrational Number по адресу http://mathworld.wolfram.com/IrrationalNumber.html. Взгляд, согласно которому цифры в иррациональном числе рассматриваются как случайные, представлен на http://mathworld.wolfram.com/NormalNumber.html.


[Закрыть]
. А повторяющиеся цифры в их записи можно рассматривать как статистически случайные.

Как только вы принимаете эти удивительные факты, все приходит в хаос и беспорядок. Целые числа и обыкновенные дроби, столь любимые и знакомые, становятся редкими и экзотичными. Вы, конечно, когда-нибудь и где-нибудь видели безобидную числовую ось. Но никто и никогда не говорил вам, что хаос скрывается именно там!

6. Твердая позиция

Я проходил мимо статуи Эзры Корнелла[6]6
  Эзра Корнелл (англ. Ezra Cornell; 1807–1874) – американский бизнесмен, изобретатель, филантроп. Вместе с Эндрю Уайтом основал Корнелльский университет. Знаменит также тем, что был в числе учредителей и фактических руководителей всемирно известной компании Western Union, построившей первый трансконтинентальный телеграф в Соединенных Штатах. Прим. ред.


[Закрыть]
сотни раз, даже не взглянув на покрытую зеленой патиной фигуру, но однажды остановился, чтобы лучше рассмотреть ее.{18}18
  Более подробную информацию о Корнелле, в том числе о его роли в Western Union, см. P. Dorf, The Builder: A Biography of Ezra Cornell (Macmillan, 1952); W. P. Marshall, Ezra Cornell (Kessinger Publishing, 2006); и http://rmc.library.cornell.edu/ezra/index.html, онлайн-выставку в честь 200-летнего юбилея Корнелла.


[Закрыть]



Эзра выходит на улицу, исполненный гордого достоинства, в длинном пальто, жилете и сапогах. В правой руке он держит помятую широкополую шляпу и опирается на трость. Памятник производит впечатление непритязательности и обезоруживающей прямоты, какой, судя по всему, отличался в жизни и сам увековеченный в бронзе человек.

И именно поэтому так диссонируют с общим обликом памятника даты жизни Эзры. Они высечены на постаменте напыщенными римскими цифрами:

EZRA CORNELL
MDCCCVII – MDCCCLXXIV

Почему бы просто не написать 1807–1874? Римские цифры выглядят впечатляюще, но они трудно читаются и громоздки. У Эзры не хватило бы терпения прочесть их.

Найти хороший способ представления чисел всегда было сложно. Уже на заре цивилизации люди пробовали различные системы записи чисел{19}19
  Древние системы счисления и происхождение десятичной системы обсуждаются в V. J. Katz, A History of Mathematics, 2nd edition (Addison Wesley Longman, 1998) и в C. B. Boyer and U. C. Merzbach, A History of Mathematics, 3rd edition (Wiley, 2011). О развитии систем счета см. C. Seife, Zero (Viking, 2000), chapter 1.
  Прим. ред.: Из огромной литературы по истории математики на русском языке выделим только следующие издания, которые признаны как наиболее фундаментальные в этом разделе математики: Варден, дер. В. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. М.: Наука, 1959; Выгодский М. Я. Арифметика и алгебра в древнем мире. М.: Наука, 1967; Бурбаки Н. Очерки по истории математики. М.: КомКнига, 2007; История математики. В 3-х томах / Под ред. А. П. Юшкевича. М.: Наука, 1970–1972. Том I. С древнейших времен до начала Нового времени (1970).


[Закрыть]
и проводили с их помощью подсчеты, будь то в торговле, измерении земельных наделов или пересчете скота в стаде.

Что объединяет почти все эти системы, так это то, что в них глубоко укоренились особенности анатомического строения человека. Из-за капризов эволюции у нас по пять пальцев на каждой руке. Этот анатомический факт отражается в примитивной системе подсчета, например число 17 записывается в виде:



Здесь каждая вертикальная черточка в каждой группе заменяет палец. Может быть, косая черта изображала большой палец, лежащий на остальных четырех пальцах, сжатых в кулак?

Римские цифры{20}20
  Марк Чу-Кэрролл рассматривает некоторые специфические особенности римских чисел и римской арифметики в блоге http://scienceblogs.com/goodmath/2006/08/roman_numerals_and_arithmetic.php.


[Закрыть]
лишь немного сложнее, чем счет на пальцах. Вы можете определить след счета на пальцах в способе написания римлянами чисел 2 и 3 как II и III. Косая черта находит отражение в форме римского числа 5 как V. Но 4 – особый случай. Иногда цифра пишется как IIII, хотя чаще как IV. Расположение в IV меньшего числа (I) слева от большего (V) означает, что вы должны вычесть I, вместо того чтобы прибавить, как если бы она стояла справа. Таким образом, IV обозначает 4, в то время как VI – 6.

Вавилоняне{21}21
  Увлекательная выставка вавилонской математики описывается в N. Wade, An exhibition that gets to the (square) root of Sumerian math, New York Times (November 22, 2010) на сайте http://www.nytimes.com/2010/11/23/science/23babylon.html, сопровождающее слайд-шоу см. на http://www.nytimes.com/slideshow/2010/11/18/science/20101123-babylon.html.


[Закрыть]
не были настолько привязаны к своим пальцам. Их система счисления основывалась на числе 60, в чем отразился их безупречный вкус, так как 60 – исключительно приятное число. Его красота внутренняя и не имеет ничего общего с человеческой анатомией{22}22
  Это может быть преувеличением. Одну из гипотез о том, как число 60 можно связать с анатомией рук человека, см. в G. Ifrah, The Universal History of Numbers (Wiley, 2000), chapter 9.


[Закрыть]
. Шестьдесят – это наименьшее число, которое можно разделить нацело (без остатка) на 1, 2, 3, 4, 5 и 6. И это только начало (есть еще делители 10, 12, 15, 20 и 30). Из-за своей уникальной делимости число 60 куда более приемлемо, чем 10, для любого вида расчетов или измерений, которые представляют собой деление на равные части. Когда мы делим час на 60 минут, или минуту на 60 секунд, или полный круг на 360 градусов, то питаемся идеями мудрецов Древнего Вавилона.

Но самое большое наследие вавилонян – это идея, которая сегодня нам настолько привычна, что мало кто из нас может оценить всю ее тонкость и гениальность.

Чтобы проиллюстрировать эту идею, давайте рассмотрим привычную для нас индо-арабскую систему счисления, которая основана на той же идее в ее современном воплощении. Вместо 60 она базируется на десяти символах: 1, 2, 3, 4, 5, 6, 7, 8, 9 и, что самое замечательное, 0. Они называются цифрами, естественно, от латинского слова «пальцы»[7]7
  Вообще-то от латинского «пальцы» слово «цифра» происходит в английском языке, где слово digit обозначает как цифру, так и палец. В русском языке слово «цифра» происходит от арабского ṣifr – пустой, ничего, нуль. Прим. ред.


[Закрыть]
.

Основное новшество в том, что, хотя эта система основана на числе 10, для него не зарезервировано никакого отдельного символа. Десять – это позиция цифр 1 и 0, их расположение, а не отдельный символ. То же самое справедливо для чисел 100 или 1000 и любых других, производных от 10. Их особый статус определяется не каким-либо символом, а местоположением составляющих их цифр. Такая система представления чисел называется позиционной системой счисления.

Здесь четко виден контраст между элегантной позиционной системой и более грубым подходом, используемым в римских цифрах. Вы хотите число десять? У нас есть 10. Это римское X. Аналогично получаем 100 (римское С) и 1000 (римское M). Также нетрудно получить десятичные представления для римских семей пятерок: римское V – число 5, римское L – число 50 и римское D – число 500.

В системе римских цифр возвышаются только несколько избранных чисел. Им дают собственную символику, а все остальные «второразрядные» числа представляются в виде их комбинаций.

К сожалению, римские цифры скрипели и стонали, когда сталкивались с чем-то бо́льшим, чем несколько тысяч. Чтобы обойти эту проблему, средневековые ученые (по-прежнему использовавшие римские цифры) для определения чисел, которые в тысячу раз больше имеющихся, прибегали к наложению на уже существующие числа новых символов – верхней черты. Например, означает десять тысяч, а – тысячу тысяч, или, другими словами, миллион. Умножение на миллиард (тысячу миллионов) встречалось редко, но если бы оно вам когда-нибудь понадобилось, вы всегда смогли бы наложить на еще одну черту. Похоже, веселье с римскими числами никогда не прекращается.

Индо-арабская (позиционная) система счисления позволяет легко и быстро написать любое число независимо от того, насколько оно велико. Причем представлено оно будет все теми же десятью цифрами, нужно просто поставить их в правильную позицию. Более того, обозначения в арабской десятичной системе счисления очень короткие. Например, любое число до одного миллиона можно отобразить шестью или меньшим количеством символов – цифр. Попробуйте сделать это словесно, с помощью черточек или римскими цифрами.

Проще всего обычным людям научиться вычислениям с помощью позиционной системы счисления. Для этого достаточно выучить две таблицы – умножения и ее копию для сложения. И это все, что вам когда-нибудь понадобится. Любые расчеты с любой парой чисел, независимо от того, насколько они большие, можно выполнять с применением этих таблиц.

Все вышесказанное звучит несколько механистически, но в этом есть определенный смысл, поскольку с помощью позиционной системы счисления можно запрограммировать вычислительную машину на выполнение любых арифметических действий. От первых механических калькуляторов до сегодняшних современных суперкомпьютеров автоматизация арифметических вычислений стала возможной благодаря красивой идее определения значения числового разряда путем его местоположения.

Однако до сих пор невоспетым героем истории остается цифра ноль. Без него все рухнет. Это символ-заполнитель, который позволяет нам отличать числа 1, 10 и 100 друг от друга.

Все позиционные системы счисления построены на некоем числе, называемом основание системы. Наша привычная система счисления десятичная (от латинского корня decem, означающего «десять»), то есть основана на числе 10. В ней после первого разряда, представляющего единицы, следующие разряды представляют десятки, сотни, тысячи и т. д., каждый из которых является степенью 10:


10 = 10¹

100 = 10 × 10 = 10²

1000 = 10 × 10 × 10 = 10³.


Учитывая тот факт, что выбор числа 10 для системы счисления имеет анатомическую, а не логическую основу, естественным было бы спросить, а нет ли более эффективных систем счисления с другими основаниями? Веские аргументы можно представить в пользу системы счисления с основанием 2 – теперь уже повсеместно распространенной двоичной системы, используемой в компьютерах и всех электронных (цифровых) устройствах, начиная от мобильных телефонов и заканчивая видеокамерами. Из всех возможных систем счисления эта требует наименьшего количества символов (только два, 0 и 1). Это ее свойство прекрасно соотносится с логикой электронных переключателей или чего-то еще, что может находиться в двух состояниях: включено или выключено, открыто или закрыто.

Двоичная система нуждается в некотором пояснении. Вместо степеней 10 в ней используются степени 2. Две единицы по-прежнему занимают 1-й разряд, как и в десятичной системе, но следующие разряды теперь занимают двойки, четверки и восьмерки, потому что


2 = 2¹

4 = 2 × 2 = 2²

8 = 2 × 2 × 2 = 2³.


Конечно, при записи числа в двоичной системе счисления мы не используем цифру 2, так же как и «цифру» 10 при записи чисел в десятичной системе счисления. В двоичной системе 2 записывается как 10 (один и ноль), а это означает одну двойку и ноль единиц. Аналогично этому 4 можно записать как 100 (одна четверка, ноль двоек и ноль единиц), а 8 – как 1000.

Последствия использования двоичной системы счисления выходят далеко за пределы математики. Степень двойки изменила наш мир. В последние несколько десятилетий мы пришли к пониманию, что вся информация (а это не только числа, но и язык, и все изображения, и звуки) может быть закодирована в виде последовательности нулей и единиц.

Что возвращает нас к памятнику Эзры Корнелла.

С задней стороны сооружения почти полностью скрыт от зрителя телеграфный аппарат, скромно напоминающий о роли Эзры Корнелла в создании Western Union – американской компании, сегодня специализирующейся на срочных денежных переводах, а некогда связавшей воедино весь североамериканский континент.



В качестве плотника, превратившегося в предпринимателя, Корнелл начал работать у Сэмюэля Морзе, чье имя живет в коде точек и тире, благодаря чему английский язык сократился до щелчков телеграфного ключа. Эти два события стали технологическими предшественниками сегодняшних нулей и единиц.

Морзе поручил Корнеллу построить первую правительственную телеграфную линию от Балтимора до Капитолия в Вашингтоне. Он, по-видимому, с самого начала предчувствовал, что принесут ему точки и тире. Когда 24 мая 1844 года линия была официально открыта, Морзе отправил по ней первое сообщение: «Чудны дела Твои, Господи!»


Страницы книги >> Предыдущая | 1 2 3 | Следующая
  • 4 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации