Электронная библиотека » Виталий Тихоплав » » онлайн чтение - страница 7

Текст книги "Новая Физика Веры"


  • Текст добавлен: 13 марта 2014, 07:07


Автор книги: Виталий Тихоплав


Жанр: Эзотерика, Религия


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 7 (всего у книги 25 страниц)

Шрифт:
- 100% +

Тем не менее ученые осознают, что все их теории, описывающие явления природы, включая и описание «законов», представляют собой продукт человеческого сознания, следствия понятийной структуры нашей картины мира, а не свойства самой реальности. Все научные модели и теории представляют собой лишь приближения к истинному положению дел. Ни одна из них не может претендовать на истину в последней инстанции. Неокончательность теорий проявляется прежде всего в использовании так называемых «фундаментальных констант», то есть величин, значения которых не выводятся из соответствующих теорий, а определяются эмпирически. Квантовая теория не может объяснить, почему электрон обладает именно такой массой и таким электрическим зарядом, а теория относительности не может объяснить именно такую величину скорости света.

Безусловно, наука никогда не сумеет создать идеальную теорию, которая объяснит все, но она постоянно должна стремиться к этому, пусть даже недостижимому рубежу. Ибо чем выше установлена планка, через которую должен перепрыгнуть прыгун, тем большую высоту он возьмет, даже если не установит рекорда. И ученые, как прыгун на тренировках, постоянно поднимают планку, последовательно разрабатывая отдельные частные и приблизительные теории, каждая из которых является более точной, чем предыдущая.

Сегодня наука уже располагает рядом частных теорий и моделей, достаточно успешно описывающих некоторые стороны волнующей нас волновой квантовой реальности. Как считают многие ученые, наиболее перспективными теориями – точками опоры для дальнейшего развития теоретической физики, опирающейся на сознание, являются гипотеза «бутстрапа» Джеффри Чу, теория Дэвида Бома и теория торсионных полей. А уникальные экспериментальные работы российских ученых под руководством академика В. П. Казначеева в значительной степени подтверждают правильность подходов в исследовании Вселенной и Сознания, заложенных в указанных гипотезах и теориях.

Глава 2
Вселенная и сознание

Трудно рассматривать эволюцию Вселенной без такого фактора, как Сознание Вселенной, фрагментом которого является Сознание Человека.

А. Е. Акимов, Г. И. Шипов

Гипотеза «бутстрапа»

Западная наука всегда считала смысл своей деятельности в том, чтобы открывать и описывать фундаментальные законы природы. Однако описание природы с помощью законов и принципов возможно лишь с ограничениями, поскольку само представление о природе у нас ограниченно. Никакая теория не в силах дать полного и исчерпывающего представления об Универсуме.

Например, до недавнего времени считалось, что законы природы – это законы теории относительности и квантовой теории. Однако выяснилось, что их недостаточно для того, чтобы описать нелокальность.

Уникальное явление нелокальности натолкнуло ученых на мысль, что строение мироздания не может сводиться к каким-либо фундаментальным, элементарным конечным единицам, таким как элементарные частицы или фундаментальные поля. Появилась гипотеза о том, что мироздание следует воспринимать как сочетание определенных типов взаимоотношений между определенными группами объектов.

По словам Гейзенберга, «в современной физике мир делится не на различные группы объектов, а на различные группы взаимоотношений… Единственное, что поддается выделению, – это тип взаимоотношений, имеющих особенно важное значение для того или иного явления… Мир, таким образом, представляется нам в виде сложного переплетения событий, в котором различные разновидности взаимодействий могут чередоваться друг с другом, накладываться или сочетаться друг с другом, определяя посредством этого текстуру целого».

Известный ученый физик-теоретик Б. Палюшев пишет по этому же поводу следующее: «Элементарность в природе сводится к отношениям, а не к типам вещественных составляющих… Природа делима до сущностей, которые определяются не вещественными структурами, а типом взаимоотношений» (1).

По его мнению, фундаментальные физические взаимодействия, какими являются сильное, слабое и электромагнитное, определяют один из двух основных видов таких взаимоотношений между реальными физическими объектами. Носителями отношений, характерных для этих типов взаимодействий, являются квантовые частицы. Другой тип взаимоотношений в структуре реального мира определяется геометрическими свойствами. Для осуществления равновесия в этих взаимоотношениях могут служить гравитационное взаимодействие и торсионные поля. Носителями отношений, характерных для этих типов взаимодействий, являются фитоны (2). Ниже о фитонах будет сказано подробнее.

По мнению ученых, разделяющих подобную точку зрения, мир как система строится именно на основе взаимоотношений. А это означает, что все явления и процессы каким-то образом связаны между собой, и для того чтобы объяснить каждое из них, мы должны узнать сущность всех остальных. Следовательно, природу нужно воспринимать в ее самосогласованности, когда составные части материи обнаруживают согласованность друг с другом и с самим собой.

Эта идея возникла в русле теории S – матрицы, а в дальнейшем легла в основу так называемой гипотезы «бутстрапа» (англ. bootstrap – обратная связь). Крестный отец и основной защитник этой гипотезы американский физик-ядерщик Джеффри Чу использовал ее для построения целой общефилософской системы бутстрапа, а также (в соавторстве с другими физиками) для того, чтобы сформулировать частную теорию частиц на языке S ‑матрицы. Чу посвятил описанию гипотезы «бутстрапа» несколько статей, которые легли в основу последующего изложения его взглядов (3).

Немного об S-матрице. Одно из самых общих свойств микромира – универсальная взаимная превращаемость частиц. Например, при столкновении протонов и нейтронов могут рождаться пи-мезоны, пи-мезон распадается на мюон и нейтрино и т. д. Для описания таких динамических процессов требуется переход к квантовому волновому полю, то есть создание квантовой теории систем с бесконечным числом степеней свободы – квантовой теории поля. Например, положение частицы в каждый момент времени определяется заданием всего трех координат. А для полного описания электромагнитного поля в любой момент времени требуется знать напряженности электрического и магнитного полей в каждой точке пространства, то есть требуется задание бесконечного числа величин.

Квантовая механика сблизила частицы и поля. Согласно ей, электромагнитное излучение порождается и поглощается дискретными порциями – квантами, или фотонами, которые, как и частицы, имеют определенную энергию и импульс. Но поскольку вовлекаемые в процессы столкновения энергии велики, а значит, велики и скорости, то для рассмотрения этих процессов необходимо привлекать теорию относительности.

Однако совокупное влияние теории относительности и квантовой теории заключается в том, что взаимодействие тех или иных частиц не может быть точно локализовано в пространстве и времени. Согласно принципу неопределенности, при более четкой пространственной локализации взаимодействия частиц возрастает неопределенность их скоростей, а следовательно, кинетической энергии. Рано или поздно запас кинетической энергии окажется достаточным для образования новых частиц, после чего, однако, нельзя будет с уверенностью утверждать, что мы имеем дело с тем же самым процессом. Поэтому теория, объединяющая квантовую теорию с теорией относительности, должна отказаться от точного местонахождения частиц.

Эту проблему решает теория S – матрицы. Вообще, математическая матрица – это прямоугольная таблица (набор ячеек) каких-либо элементов (чисел, математических выражений), состоящая из m – строк и n – столбцов. Над матрицей можно производить действия по правилам матричной алгебры. Матрицы используются во многих разделах математики и физики, в частности при исследовании m – линейных уравнений с n – неизвестными.

S – матрица, или матрица рассеяния, представляет собой совокупность величин, описывающих процесс перехода квантово-механических систем из одних состояний в другие при их взаимодействиях (рассеянии) (4). Ключевое понятие теории, S – матрица, было впервые предложено Гейзенбергом в 1943 году. Буква S сохранилась от полного названия этой матрицы, которая звучит как «матрица рассеивания» (англ. scattering – рассеивание) и используется для обозначения процессов столкновений, или «рассеиваний», численно преобладающих среди всех реакций частиц.

При взаимодействии система переходит из одного квантового состояния, начального, в другое, конечное. Если обозначить набор всех квантовых чисел, характеризующих начальное состояние, через i, а конечное – через j, то амплитуда перехода (амплитуда процесса), квадрат модуля которой определяет вероятность данного процесса, может быть записана как Sji. Совокупность амплитуд процессов образует таблицу с двумя входами (i – номер строки, j – номер столбца), или бесконечную последовательность ячеек, которая и называется матрицей рассеяния.

Словом, матрица рассеяния представляет собой набор вероятностей для всех возможных реакций между частицами, участвующими в сильных взаимодействиях. (4).

Теория S – матрицы указывает точные значения только для импульсов частиц и умалчивает о том участке пространства, в котором происходит соответствующая реакция. Она переносит акценты с объектов на события; предмет ее интересов составляют не частицы, а реакции между ними. Используя математический аппарат теории относительности, она описывает все свойства частиц в терминах вероятностей реакций, устанавливая, таким образом, тесную взаимосвязь между частицами и процессами. В каждой реакции принимают участие различные частицы, которые связывают ее с остальными реакциями, формируя единую сеть процессов.

С целью построения математической модели, описывающей сильные взаимодействия, были постулированы три принципа (3).

Первый из них является следствием из теории относительности и наших макроскопических представлений о времени и пространстве. Он гласит, что вероятность реакций (а следовательно, и элементы S – матрицы) не зависит от расположения экспериментального оборудования в пространстве и времени, от его пространственной ориентации и состояния движения наблюдателя. Этот постулат обеспечивает сохранение суммарного количества вращения, импульса и энергии, принимающих участие в реакции. Если бы результаты эксперимента менялись в зависимости от времени и места его проведения, наука в ее современном понимании просто прекратила бы свое существование. Утверждение относительно того, что результаты эксперимента не зависят от состояния движения наблюдателя, представляет собой сформулированный принцип относительности, лежащий в основе теории с аналогичным названием.

Второй основополагающий принцип (принцип унитарности) вытекает из квантовой теории; исход той или иной реакции можно предсказать только в терминах вероятностей; при этом сумма вероятностей всех возможных процессов (включая тот случай, когда взаимодействия между частицами не происходят вообще) по всем возможным каналам реакции должна равняться единице. Другими словами, можно считать доказанным, что частицы либо взаимодействуют друг с другом, либо нет.

Третий принцип имеет отношение к нашим представлениям о причине и следствии и называется принципом причинности. Согласно ему, энергия и импульсы могут совершать пространственные перемещения только при помощи частиц; при подобных перемещениях частица может возникнуть во время одной реакции и исчезнуть во время другой при том условии, что последующая реакция происходит позже, чем предыдущая.

Сегодня в физике частиц такой модели, которая удовлетворяла бы требованиям всех трех принципов, пока создать не удалось.

Философия бутстрапа. Джеффри Чу, выдвигая гипотезу «бутстрапа», предполагает, что трех указанных принципов вполне достаточно для исчерпывающего описания всех свойств S – матрицы, а значит, и всех свойств частиц, участвующих в сильных взаимодействиях.

Если дело обстоит именно так, то философские следствия такой теории будут иметь просто колоссальное значение. Каждый из трех принципов связан с методами организации наблюдений и измерений окружающего мира, то есть с научным подходом. Если структура частиц, участвующих в сильном взаимодействии, определяется только этими принципами и ничем иным, это означает, что основные структуры физического мира в конечном счете определяются только нашим взглядом на мир.

Мы должны считаться с возможностью того, что когда-нибудь все свойства субатомных частиц будут восприниматься как следствия этих принципов, а значит, как часть нашего научного мировоззрения. Предположение относительно того, что именно этому обстоятельству предстоит в дальнейшем стать фундаментальным положением физики частиц, неизбежно должно будет отразиться на более частных теориях электромагнитных, слабых и гравитационных взаимодействий, и это не может не казаться нам в высшей степени удивительным и парадоксальным. Если данное предположение будет обосновано и доказано, современная физика придет к тем же выводам, что и восточные мудрецы, и признает, что все структуры физического мира – не что иное, как майя, или «одно лишь» сознание (3).

В этих словах выражена суть общефилософской системы бутстрапа.

В контексте нового подхода Вселенная рассматривается в качестве сети взаимосвязанных событий. Ни одно из свойств того или иного участка этой сети не имеет фундаментального характера; все они обусловлены свойствами остальных участков сети, общая структура которой определяется универсальной согласованностью всех взаимосвязей. Неделимая Вселенная, внутри которой все вещи и явления неразрывно связаны друг с другом, вряд ли имела бы смысл, если бы она не обнаруживала внутренней последовательности и взаимосогласованности частей целого.

В принципе, философия бутстрапа представляет собой кульминационное проявление того способа мировосприятия, который в свое время лег в основу квантовой теории, постулировавшей всеобщую сущностную взаимосвязанность всех явлений, приобрел свое динамическое содержание в теории относительности и был сформулирован в терминах вероятностей реакций в теории S – матрицы.

Однако философия бутстрапа не только отрицает существование фундаментальных компонентов материи, но и вообще отказывается от использования представлений о наличии таких фундаментальных сущностей, какими являются законы, принципы и фундаментальная структура материи. Во Вселенной, представляющей собой неделимое целое, все воплощения которого текучи и изменчивы, нет места для одной устойчивой фундаментальной сущности. Поэтому разговор о каких-то фундаментальных объектах, каковыми являются, например, элементарные частицы, беспредметен. Каждая элементарная частица содержит в себе все остальные, хотя в то же время она может быть составной частью таких же «элементарных», но отличных от нее объектов. При этом она порождает другую реальность, которую нельзя отнести к обычным представлениям о пространстве и времени (3).

Словом, Вселенная представляет собой неразрывное целое, части которого переплетаются и сливаются друг с другом, и ни одна из них не является более фундаментальной, чем другие, так что свойства одной части определяются свойствами всех остальных частей. В этом смысле можно говорить о том, что каждая часть мироздания «содержит» в себе все остальные части (Все во Всем!).

При таком подходе мировосприятие современной физики обнаруживает столько общих черт с восточной философией, что эти два направления человеческой мысли перестают противоречить друг другу как в общих вопросах философского характера, так и в частных вопросах строения материи. Осознание всеобщей слитности и нераздельности мироздания представляет собой одну из важнейших характеристик мистического мировосприятия. В определенном смысле требование внутренней согласованности, лежащее в основе гипотезы «бутстрапа», и принцип единства и взаимосвязанности всего сущего, которому придается такое большое значение в восточных мистических учениях, представляют собой только два различных аспекта одной и той же идеи.

Мировоззрение восточных мистиков и философия бутстрапа в современной физике объединяются не только подчеркнутым вниманием к взаимосвязанности и самосогласованности всех явлений, но и отрицанием фундаментальных составных частей материи. По словам Шри Ауробиндо, «ничто в супраментальном смысле в действительности не является конечным; это основано на чувстве всего в каждом и каждого – во всем».

В такой системе мироздания основную роль играют фундаментальные виды отношений между материальными компонентами, а не установленный статус каких-то конкретных материальных сущностей, называемых фундаментальными составляющими мира, подчиненными законам, которые описывают только часть этих отношений. Согласно философии бутстрапа, с прогрессом нашего знания о мире все фундаментальные законы и утверждения в физике постепенно получат свое объяснение. Фундаментальная физика не будет содержать никаких необъяснимых «фундаментальных» констант, положений и законов. Ибо новое представление о единстве мира окончательно отрицает идею о том, что мир можно разложить на самостоятельные, независимые друг от друга части.

Поскольку невозможно отделить наблюдаемое от наблюдателя, то, следовательно, все процессы и явления, которые мы наблюдаем в этом мире, являются результатом деятельности нашего собственного наблюдающего и изменяющего сознания.

По мнению Джеффри Чу, автора идеи бутстрапа, применение методики бутстрапа для анализа явлений непременно приведет к необходимости открыто включить рассмотрение человеческого сознания в будущие теории материи. Чу пишет: «Будучи доведена до своего логического завершения, теория бутстрапа предполагает, что существование сознания наряду с существованием всех остальных аспектов природы необходимо для самостоятельного существования целого» (3).

Таким образом, следуя философии бутстрапа, сознание должно представлять собой неотъемлемый компонент Вселенной, который в будущем войдет в теорию физических явлений.

Кроме Чу в этом направлении движутся и другие физики. Среди последних исследований одним из самых неожиданных подходов характеризуется теория Дэвида Бома, который, по всей видимости, пошел дальше всех в изучении соотношения между сознанием и материей в научном контексте. А голографическая модель Вселенной Бома по сути является реализацией философских идей гипотезы «бутстрапа», хотя и появилась практически одновременно (примерно в середине 60-х годов XX веке), но независимо от нее.

Теория Дэвида Бома

Его теория оказалась настолько притягательной, что многие почувствовали: Вселенная не может быть иной, нежели ее описал Бом.

Джон Бриггс, Дэвид Пит
Зеркальная Вселенная

Неразрывное единство

Одним из главных творцов удивительной идеи о том, что Вселенная подобна гигантской голограмме, является ученик Эйнштейна – профессор Лондонского университета, один из наиболее выдающихся специалистов в области квантовой физики Дэвид Бом. В бытность аспирантом Бом писал свою кандидатскую диссертацию под руководством Роберта Оппенгеймера.

После окончания Государственного колледжа в штате Пенсильвания Бом поступил в Калифорнийский университет в Беркли и до получения докторской степени в 1943 году работал в Лоренсовской радиационной лаборатории, занимаясь исследованиями в области плазмы.

Там он встретился с одним поразительным примером квантовой взаимосвязи. Плазма – частично или полностью ионизированный газ, в котором плотности положительных и отрицательных зарядов практически одинаковы (4). К своему удивлению, Бом обнаружил, что, будучи в плазме, электроны перестают вести себя как отдельные частицы и становятся частью коллективного целого. В то время как индивидуальные движения электронов имели случайный характер, большое количество электронов приводило к эффектам, носившим удивительно организованный характер. Подобно некой амебе, плазма постоянно регенерировала сама себя и окружала оболочкой все инородные тела – она вела себя аналогично живому организму, когда в его клетку попадает инородное вещество. Бом был настолько поражен органическими свойствами плазмы, что часто представлял электронное море как «живое существо» (5).

В 1947 году Бом принял предложение занять должность ассистента в Принстонском университете (что было признанием его заслуг) и продолжил начатое еще в Беркли исследование поведения электронов в металлах. Снова и снова он обнаруживал, что кажущееся хаотичным движение индивидуальных электронов-частиц способно производить в совокупности высокоорганизованное движение. Подобно плазме, которую он изучал в Беркли, он столкнулся с ситуацией, где не только две частицы согласовывают между собой свое поведение: он увидел целый океан частиц, каждая из которых как будто знала, что делают остальные триллионы частиц. Бом назвал такие коллективные движения частиц плазмонами, а их открытие принесло ему славу выдающегося физика.

Позже, в 1951 году, когда Оппенгеймер оказался под сильным давлением Комиссии по антиамериканской деятельности, созданной сенатором Маккарти, Бом был вызван на допрос и отказался давать показания, в результате чего потерял работу в Принстонском университете и больше не преподавал в Соединенных Штатах, переехав сначала в Бразилию, а затем в Лондон (5).

Квантовый потенциал. Коллективное движение плазмонов и наличие странной взаимосвязи между, казалось бы, несвязанными событиями на внутриатомном уровне не давало Бому покоя. Чтобы найти ответ на этот вопрос, Бом, предположил, что, во-первых, элементарные частицы, вопреки утверждению Бора существуют в отсутствие наблюдателей и, во-вторых, за пределами боровской реальности существует более глубокая реальность на субквантовом уровне, пока не открытая наукой.

Исходя из этих гипотез, Бом обнаружил, что многие непонятные явления в квантовой физике можно объяснить, если постулировать существование некоего гипотетического поля, которое, как и гравитация, пронизывает все пространство. Однако в отличие от гравитационных, магнитных и других полей действие нового поля не ослабевает с расстоянием, и его сила распределена равномерно по всему пространству. Бом назвал это поле квантовым потенциалом и постулировал его как волновое информационное поле, управляющее электронами.

Коллективную деятельность электронов в плазме можно объяснить координирующим действием квантового потенциала, которое обеспечивает электроны информацией, благодаря чему они знают обо всем, что происходит вокруг них.

Такое понимание аналогично движению корабля в океане, управляемого с берега с помощью радиосигнала. Корабль движется благодаря собственной энергии, но инструкцию для маневрирования получает с помощью радиоволн, которые несут только информацию. Так и квантовый потенциал обеспечивает «инструкции для изменения курса», требующиеся электрону, чтобы взаимодействовать с окружающей его средой.

Как указывает Бом, такие «электроны не рассеиваются, потому как благодаря действию квантового потенциала вся система приобретает координированное движение – это можно сравнить с балетом, в котором танцоры движутся синхронно в отличие от неорганизованной толпы… Такие квантовые целые состояния больше напоминают организованное поведение частей живого существа, чем функционирование отдельных частей машины» (5).

Пристальное изучение свойств квантового потенциала привело его к еще более радикальному отходу от ортодоксального мышления. Вопреки классической науке, которая всегда рассматривала систему как простое сложение поведения ее отдельных частей, гипотеза квантового потенциала определяла поведение частей как производную от целого. Более того, она не только подтверждала высказывания Бора о том, что элементарные частицы не являются независимыми «частицами материи», но и постулировала целое как первичную реальность.

Еще более удивительным оказалось то, что на уровне квантового потенциала локализация вообще отсутствует, все пространство становится единым и говорить о пространственном разделении становится бессмысленно. Именно этим объясняется такое свойство пространства, как нелокальность.

Нелокальный аспект квантового потенциала позволил Бому объяснить связь между парными частицами без нарушения специальной теории относительности, запрещающей превышение скорости света. Для пояснения он предложил следующий пример: представьте себе рыбу, плавающую в аквариуме. Представьте также, что вы никогда раньше не видели рыбу или аквариум и что единственную информацию о них вы получаете через две телевизионные камеры, одна из которых направлена на торец аквариума, а другая смотрит сбоку. Если смотреть на два телевизионных экрана, можно ошибочно предположить, что рыбы на экранах разные. Действительно, поскольку камеры расположены под разными углами, каждое из изображений будет несколько отличаться. Но, продолжая наблюдать за рыбами, вы в конце концов понимаете, что между ними существует некая связь. Если поворачивается одна рыба, другая делает несколько другой, но синхронный поворот. Если одна рыба показывается анфас, другая предстает в профиль и т. д. Если вы не знакомы с общей ситуацией, вы можете ошибочно заключить, что рыбы мгновенно координируют свои движения, однако это не так. Никакой мгновенной связи между ними нет, поскольку на более глубоком уровне реальности – реальности аквариума – существует одна, а не две рыбы (5).

По мнению Бома, элементарные частицы связаны так же, как изображения одной рыбы в двух гранях аквариума. Хотя частицы наподобие электронов кажутся отделенными друг от друга, на более глубоком уровне реальности – реальности аквариума – они являются лишь двумя аспектами глубокого космического единства.

Таким образом, Бом рассматривает нелокальные связи как существенную часть некоего единства, считая, что глубже уровня вероятности существует более глубокий «уровень непроявленности», который внутренне присущ космической сети взаимоотношений (3).

Взгляды Бома на «неразрывное единство» противоречили механистической точке зрения ученых, которые рассматривали мироздание как вселенскую машину. Мир сводился к набору основных элементов, которыми служат частицы (электроны, протоны, кварки, атомы и т. д.) и различные виды непрерывно простирающихся в пространстве полей. Все эти элементы являются в своей основе внешними по отношению друг к другу, и не только в том, что они разделены в пространстве, но и в том, что фундаментальная природа каждого независима от фундаментальной природы соседа, а силы взаимодействия не затрагивают глубоко внутреннюю природу элементов. Такую структуру, скорее, можно сравнить с машиной, чем с единым организмом.

Безусловно, механистический подход допускает существование биологического организма (ибо оно очевидно), в котором части могут глубоко влиять на саму природу других частей и всего организма, поскольку они в основе своей связаны как друг с другом, так и с целым. Но и в этом случае все в конечном итоге сводится к молекулам, таким как ДНК, РНК, белки и т. д. Даже если в организме возникают какие-то новые свойства и качества, то они всегда подразумеваются в молекулах. Поэтому в конце концов организм лишь удобный способ говорить о большом числе молекул.

О том, что современная наука не имеет языка описания целостного мира, шла речь на конференции «Научные итоги второго тысячелетия: взгляд из России», которая проходила в конце 2000 года в Петербурге. Ученые резюмировали:

Наука разложила мир на элементарные кирпичики. Изучая организм, она опускалась до клетки. Однако современные данные в области молекулярной биологии показывают, что для того, чтобы описать только одну единственную органическую клетку, потребуется целая человеческая жизнь с расчетом на то, что человек будет описывать ее 24 часа в сутки. Выходит, что клетка представляет собой Вселенную, и путь дробления мира на кирпичики в целях его познания является тупиковым. Мир, разбитый на кусочки, стал таким же непонятным, как разрезанный на миллионы кусочков шедевр мастера. Процесс познания остановился (6).

Гипотеза квантового потенциала постулировала существование целого и его частей, которые являются соотносительными категориями: говоря об одном, следует подразумевать другое. Нечто может быть частью, только если существует целое, частью которого оно может быть.

Свое альтернативное видение квантовой теории Бом обнародовал в печати в 1952 году.

Реакция на его работу была в основном отрицательной. Некоторые физики настолько верили в то, что никакие альтернативы невозможны, что отвергли его теорию без рассмотрения. Другие обрушили на нее яростные атаки. В конце концов все возражения свелись к философским разногласиям: точка зрения Бора была настолько укоренена в физику, что альтернативный подход Бома казался более чем ересью.

Несмотря на остроту атак, Бом верил, что существует более глубокая реальность, нежели та, которую допускает Бор, и невозмутимо продолжал шлифовать свой альтернативный подход к квантовой физике.

Однако более чем сдержанная реакция научной общественности на его идеи относительно единства и нелокальности, а также неясность дальнейших исследований в этом направлении заставили его переключиться на другую тему. В 1960-х годах он занялся пристальным изучением порядка.

О порядке. В классической науке все объекты обычно разделялись на две категории: объекты, обладающие упорядоченностью своих частей, и объекты, части которых находятся в неупорядоченном, или случайном, состоянии. Снежинки, компьютеры и живые существа – все это примеры упорядоченных объектов. Рассыпанные зерна кофе на полу, обломки после взрыва, числа, генерируемые рулеткой, – примеры неупорядоченных объектов.

Возникает вопрос: что есть порядок? Вообще говоря, некоторое представление о порядке имеется практически у каждого. Все мы знакомы с порядком чисел, с порядком точек в линии, порядком функционирования организма, множеством порядков тонов в музыке, порядком времени, порядком языка, порядком мышления и т. д. Однако дать обобщенное и внятное понятие порядка, по мнению Бома, невозможно (7).

По мере того как Бом все более углублялся в изучаемый предмет, он стал понимать, что существуют различные степени порядка. Некоторые вещи более упорядочены, чем другие, причем иерархия порядка бесконечна во Вселенной. Из этого Бом сделал вывод: то, что нам кажется неупорядоченным, вовсе может и не являться таковым. Возможно, порядок этих вещей имеет «такую бесконечно большую величину», что они только кажутся беспорядочными, хаотичными. Сегодня уже многие ученые разделяют подобную точку зрения на хаос. Например, американский ученый Б. Вильямс пишет: «Хаос представляет собой более высокую форму порядка, где случайность и бессистемные импульсы становятся организующим принципом скорее, нежели более традиционные причинно-следственные отношения в теориях Ньютона и Евклида» (8).


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации