Электронная библиотека » Сьюзан Барри » » онлайн чтение - страница 4


  • Текст добавлен: 8 ноября 2023, 05:35


Автор книги: Сьюзан Барри


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 15 страниц) [доступный отрывок для чтения: 4 страниц]

Шрифт:
- 100% +

Сосредоточенность на деталях характерна для многих людей, которые обрели зрение, и это может объяснить их восприятие некоторых известных оптических иллюзий[60]60
  Y. Ostrovsky et al., “Visual Parsing After Recovery from Blindness,” Psychological Science 20 (2009): 1484–1491; P. Sinha, “Once Blind and Now They See,” Scientific American 309 (2013): 48–55; R. Sikl et al., “Vision After 53 Years of Blindness,” i-Perception 4 (2013): 498–507.


[Закрыть]
. В 2014 году во время очередной поездки к Лиаму я захватила с собой несколько картинок с оптическими иллюзиями, и с их помощью мы вместе исследовали особенности его зрения. Такие иллюзии называются контекстными, поскольку мы должны учитывать всю поступающую зрительную информацию, чтобы почувствовать на себе их эффект. Например, в иллюзии Мюллера-Лайера нам кажется, что перед нами две линии разной длины, хотя на самом деле они одинаковые (Рисунок 3.4). На верхнем изображении стрелки повернуты внутрь, по направлению к линии, тогда как на нижнем изображении они указывают наружу, по направлению от линии. Большинство людей воспринимает верхний отрезок как более длинный. Когда Лиам посмотрел на рисунок, он увидел две примерно одинаковые линии: иллюзия на него если и действовала, то слабо. То же случилось и с С. Б., как писали Грегори и Уоллес, и К. П., который потерял зрение в возрасте семнадцати лет и спустя 53 года восстановил возможность видеть на одном глазу[61]61
  Gregory and Wallace, Recovery from Early Blindness; Sikl et al., “Vision After 53 Years of Blindness.”


[Закрыть]
. Однако дети проекта Пракаш и пациент Л. Г., чей случай описал Вальво, попались на уловку иллюзии[62]62
  Valvo, Sight Restoration After Long-Term Blindness; T. Gandhi et al., “Immediate Susceptibility to Visual Illusions After Sight Onset,” Current Biology 25: (2015): R345–R361.


[Закрыть]
.


РИСУНОК 3.4. Иллюзия Мюллера-Лайера. Какой из этих отрезков длиннее?


РИСУНОК 3.5. Иллюзия Геринга. Изогнуты ли вертикальные линии?


Лиама не обманула и иллюзия Геринга (Рисунок 3.5). Толстые вертикальные линии на этом рисунке кажутся нам выгнутыми, но стоит удалить более тонкие линии, расходящиеся из центра в стороны, и мы увидим, что вертикальные линии на самом деле прямые. Лиам видел, что они прямые, как если бы не воспринимал их частью общей картинки. С. Б. эта иллюзия тоже не обманула[63]63
  Gregory and Wallace, Recovery from Early Blindness.


[Закрыть]
.

Лиам сказал мне, что до операции ему было сложно отличить собаку от кошки: тогда и собака, и кошка – это для него было нечто живое и покрытое шерстью, что передвигается по земле. Теперь я показала Лиаму фотографию кошки с собакой, и он смог их отличить – однако он не смог отличить собаку от кошки на изображении, где были видны только их силуэты. Младенцы в возрасте 3–4 месяцев могут различать силуэты этих двух животных, но Лиаму этой информации не хватало, чтобы успешно решить задачу[64]64
  P. C. Quinn, P. D. Eimas, and M. J. Tarr, “Perceptual Categorization of Cat and Dog Silhouettes by 3-to 4-Month-Old Infants,” Journal of Experimental Child Psychology 79 (2001): 78–94.


[Закрыть]
. Он видел отдельные элементы изображения, но ему было по-прежнему сложно увидеть картинку целиком.

В 2015 году, через год после моего третьего визита, я прислала Лиаму картинку из книги Джозефа Альберса «Взаимодействие цветов», приведенную на Рисунке 3.6[65]65
  J. Albers, Interaction of Color, rev. ed. (New Haven, CT: Yale University Press, 1975).


[Закрыть]
. Это изображение иллюстрирует наше восприятие прозрачных форм. Большинство из нас сказали бы, что на рисунке изображены два листа бумаги, причем более светлый полупрозрачный лист справа лежит на более темном листе, расположенном чуть левее. Лиам ответил: «Это два прямоугольника… с чем-то вроде стрелки посередине». Он интерпретировал эту картинку как двухмерную геометрическую абстракцию, а не как два листа бумаги в трехмерном пространстве. Он легко распознавал составные элементы изображения, но не мог уловить их общий смысл.

Хотя сегодня Лиам распознает намного больше предметов, чем сразу после операций, ему все еще сложно воспринимать объекты целиком, а не как сумму составляющих их элементов. Мы почти не осознаем наше умение молниеносно различать и распознавать объекты, но на самом деле в эту работу вовлечено огромное количество нейронов головного мозга. Примерно треть объема мозга связана со зрением и обработкой зрительной информации. Поскольку Лиам с младенчества был почти слепым, его зрительная система не могла нормально развиваться. Его зрительное восприятие в тот момент, когда он только-только получил интраокулярные линзы, и те проблемы, с которыми он столкнулся в дальнейшем, помогают нам узнать что-то новое о том, чем заняты нейронные сети зрительной системы и о том, насколько огромный объем их работы мы попросту не замечаем.


РИСУНОК 3.6. Мы интерпретируем это изображение как два листа бумаги, причем светлый полупрозрачный лист лежит на втором, более темном.


Для человека, изучающего физиологию зрения, кажется совершенно логичным, что Лиам видит в первую очередь линии, границы и контуры, а не цельные объекты, ведь наша зрительная система действительно очень чувствительна к линиям. Линии очень часто лежат на границе между светом и тенью, и многие нейроны сетчатки лучше всего реагируют именно на этот контраст[66]66
  N. Daw, How Vision Works: The Physiological Mechanisms Behind What We See (New York: Oxford University Press, 2012).


[Закрыть]
. Первичная зрительная кора, которая также называется стриарной корой или зрительной зоной V1, – это первая область коры головного мозга, которая получает зрительную информацию с сетчатки. В середине XX века Дэвид Хьюбел и Торстен Визель начали фиксировать активность индивидуальных нейронов в зрительной зоне V1 – сначала у кошек, а потом и у обезьян[67]67
  D. H. Hubel and T. N. Wiesel, Brain and Visual Perception: The Story of a 25-Year Collaboration (Oxford: Oxford University Press, 2005).


[Закрыть]
. У каждого нейрона есть свое рецептивное поле, то есть он чувствителен к световым раздражителям, поступающим с конкретной области поля зрения. Например, один нейрон может быть чувствителен к раздражителям, попадающим прямо по центру поля зрения, тогда как другой будет реагировать на раздражитель, попадающий, скажем, слегка левее и ниже центральной точки. Рецептивные поля смежных нейронов зрительной зоны V1 слегка различаются, но пересекаются между собой, поскольку они получают информацию с разных, но пересекающихся между собой областей сетчатки. Таким образом, в первичной зрительной коре топографически, или ретинотопически картировано все поле зрения. Некоторые нейроны зрительной зоны V1 реагируют исключительно на свет с определенной длиной волны (и мы воспринимаем это как цвет), но большая их часть реагирует на белые полосы на черном фоне или наоборот – черные полосы на белом фоне. Важно и направление этих полос. Некоторые нейроны зрительной зоны V1 возбуждаются в ответ на вертикальные полосы, некоторые – на горизонтальные, некоторые – на полосы, расположенные под какими-либо другими углами: они называются ориентационно-избирательными нейронами.

Когда две грани предмета образуют ребро, текстура и освещенность в этом месте могут измениться, и контраст между ними стимулирует определенную группу ориентационно-избирательных нейронов в вашей зрительной зоне V1. Когда вы осматриваете предмет, образующие его линии меняют свое направление, и тогда в зрительной зоне V1 активизируются другие ориентационно-избирательные нейроны. Дальние связи между ориентационно-избирательными нейронами зрительной зоны V1 помогают воспринимать продолжительные линии и контуры как единое целое[68]68
  C. D. Gilbert and W. Li, “Top-Down Influences on Visual Processing,” Nature Review Neuroscience 14 (2013): 350–363; W. Li, V. Piëch, and C. D. Gilbert, “Learning to Link Visual Contours,” Neuron 57 (2008): 442–451.


[Закрыть]
.

Лиам не мог по цветам и линиям понять, что он видит перед собой, и точно так же и мы оказываемся не в состоянии понять принципы обработки зрительной информации, изучая только отдельные нейроны зрительной зоны V1. В 1973 году великий нейропсихолог А. Р. Лурия издал книгу «Основы нейропсихологии»[69]69
  A. R. Luria, The Working Brain: An Introduction to Neuropsychology (New York: Basic Books, 1973).


[Закрыть]
. Опираясь на работу со своими пациентами, Лурия выделил в нашей зрительной коре первичную и вторичную зоны. Первичная зона включает первичную зрительную кору (зрительную зону V1), и повреждения в этой области приводят к слепоте в той части поля зрения, из которой эта конкретная область зрительной коры получает информацию. Нейроны первичной зоны связаны с нейронами вторичной зоны, занятой синтезом и переработкой входящей информации. При повреждении вторичной зрительной зоны люди не теряют зрение, но страдают от различных форм зрительной агнозии («незнания»). Они могут «видеть» все составные элементы уже знакомого предмета, его контуры и цвета, но они не могут синтезировать их в единое целое и узнать собственно сам предмет,[70]70
  Luria, The Working Brain; M. J. Farah, Visual Agnosia, 2nd ed. (Cambridge, MA: MIT Press, 2004).


[Закрыть]
как будто они никогда раньше его не видели[71]71
  E. Goldberg, Creativity: The Human Brain in the Age of Innovation (New York: Oxford University Press, 2018).


[Закрыть]
.

Пожалуй, самым знаменитым пациентом со зрительной агнозией был пациент Оливера Сакса профессор П.: «человек, который принял жену за шляпу». Когда доктор Сакс показал пациенту перчатку и попросил сказать, что это такое, профессор ответил: «Непрерывная, свернутая на себя поверхность. И вроде бы тут имеется пять кармашков»[72]72
  O. Sacks, The Man Who Mistook His Wife for a Hat and Other Clinical Tales (New York: Summit Books, 1985).


[Закрыть]
. Профессор П. прекрасно описал ключевые особенности перчатки, но не смог сопоставить их, чтобы увидеть целое. Он не утратил понятие о перчатке: на ощупь он мог ее узнать. Затруднения, с которыми столкнулся профессор П. и другие пациенты со зрительной агнозией, схожи с проблемами Лиама. Как и Лиам, они не узнавали предметы автоматически, подсознательно, но должны были логически догадаться о том, что перед ними находится, по ключевым особенностям. Во всех этих случаях проблемы коренятся в зрительных путях более высокого уровня.

Зрительная зона V1 расположена вдоль зрительного пути, соединяющего сетчатку (периферию) и зрительные зоны, расположенные выше (центральнее) в мозге[73]73
  Daw, How Vision Works.


[Закрыть]
. В периферическом направлении (ближе к глазу) нейроны зрительной зоны V1 получают информацию от нейронов таламуса, которые связаны напрямую с клетками сетчатки. В центральном направлении нейроны зрительной зоны V1 сообщаются с клетками в зрительной зоне V2, а затем напрямую или опосредованно – с нейронами двух главных зрительных путей. Вентральный путь – канал «что» или канал восприятия – связан с распознаванием предметов, лиц и мест, тогда как дорсальный путь – канал «где», канал действия – занят расположением предметов в пространстве и движением[74]74
  M. A. Goodale and A. D. Milner, “Separate Visual Pathways for Perception and Action,” Trends in Neuroscience 15 (1992): 20–25.


[Закрыть]
. «Вторичные зоны» Лурии соответствуют этим путям. Зрительные зоны V1 и V2 связаны и с каналом восприятия, и с каналом действия, но области, расположенные выше, могут быть больше связаны с каким-то одним из этих путей. Зрительные зоны более высокого уровня обозначены по-разному. Некоторые из них обозначены буквой V с цифрой, обозначающей их место в иерархии зрительных зон, а другие называются в соответствии с их анатомическим расположением. Например, зоны V4 и латеральная затылочная кора составляют часть канала восприятия (канал «что»), тогда как V5 (она же MT, от medial temporal region: медиальная височная область) составляет часть канала действия (см. Рисунок 3.7).


РИСУНОК 3.7. Сильно упрощенное схематичное изображение каналов восприятия и действия. Здесь не показаны многие связи – как прямые, так и обратные – существующие между различными зрительными зонами.


Первичная зрительная кора расположена сзади, в затылочной доле коры больших полушарий. Если представить себе, что мы двигаемся от затылка вперед, то сначала будет расположена затылочная доля, затем наверху по центру – теменная доля, а впереди – лобная доля. Четвертая доля – височная – расположена под лобной и теменной и перед затылочной долями. Несмотря на то, что зрительное восприятие является основной функцией затылочной коры, в обработке зрительной информации участвуют и другие зоны. Например, определенные области височной доли участвуют в распознавании предметов, лиц и мест, а в теменной доле интегрируется зрительная, слуховая и тактильная информация, что важно для ориентирования в пространстве. Таким образом, канал восприятия связан с определенными зонами височной доли, а канал действия – с зонами теменной доли; кроме того, кора лобной доли участвует в регулировании движения, которое чаще всего направляется на основании зрительной информации. В итоге зрительные пути связывают все четыре доли коры больших полушарий головного мозга.

Если мы поднимемся во внутренней иерархии зрительной системы от зоны V1 к зоне V2 и дальше, к высшим зрительным зонам затылочной доли, то мы увидим, как меняются рецептивные поля нейронов[75]75
  Daw, How Vision Works.


[Закрыть]
. Информация от отдельных нейронов более низких уровней синтезируется в нейронах более высоких уровней, и из-за этого клетки в высших зонах зрительной коры реагируют на информацию, поступающую с более обширных зон сетчатки и зрительного поля. Как следствие, рецептивное поле нейронов более высокого уровня менее топографически точно. Кроме того, эти клетки реагируют на более сложные раздражители. Если нейроны зрительной зоны V1 возбуждаются в ответ на определенным образом ориентированные полосы, то нейроны в других, в том числе более высоких областях канала восприятия, реагируют на целые объекты, части тела, лица или места. Нейроны в зрительной зоне V4, лежащей между зоной V1 и областями распознавания предметов более высокого уровня, лучше всего реагируют на раздражители, сложность которых лежит где-то между обычными линиями и целыми предметами – то есть на контуры и формы. Лиам и профессор П. – «человек, который принял жену за шляпу» – легко узнают геометрические формы вроде треугольников и квадратов, но с трудом распознают настоящие предметы. Возможно, что у Лиама и профессора П. зрительная зона V4, связанная с узнаванием форм, работала нормально, но зоны более высокого уровня, необходимые для распознавания объектов, не справлялись с задачей.

Судя по этой иерархии элементов зрительной системы, мы конструируем наш зрительный мир, комбинируя контуры и цвета в формы, а затем – в предметы. Именно это и делает Лиам, когда он сознательно соотносит разные линии, которые видит перед собой, с контурами конкретных предметов. Однако его аналитический метод сильно отличается от того, как видим мы – и, возможно, при этом опирается на иные нейронные контуры. Мы не замечаем, как собираем целый предмет из отдельных черт. Когда мы бросаем взгляд на открывающийся перед нами вид, мы моментально ухватываем суть происходящего. Мы видим основные объекты местности и предметы и распределяем их по основным категориям – горы, деревья, дома, столы, стулья и т. д. Мы не сразу видим мелкие особенности и детали: если мы хотим рассмотреть детали, нам нужно обратить к ним наш взгляд и наше внимание. Схожим образом мы узнаем печатные слова, не прочитывая каждую отдельную буковку, и узнаем мелодию, не разделяя ее на отдельные ноты. Как писали специалисты по зрению Шауль Хохштейн и Мерав Ахиссар, «Если целое очевидно собрано из его частей, то как возможно, что части остаются неизвестными, но целое все равно нам доступно?»[76]76
  S. Hochstein and M. Ahissar, “View from the Top: Hierarchies and Reverse Hierarchies in the Visual System,” Neuron 36 (2002): 791–804.


[Закрыть]

Возможно, нас не должно удивлять, что мы воспринимаем мир именно так: скорее всего, младенческий взгляд на мир устроен очень похожим образом. Острота зрения новорожденного ребенка намного ниже, нежели у взрослого: как следствие, новорожденный лучше всего видит сравнительно крупные объекты на контрастном фоне. Движущийся объект на неподвижном фоне легко увидеть, даже если на нем нельзя разобрать детали. В первые годы жизни, исследуя мир, дети вырабатывают дополнительные стратегии, помогающие им вычленять объекты из их окружения[77]77
  M. E. Arterberry and P. J. Kellman, Development of Perception in Infancy: The Cradle of Knowledge Revisited (New York: Oxford University Press, 2016).


[Закрыть]
. С самого начала жизни мы пытаемся воспринимать предметы как единое целое, даже если мы не знаем их назначения или их названия.

Исследуя зрительное восприятие человека, Хохштейн и Ахиссар разработали теорию обратной иерархии[78]78
  Hochstein and Ahissar, “View from the Top.”


[Закрыть]
. Когда мы бросаем взгляд на открывающийся перед нами вид, зрительная информация быстро передается с сетчатки в таламус, к зрительным зонам V1 и V2, а затем в зоны более высокого уровня. Возможно, мы осознаем то, что видим, уже после возникновения нейронной активности в зрительных зонах более высокого уровня, в результате которой мы воспринимаем не контуры и формы, а конкретные предметы и общий вид местности. Мы можем считать, что при этом мы рассмотрели большую часть деталей в нашем поле зрения, но психологические исследования показывают, что это не так[79]79
  S. Hochstein, “The Gist of Anne Triesman’s Revolution,” Attention, Perception & Psychophysics, September 16, 2019, https://doi.org/10.3758/s13414–019–01797–2.


[Закрыть]
. Чтобы ухватить большую часть деталей, нам нужно спуститься на несколько уровней ниже и рассмотреть информацию с зрительных зон более низкого уровня.

В зрительных путях информация передается в обоих направлениях: зрительные зоны более высокого уровня связаны петлями обратной связи с более низкими зонами. И отдельные нейроны, и нейронные сети постоянно общаются друг с другом на всех уровнях зрительной системы. Если бы я попыталась стрелочками указать на Рисунке 3.7 все эти прямые и обратные связи, у меня получилась нечитабельная каша.

Мы не рождаемся со знанием того, как выглядит стул или собака. Чтобы сформировать это знание, нам требуется опыт наблюдения стульев и собак под разным освещением и со множества разных точек зрения. Когда мы учимся распознавать объекты и распределять их по основным категориям (столы, стулья, лошади, собаки и т. п.), в наших зрительных зонах более высокого уровня формируются новые нейронные контуры и сети, а также новые пути, связывающие зоны более низкого и более высокого уровней. Если Лиам после установки интраокулярных линз видел повсюду длинные линии, значит, и ориентационно-избирательные нейроны его зрительной зоны V1, и дальние связи между ними отлично работали. Но если он не мог автоматически по этим линиям установить контуры отдельных предметов, то, возможно, зоны более высокого уровня, связанные с распознаванием предметов, у него были развиты плохо.


У людей с нормальным зрением есть определенные стратегии интерпретации увиденного, которые они применяют чаще всего бессознательно, автоматически, – некоторые из них использует и Лиам. Например, осматривая открывающийся перед нами вид, мы не придаем всем его составляющим одинаковое значение: мы разбиваем его на фрагменты и сосредотачиваемся на твердых объектах, чаще всего расположенных на ближнем плане, обращая меньше внимания на детали фона. Другими словами, мы делим мир на фигуры и фон, и у них есть свое место в трехмерном пространстве.

Датский психолог Эдгар Рубин был первым специалистом по зрению, который описал соотношение фигуры и фона – понятия, которые он ввел в 1915 году в своей диссертации. Он вырезал из картона бесформенные фигуры и проецировал их на экран, часто предлагая испытуемым расценивать часть полученной картинки как фигуру, а другую часть – как фон. Может показаться, что его идея банальна, но на самом деле это не так. Рубин заметил, что люди воспринимали фигуры не так, как фон. Фигуры для испытуемых выступали на фоне, перекрывая его. Линии на изображении воспринимались как контур фигуры, а не как часть фона. Фигура казалась «предметной», тогда как фон размывался до бесформенной субстанции. Кроме того, испытуемые лучше запоминали фигуры, нежели фон[80]80
  J. L. Pind, Edgar Rubin and Psychology in Denmark: Figure and Ground (Cham, Switzerland: Springer International Publishing, 2014).


[Закрыть]
.


РИСУНОК 3.8. Ваза Рубина. Что вы видите: вазу или два лица?


Рубин наиболее известен как автор знаменитой иллюзии «ваза Рубина», которую он создал для своей диссертации (Рисунок 3.8). Если внимательно вглядываться в изображение, то вы попеременно будете видеть то белую вазу на черном фоне, то два черных лица на белом фоне. Когда меняется ваше восприятие, меняется и ваша интерпретация того, что здесь является фигурой (ваза или лица), а что – фоном. Фигура, как нам кажется, выступает на фоне, который отдаляется от нас и размывается в нечто бесформенное.

Ваза Рубина – это классический пример двойственной формы, где двусмысленность связана с тем, как мы интерпретируем границы фигуры. Если мы видим вазу, то мы связали границу между черными и белой областями с вазой; когда мы меняем восприятие и видим лица, мы меняем и восприятие границ, которые мы теперь связываем с контурами лиц. Мы не можем увидеть одновременно и лица, и вазу. Если бы у нас это получилось, мы бы столкнулись с противоречием. Когда мы связываем границу с вазой, то ваза оказывается на переднем плане, а когда мы связываем границу с лицами, то лица выделяются на фоне. Если бы мы увидели одновременно и вазу, и лица, то ваза должна была бы выделяться на фоне лиц, которые должны были бы выделяться на фоне вазы, что невозможно.


РИСУНОК 3.9. Иллюзия Уилсона. Что вы видите: человека или лицо?


Есть вероятность, что нейроны в зрительных зонах более высокого уровня координируют активность нейронных сетей зоны V1, реагирующих на выступающие на фоне фигуры[81]81
  V. A. F. Lamme, “The Neurophysiology of Figure-Ground Segregation in Primary Visual Cortex,” Journal of Neuroscience 15 (1995): 1605–1615.


[Закрыть]
. Может быть, когда мы видим перед собой двусмысленную фигуру и чувствуем смену восприятия, меняется и координация между этими зонами. Когда я показала Лиаму двусмысленную фигуру под названием «иллюзия Уилсона», он мог увидеть и изображение человека в мешковатой куртке, и изображение лица (Рисунок 3.9). Если Лиам мог воспринять эту иллюзию по-разному, это значит, что его зрительная зона V1 и зоны более высокого уровня связаны между собой гибкими связями.

Однако в жизни мы чаще всего видим намного больше одной фигуры на произвольном фоне: мы видим перед собой множество предметов, и некоторые из них заслоняют нам другие. В начале XX века в Австрии и Германии зародилась новая психологическая школа – гештальтпсихология. Гештальт-психологи предположили, что мы не воспринимаем все детали изображения по очереди: мы группируем их в некоторые единства, причем это происходит автоматически, без каких-либо сознательных усилий с нашей стороны. Они считали, что такая группировка является базовым свойством нашей зрительной системы, и предложили несколько принципов, которые мы используем для организации зрительного пространства и для выделения в нем объектов[82]82
  M. Wertheimer, “Laws of Organization in Perceptual Forms,” in A Source Book of Gestalt Psychology, ed. W. Ellis (London: Routledge & Kegan Paul, 1938), 71–88. Первая публикация: “Untersuchungen zur Lehre von der Gestalt II,” Psycologische Forschung 4 (1923): 301–350.


[Закрыть]
.


РИСУНОК 3.10. Примеры гештальт-группировок.


Например, согласно принципу сходства, на Рисунке 3.10 мы моментально видим фигуры, разбитые на пары по признаку определенного визуального сходства (в верхнем ряду – размер, в среднем – ориентация в пространстве, а в нижнем – цветовая насыщенность). В соответствии с принципом целостности обрамленные общей границей элементы будут восприниматься как единая группа, а в соответствии с принципом непрерывности образующие непрерывную линию элементы будут восприниматься как единое целое. Если вы немного сосредоточитесь, то увидите, как на Рисунке 3.11 «возникает» круг.


РИСУНОК 3.11. Интеграция контура: вы видите круг?


РИСУНОК 3.12. Можете ли вы найти среди листьев змею?


Во многом камуфляж работает благодаря гештальт-принципам: окрас животного устроен таким образом, что части его тела зрительно распадаются на фрагменты, которые ассоциируются не с животным, а с окружающей средой, из-за чего его сложнее заметить. На Рисунке 3.12 мы путаем узор на теле медноголового щитомордника с лежащими рядом листьями и в итоге можем вовсе его не заметить.

Предложенные гештальт-психологами теории восприятия подверглись критике за то, что они слишком описательны, несколько туманны и не предлагают конкретный механизм работы восприятия, который можно было бы легко проверить. Тем не менее, гештальт-психологи действительно описывают то, как мы видим. Более того, исследования нейронов зрительной системы показали: некоторые нейроны реагируют на гештальт-группы, причем нервные клетки в зрительных зонах более высокого уровня координируют связанную с гештальт-группировкой активность нейронов более низкого уровня[83]83
  C. F. Altmann, H. H. Bülthoff, and Z. Kourtzi, “Perceptual Organization of Local Elements into Global Shapes in the Human Visual Cortex,” Current Biology 13 (2003): 342–349; R. E. Crist, W. Li, and C. D. Gilbert, “Learning to See: Experience and Attention in Primary Visual Cortex,” Nature Neuroscience 4 (2001): 515–525; F. T. Qui, T. Sugihara, and R. von der Heydt, “Figure-Ground Mechanisms Provide Structure for Selective Attention,” Nature Neuroscience 10 (2007): 1492–1499; F. T. Qui and R. von der Heydt, “Figure and Ground in the Visual Cortex: V2 Combines Stereoscopic Cues with Gestalt Rules,” Neuron 47 (2005): 155–166.


[Закрыть]
.

Мне кажется, Лиам использует гештальт-принципы, чтобы различать в зрительном пространстве предметы, однако у него это не происходит автоматически: ему нужно тщательно анализировать то, что он видит. «Для меня линия – это граница между двумя цветами: место, где цвета встречаются», – писал Лиам. Согласно гештальт-правилам, Лиам использует принцип сходства, чтобы сгруппировать цвета, а затем – принцип непрерывности, чтобы выявить линию. Должно быть, чем больше Лиам распознавал гештальт-группы – сначала сознательно, а затем и автоматически – тем больше новых нейронных путей и сетей формировалось между различными зрительными зонами в его мозге.

В 2012 году, через семь лет после операций, Лиам нарисовал для доктора Тайксена абстракцию, приведенную на Рисунке 3.13. Мне невероятно понравился этот рисунок, буквально взрывающийся яркими красками и формами (в оттенках серого это плохо видно): я установила его в качестве заставки на своем рабочем компьютере. Этот рисунок помимо всего прочего организован по многим гештальт-признакам. Здесь есть элементы, организованные по сходству формы; другие элементы объединены толстыми контурами, отражая принцип целостности. (Например, обратите внимание на круги и прямоугольники, разделенные толстым темным контуром, на правом краю изображения. Некоторые прямоугольники угнездились внутри других, более крупных прямоугольников, а те – внутри еще более крупных.) Другие формы образуют сплошные линии, иллюстрируя принцип непрерывности. (В пример можно привести цепочку квадратов, вьющуюся посередине рисунка.)


РИСУНОК 3.13. Абстракция Лиама.


Жирные линии и пятна цвета на рисунке Лиама кажутся нам реальными предметами. Когда он прислал мне эту абстракцию, я подробно описала некоторые образы, которые увидела на изображении: два круга, соединенные волнистой линией, походили на глаза в очках, а треугольник рядом с прямой линией выглядел как флаг на шесте. Лиам ответил мне, что другие тоже нашли на его рисунке предметы. «Я ничего этого не вижу, – написал он. – Я вижу ровно то, что нарисовано». С присущим ему благодушием он добавил: «Говорят, тут даже где-то есть дракон».

Мы опираемся на перцептивную группировку вроде той, что позволяет нам видеть контуры и формы, чтобы распределить объекты по категориям. Складное кресло и компьютерное кресло выглядят совсем по-разному, но мы мгновенно ухватываем их сходство и распознаем и то, и другое как кресло. Мы легко отличим чихуахуа от немецкой овчарки, но при этом с легкостью запишем их обоих в категорию «собаки». Это умение вычленять сходства среди разных объектов, принадлежащих к одной и той же категории, лежит в основе перцептивного обучения. Возможно, что сходства между объектами описываются работой взаимосвязанных нейронов по всему мозгу, и эти нейронные сети формируются с опытом – как реакция на те объекты, с которыми мы сталкиваемся чаще всего[84]84
  Goldberg, Creativity.


[Закрыть]
. Лиаму же пришлось использовать другие органы чувств и аналитические навыки для того, чтобы распределить новые зрительные ощущения по знакомым категориям, таким образом выстраивая новые связи между зрительными и остальными сенсорными зонами.

Объекты всегда располагаются в каком-то окружении, и это окружение с определенной долей уверенности можно попытаться реконструировать. В одном эксперименте людям показывали фотографии лесов, пляжей или, например, индустриальных зон[85]85
  A. T. Morgan, L. S. Petro, and L. Muckli, “Scene Representations Conveyed by Cortical Feedback to Early Visual Cortex Can Be Described by Line Drawings,” Journal of Neuroscience 39 (2019): 9410–9423.


[Закрыть]
. Примерно четверть каждой фотографии была закрыта белым пятном, и соответствующие этой области нейроны зрительных зон V1 и V2 не получали никакой информации о ней, однако исследователи зафиксировали их активность. Во многом это связано с тем, что к этим нейронам поступала информация от зрительных зон более высокого уровня, которые отвечают за построение общего представления о картинке.

Когда участников эксперимента попросили дорисовать те части фотографии, которые были закрыты белым, они довольно точно дополнили недостающую информацию. Судя по всему, они создали внутреннюю модель того, что должно было располагаться на этом месте. Возможно, что такая модель формируется в зрительных зонах более высокого уровня, а затем по петлям обратной связи корректирует активность нейронов более низкого уровня. В жизни мы, по-видимому, постоянно формируем и уточняем такие модели, чтобы понять, что еще должно перед нами присутствовать кроме того, что мы можем увидеть в данный момент.

Лиаму сложно интерпретировать изображения, и пейзажи ему нравятся меньше всего. В детстве он никогда не смотрел вдаль, и из-за этого он не может создать внутренние модели обширных панорам. Пусть нейроны его зрительных зон более низкого уровня отзываются на какие-то элементы пейзажа, без когнитивных моделей общей панорамы его нейронные сети не обучены распознавать самые важные структуры и закономерности. Лиаму сложно понять, что он видит перед собой – особенно когда смотрит на что-то вдалеке.

Я снова столкнулась с тем, насколько внутренние модели помогают нам структурировать наш зрительный мир, когда мои студенты исследовали внутреннее строение листьев растений. Нам только кажется, что листья растений тонкие и плоские, на деле им присуща прекрасная упорядоченная трехмерная структура. Так как я уже вела этот курс у других студентов, я знала, что произойдет. Я показала студентам, как снять внешнюю кожицу листа, а затем предложила рассмотреть препарат под микроскопом. Когда я спросила их, что они видят, они ответили: «Все зеленое и ничего не понятно». Затем мы изучили пластиковые трехмерные модели листьев, а также слайды, на которых разные внутренние структуры листа были окрашены в разные цвета. Когда студенты вернулись к своим образцам, они больше не видели зеленое море: перед ними возникли новые структуры. Они смогли увидеть затейливое плетение – внешние клетки, похожие на пазл, организацию внутренних клеток, воздушные полости и устьица, которые обеспечивают газообмен. Меня особенно восхищало, что всего через несколько часов они могли различить в этой мешанине зеленого так много новых объектов: это отличный пример перцептивного обучения[86]86
  E. J. Gibson, “Perceptual Learning: Differentiation or Enrichment?” in An Odyssey in Learning and Perception (Cambridge, MA: MIT Press, 1991); E. J. Gibson and A. D. Pick, An Ecological Approach to Perceptual Learning and Development (New York: Oxford University Press, 2000); P. J. Kellman and P. Garrigan, “Perceptual Learning and Human Expertise,” Physics of Life Reviews 6 (2009): 53–84.


[Закрыть]
. На сетчатку глаз моих студентов поступала все та же картинка, что и раньше, но после некоторой тренировки они научились извлекать из нее намного больше информации и интерпретировать увиденное. Глядя на то, как мои студенты исследуют листья, я гадала, какие именно связи между зрительными зонами менялись в их мозге.

В последующие месяцы большинство студентов позабыли особенности структуры листьев растений: эта информация была не актуальна для их повседневной жизни, но, возможно, студенты с хорошей зрительной памятью помнили ее чуть дольше. Лиам должен был развить свою зрительную память и умение формировать зрительные представления, чтобы распознавать предметы в повседневной жизни: поскольку он много лет прожил почти слепым, эти его навыки были развиты слабо.

Кроме того, на наше зрительное восприятие сильно влияют ожидания. Я осознала эту идею пару лет назад, когда я взглянула из окна кухни на висевшую снаружи кормушку для птиц. Обычно к ней прилетают маленькие птички – синицы и зяблики, которых я моментально узнаю – но в тот момент вокруг кормушки стояло пять крупных диких индеек, которые смотрели через стекло прямо на меня. Их появление было так странно и неожиданно, что я с трудом поняла, что происходит: несмотря на то, что индейки намного крупнее синиц и зябликов и их сложно перепутать, у меня ушло намного больше времени на то, чтобы опознать их, поскольку я не ожидала их увидеть. Когда я повернула голову, чтобы посмотреть в окно, моя зрительная система приготовилась опознавать характерные черты маленьких птичек, и поэтому на мгновение пришла в замешательство, когда обнаружила вместо них индеек.

Все эти истории иллюстрируют тот факт, что наше зрение полагается на комбинацию восходящих и нисходящих путей обработки информации: восходящие пути обеспечивают конструирование зрительного мира из мельчайших элементов и зависят от данных, получаемых из зрительных зон низкого уровня. Но зрительные нейроны реагируют не только на восходящие стимулы, получаемые от глаз: их активность также регулируется информацией, поступающей от соседних нейронов, с других уровней зрительной иерархии, а также из других отделов мозга. Жизненный опыт, ассоциации и сосредоточенность на деталях, важных для выполнения задачи – все это влияет на активность нейронов нижних уровней, которая зависит также от обратной связи от зрительных зон более высоких уровней, из-за чего считается нисходящей. Поскольку все мы обладаем индивидуальным жизненным опытом, нуждами и желаниями, нисходящая активность нейронов у разных людей различается. Все мы воспринимаем мир индивидуально.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации