Электронная библиотека » Владимир Шилов » » онлайн чтение - страница 6


  • Текст добавлен: 16 сентября 2014, 17:36


Автор книги: Владимир Шилов


Жанр: Справочники


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 48 страниц) [доступный отрывок для чтения: 14 страниц]

Шрифт:
- 100% +

Звукоизоляцией помещений от воздушного шума называется ослабление звуковой энергии при передаче ее через ограждение. Чаще всего звукоизолирующими ограждениями являются стены, перегородки, окна, двери, перекрытия.

Звукоизоляцией от ударного шума называется способность перекрытий снижать шум в помещении под перекрытием при его возбуждении ударами (при хождении, передвижении мебели и т. п.). В последнее время за рубежом широко применяют звукоизолирующие вентиляционные окна, которые обеспечивают высокую звукоизоляцию и одновременно позволяют проветривать помещение.

Звукопоглощающие конструкции – конструкции, предназначенные для поглощения звука. К таким конструкциям относятся звукопоглощающие облицовки ограждающих поверхностей помещений и штучные звукопоглотители.

Целесообразно применять строительно-акустические методы борьбы – шумозащитные строительно-акустические методы борьбы (шумозащитные сооружения и устройства, экраны, шумозащитные полосы озеленения, а для жилых помещений зданий – также конструкции оконных проемов с повышенной звукоизоляцией).

Решение этой непростой задачи развивалось по пути проектирования так называемых шумозащитных (или шумозащищенных) зданий. По способам защиты от шума эти здания подразделялись на два типа.

1. Дома со специальной архитектурно-планировочной структурой и объемно-пространственным решением, в которых были реализованы такие принципы, как расположение комнат общего пользования со стороны источника шума (транспортной магистрали) и соответственно спален – со стороны двора; включение в состав жилого дома дополнительных подсобных помещений группового пользования для создания гибкой планировочной структуры.


Таблица 18

Предельно допустимые уровни звукового давления, уровни звука и эквивалентные уровни звука для основных наиболее типичных видов трудовой деятельности и рабочих мест (СН 2.2.4/2.1.8.562-96).






Примечания

1. Допускается в отраслевой документации устанавливать более жесткие нормы для отдельных видов трудовой деятельности с учетом напряженности и тяжести труда.

2. Запрещается даже кратковременное пребывание в зонах с уровнями звукового давления свыше 135 дБ в любой октавной полосе.


2. Дома, окна и балконные двери которых имеют повышенную звукоизолирующую способность и снабжены специальными вентиляционными устройствами, совмещенными с глушителями шума.

Звукоизоляция внешнего шума конструкцией окна может быть определена по формуле:


RA = LAэкв. ул – LAэкв. пом + 10 lg (S / A), (1),


где LAэкв. ул – для транспортного потока;

RA – индекс звукоизоляции остекления в дБ;

S – площадь окна (всех окон в данном помещении, ориентированных на источник шума), м2;

А – эквивалентная площадь звукопоглощения в помещении (средняя в диапазоне 125–1000 Гц), м2. Определяется как сумма произведений коэффициентов звукопоглощения отдельных поверхностей на их площади. В акустических расчетах оконных конструкций принимается равной 0,4–0,8.

Формула (1) показывает значение звукоизоляции остекления в реальных городских условиях, выраженное в дБ. В рекламных проспектах фирм, как правило, также приводится значение индекса звукоизоляции RW, выраженное в дБ, полученное при испытаниях в лаборатории под воздействием постоянного шума, оказывающего такое же воздействие на человека, как и непостоянный городской шум. Величина RW не учитывает специфики воздействия транспортного шума и определяется исходя только из разницы уровней звукового давления без учета звукопоглощения в конкретном помещении. При этом в большинстве практических случаев величины RA и RW могут быть определены из зависимости (И. В. Борискина, А. А. Плотников, А. В. Захаров):


RA = 0,6 RW + 6


Кроме того, разрабатывались также варианты, в которых были реализованы комбинированные решения. Таким образом, тенденция к проектированию шумозащитных домов отражала комплексный подход к решению градостроительных и строительно-акустических задач, направленных на формирование благоприятного акустического климата в зданиях.

Учитывая особое значение городского транспорта, являющегося источником 60–80 % шумов, проникающих в жилые и общественные здания, большое значение имеют регулирование транспортных потоков в городе, выделение городских и районных магистралей. Рациональное их распределение позволяет снизить интенсивность шума на жилых территориях, в помещениях. С этой целью вводятся также одностороннее движение транспорта на ряде улиц и ограничение движения грузового транспорта в ночное время, создаются транспортные развязки и принимаются меры к выводу транзитных потоков на окружные дороги.

Запрет грузового движения дает снижение уровня шума примерно на 10 дБ. Аналогичный эффект дает исключение движения мотоциклов. Ограничение скорости движения ниже 50 км/час, как правило, не дает снижения шума. Территориальные разрывы дают возможность в определенной мере снизить уровень шума в микрорайонах, жилых и общественных зданиях.

Ограничение внутренних шумов в жилых зданиях достигается рядом конструктивных решений.

Машинное помещение лифтов не допускается располагать непосредственно над и под жилыми помещениями, а также смежными с ними. Шахты лифтов не должны примыкать к стенам, ограждающим жилые комнаты. Кухни, ванны, санузлы следует объединять в отдельные блоки, примыкающие к стенам лестничных клеток или к таким же блокам соседних помещений и отделенные от жилых помещений коридором, тамбуром или холлом; запрещаются навеска трубопроводов и санитарных приборов на ограждающие конструкции жилых комнат, а также примыкание к ним ванных комнат и канализационных стояков.

Фактор шума в рабочей зоне
Влияние шума на состояние здоровья работающих

Работа в условиях повышенного шума на первых порах вызывает быструю утомляемость, обостряет слух на высоких частотах. Затем человек как бы привыкает к шуму, чувствительность к высоким частотам резко падает, начинается ухудшение слуха, которое постепенно развивается в тугоухость и глухоту.

Изменения, возникающие в органе слуха, некоторые исследователи объясняют травмирующим действием шума на периферический отдел слухового анализатора – внутреннее ухо. Этим же обычно объясняют первичную локализацию поражения в клетках внутренней спиральной борозды и спирального (кортиева) органа. Имеется мнение, что в механизме действия шума на орган слуха существенную роль играет перенапряжение тормозного процесса, которое при отсутствии достаточного отдыха приводит к истощению звуковоспринимающего аппарата и перерождению клеток, входящих в его состав. Некоторые авторы склонны считать, что длительное воздействие шума вызывает стойкие нарушения в системе кровоснабжения внутреннего уха, которые являются непосредственной причиной последующих изменений в лабиринтной жидкости и дегенеративных процессов в чувствительных элементах спирального органа.

В патогенезе профессионального поражения органа слуха нельзя исключить роль ЦНС. Патологические изменения, развивающиеся в нервном аппарате улитки при длительном воздействии интенсивного шума, в значительной мере обусловлены переутомлением корковых слуховых центров.

Механизм профессионального снижения слуха обусловлен изменениями некоторых биохимических процессов. Так, гистохимические исследования спирального органа у подопытных животных, содержавшихся в условиях воздействия шума, позволили обнаружить изменения в содержании гликогена, нуклеиновых кислот, щелочной и кислой фосфатаз, янтарной дегидрогеназы и холинэстеразы. Приведенные сведения полностью не раскрывают механизма действия шума на орган слуха. По-видимому, каждый из указанных моментов имеет определенное значение на каком-то из этапов поражения слуха в результате воздействия шума.

Возникновение неадекватных изменений в ответ на воздействие шума обусловлено обширными анатомо-физиологическими связями слухового анализатора с различными отделами нервной системы. Акустический раздражитель, действуя через рецепторный аппарат слухового анализатора, вызывает рефлекторные сдвиги в функциях не только его коркового отдела, но и других органов.

Диапазон отрицательного воздействия шума на человека огромен. Различают специфические шумовые изменения, возникающие в органе слуха, и неспецифические, которые появляются в различных органах и системах организма. Всем известно раздражающее действие даже легкого шума как во время отдыха, так и на работе. Изменения психики при шумовом воздействии дали основание называть звуковой стресс болезнью современности. Под влиянием шума могут возникать расстройства периферического кровообращения и деятельности сердца, гипертоническая болезнь, заболевания органов пищеварения, зрения и др. Сейчас говорят уже не просто о тугоухости, а о шумовой болезни.

Профессиональная шумовая патология развивается у всех людей по-разному. Это обусловлено различными факторами:

1) характером и длительностью шумового воздействия (в течение рабочего дня и на протяжении многих лет работы);

2) возрастом и общим состоянием здоровья рабочего;

3) индивидуальной чувствительностью органа слуха к шумовому воздействию и т. д.

Шумовому поражению слухового анализатора могут также способствовать заболевания среднего уха (особенно воспалительного характера) и другие поражения улитки.

Основные признаком воздействия шума является снижение слуха по типу кохлеарного неврита. Профессиональное снижение слуха обычно бывает двусторонним. Стойкие изменения слуха вследствие воздействия шума, как правило развиваются медленно. Нередко им предшествует адаптация к шуму, который характеризуется нестойким снижением слуха, возникающим непосредственно после его воздействия и исчезающим вскоре после прекращения его действия. Начальные проявления тугоухости чаще всего встречаются у лиц со стажем работы в условиях шума около 5 лет.

Важная этиологическая роль в развитии изменений со стороны сердечно-сосудистой системы принадлежит шумовому фактору. У рабочих котлотурбинных цехов теплоэлектростанций, где отмечаются высокие уровни шума, нарушения со стороны нервной и сердечно-сосудистой систем выявлялись в большем проценте случаев и значительно раньше профессионального снижения слуха. Роль профессионально-производственных факторов в развитии сердечно-сосудистой и нервной патологий подтверждается и увеличением их частоты с возрастанием стажа работы, отмечает Ю. П. Пальцев (1982).

Основными производственными вредностями на судах остаются шум и вибрации. За последние 5 лет зарегистрированное при исследованиях число рабочих мест, не соответствующих санитарным нормам по «Уровням шума на морских судах», выросло на 50 %, а не отвечающих санитарным нормам по «Уровню вибрации на морских судах» – увеличилось в 4 раза. Структуру профзаболеваемости на морском транспорте и рыбодобывающем флоте определяют заболевания органов слуха, опорно-двигательного аппарата и органов дыхания.

Зависимость между условиями труда и состоянием здоровья летного состава прослеживается очень наглядно. Среди факторов летного труда, вызывающих отрицательные изменения в здоровье членов экипажей, особую роль играют высокий уровень шумов, общая вибрация, колебания атмосферного давления на взлетах, посадках и при изменениях направления полета, недостаток кислорода во вдыхаемом воздухе (гипоксия). Наиболее вредное влияние на организм (особенно в вертолетах и турбовинтовых самолетах) оказывает виброшумовой фактор. Систематическое воздействие авиационного шума, превышающего допустимый уровень в 1,3–1,7 раза, приводит к развитию профессионального заболевания органа слуха – кохлеарного неврита. Достоверная связь этого заболевания с воздействием шумового фактора установлена профпатологическими центрами Минздрава России. Дополнительно авиационный шум вызывает усталость, головную боль, нарушение сна, повышение артериального давления и другие невротические, астенические и вегетососудистые дисфункции, по данным Г. Гухмана (2001).

Иллюстрацией влияния производственного шума на психоэмоциональную сферу деятельности человека является то, что при высоких требованиях к точности и надежности управления современным самолетом повышенные уровни шумов оказывают отрицательное воздействие на работоспособность и быстроту принятия информации экипажем. Человеческий фактор все чаще становится определяющим при возникновении аварий в технических системах. По данным ИКАО в 1985–1990 гг. около 80 % авиакатастроф связаны с ошибочными действиями экипажей авиалайнеров.

Нормирование уровней шума в рабочей зоне

Предельно допустимый уровень (ПДУ) шума – это уровень фактора, который при ежедневной (кроме выходных дней) работе (но не более 40 ч в неделю) в течение всего рабочего стажа не должен вызывать заболеваний или отклонений в состоянии здоровья, обнаруживаемых современными методами исследований в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Соблюдение ПДУ шума не исключает нарушения здоровья у сверхчувствительных лиц.

Характеристиками постоянного шума на рабочих местах являются уровни звукового давления в дБ в октавных полосах со среднегеометрическими частотами 31,5; 63; 125; 250; 500; 1000; 2000; 4000;8000 Гц.

Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах с учетом напряженности и тяжести трудовой деятельности представлены в таблице 19.

Количественную оценку тяжести и напряженности трудового процесса следует проводить в соответствии с Руководством 2.2.013-94 «Гигиенические критерии оценки условий труда по показателям вредности и опасности факторов производственной среды, тяжести, напряженности трудового процесса».


Таблица 19

Предельно допустимые уровни звука и эквивалентные уровни звука на рабочих местах для трудовой деятельности разных категорий тяжести и напряженности в дБ.

Примечания

1. Для тонального и импульсного шума ПДУ на 5 дБ меньше значений, указанных в таблице 19.

2. Для шума, создаваемого в помещениях установками кондиционирования воздуха, вентиляции и воздушного отопления, – на 5 дБ меньше фактических уровней шума в помещениях (измеренных или рассчитанных), если последние не превышают значений таблице 7 (поправка для тонального и импульсного шума при этом не учитывается), в противном случае – на 5 дБ меньше значений, указанных в таблице 19.

3. Дополнительно для колеблющегося во времени и прерывистого шума максимальный уровень звука не должен превышать 110 дБ, а для импульсного шума – 125 дБ.

Измерение уровней звука и оценка параметров шума

Приборы контроля – шумомеры; виброакустический комплекс RFT, ВШВ. Классификация средств и методов защиты от шума приведена в ГОСТе 12.1.029-80 «Средства и методы защиты от шума. Классификация».

В настоящее время в качестве шумоизмерительной аппаратуры могут быть использованы различные приборы – отечественные (типа ВШВ-003) или импортные (типа шумомеров фирмы «Брюль и Кьер» (Дания) и др.). Шумомер состоит из микрофона, усилителя и измерительного прибора.

Методы измерения шума приведены в ГОСТе 23337-78 «Шум. Методы измерения шума на селитебной территории и в помещениях жилых и общественных зданий».

Помимо методов измерения шума с помощью приборов, в практической деятельности врачей можно использовать и расчетные методики определения общего и эквивалентного уровней шума.

Принято измерять и оценивать относительные уровни интенсивности звука и звукового давления по отношению к пороговым значениям, выраженным в логарифмической форме.

Характеристикой непосредственно источника шума является его звуковая мощность (P) – общее количество звуковой энергии, излучаемой в окружающее пространство в секунду.

Для оценки источников шума, одинаковых по своему уровню:


L = Li + 10lgn,


где Li – уровень звукодавления одного из источников (дБ); п – количество источников шума.


Если количество источников меняется от 1–100, a Li = 80 дБ, то n = 1, L = 80 дБ;

n = 10, L = 90 дБ;

n = 100, L = 100 дБ.

Для оценки источников шума, различных по своему уровню:


L = Lmax + L,


где Lmax – максимальный уровень звукового давления одного из 2-х источников;

L – поправка, зависящая от разности между max и min уровнями давления Lmax—Lmin.

Звуковую мощность и звуковое давление как величины переменные можно представить в виде суммы синусоидальных колебаний различной частоты.

Зависимость среднеквадратичных значений этих составляющих (или их уровней) от частоты называется частотным спектром шума.

Обычно частотный спектр определяют опытным путем, находя звуковые давления не для каждой отдельной частоты, а для октавных (или трети октавных) полос частот.

Частотные спектры шума получают с помощью анализаторов шума, представляющих собой набор электрических фильтров, которые пропускают электрический звуковой сигнал в определенной полосе частот (полосе пропускания).

Для оценки шума используют частотный спектр измеренного уровня звукового давления, выраженный в дБ, в октавных полосах частот, который сравнивается с предельным спектром.

Для ориентировочной оценки шумовой обстановки допускается использовать одночисловую характеристику – так называемый уровень звука (дБ), измеряемый без частотного анализа по шкале А шумометра, которая приблизительно соответствует числовой характеристике слуха человека. Для постоянного шума нормируемыми параметрами являются допустимые уровни звукового давления и уровни звука на рабочих местах.

Для непостоянного шума нормируемым параметром является эквивалентный уровень звука LA единиц в дБ по шкале А.

Эквивалентным уровнем звука называется значение уровня звука постоянного шума, который в пределах регламентируемого интервала времени Т = t2 – t1 имеет то же самое среднеквадратичное значение уровня звука, что и рассматриваемый шум.

Уровни непосредственного шума измеряются специальными интегрирующими шумометрами-дозиметрами.

Если шум тональный или импульсный, то допустимые уровни должны приниматься на 5 дБ меньше значений, указанных в СН.

Меры борьбы с воздействием шума

К мерам борьбы с отрицательным влиянием шума на производстве относятся:

1) гигиеническое нормирование, контроль над уровнем шума (в октавных полосах частот либо интегральный среднеарифметический показатель min трех частот);

2) планировочные мероприятия (вынесение автострад за черту города, зеленые зоны 50–100 м, расстояние между зданиями и т. д.);

3) технологические мероприятия (дистанционное управление, глушители, шумогасящие прокладки, изоляция комнат, мягкие подкладки);

4) медицинские мероприятия (медосмотры при приеме на работу);

5) текущие мероприятия (оптимальный режим труда, отдыха (выходные));

6) средства индивидуальной защиты (наушники, беруши (БЕРеги УШИ)).

Ведущая роль в решении проблем борьбы с шумом принадлежит нормированию шума, т. е. установлению научно обоснованных предельно допустимых уровней шума, действие которого в течение многих лет не сможет вызвать заболевания организма.

Нашей стране принадлежит приоритет в создании первых в мире официальных норм шума в виде «Временных санитарных норм и правил по ограничению шума на производстве». В настоящее время абсолютное большинство развитых стран уже имеют свои гигиенические нормы шума, но к решению этой проблемы они подходят в основном с позиции предотвращения потерь слуха, что нашло свое отражение при разработке последних международных рекомендаций ИСО (1975) по ограничению шума (R-1999). В нашей стране первые и последующие нормы воздушного шума основаны на концепции профилактики шумовой болезни, т. е. результатах оценки как слуховой функции, так и общефизиологических реакций организма.

Регламентация ПДУ шума в зависимости от времени воздействия за 8 ч работы основана на допустимости ВСП слуха без риска появления профессиональной глухоты. Так, в таблице 8 показан риск повреждения слуха при работе с различными уровнями шума. При работе в течение 5 лет при 90 дБ риск повреждения слуха составляет 4 %, 15 лет – 14 %, 30 лет – 18 %; при шуме 85 дБ он составляет соответственно 1; 5 и 8 %.


Таблица 20

Вероятность нарушений слуха от воздействия шума (в %)


Как видно из данных таблицы 20, 80 дБ является критерием сохранности слуха.

В США, Великобритании, Франции ПДУ шума для постоянных рабочих мест промышленных предприятий равен 90 дБ, в Швеции – 85 дБ.

Международным стандартом ИСО R-1999 регламентирован безопасный уровень звука – 80 дБ А.

Величина Lэкв на рабочем месте в разных странах различна и может меняться. Однако согласно директиве Совета Европейского экономического сообщества, датированной 1986 г. и требующей принятия ее всеми членами сообщества к 1990 г., указывается, что Lэкв для уха не должен превышать 90 дБ. Если Lэкв превышает 85 дБ, должна быть обеспечена защита слуха, хотя рабочим не предъявляются требования пользоваться ими; если пиковое давление звука превышает 140 дБ, необходимо пользоваться защитными устройствами независимо от величины Lэкв.

Новым в гигиеническом нормировании шума в нашей стране является дифференцированный подход с учетом напряженности и тяжести труда. Рекомендуемые допустимые (оптимальные) уровни звука на рабочих местах для труда разных категорий и напряженности труда представлены в таблице 19.


Таблица 21

ПДУ шума различных стран в судовых помещениях, дБ А


Для сопоставления уровня гигиенического нормирования фактора шума на производстве в таблице 19 приводятся данные регламентации уровня звукового давления в одной отрасли разных стран мира. Как видно из представленных данных, ПДУ шума в помещениях разного назначения на зарубежных судах примерно одинаковы. Эти величины основываются на соответствующих национальных стандартах, регламентирующих уровни шума в жилых домах, местах отдыха и предприятиях. Отечественные ПДУ шума во всех случаях меньше или соответствуют этим значениям.

При организации технологических процессов, создающих шум, следует предусматривать применение средств и методов снижающих уровни шума в источнике его возникновения и на пути распространения:

1) применение мало шумных технологических процессов, машин и оборудования;

2) применение дистанционного управления и автоматического контроля;

3) применение звукоизолирующих ограждений-кожухов, кабин для наблюдения за ходом технологического процесса;

4) устройство звукопоглощающих облицовок и объемных поглотителей шума;

5) применение вибропоглощения (достигается покрытием вибрирующих частей оборудования и машин специальными материалами, имеющими высокое внутреннее трение) и виброизоляции (для снижения уровня шума вибрирующие агрегаты устанавливают на амортизаторы или на специальные фундаменты);

6) установка глушителей аэродинамического шума, создаваемого пневматическими ручными машинами, вентиляторами, компрессорными и другими технологическими установками;

7) рациональные архитектурно-планировочные решения построения производственных зданий, помещений, а также расстановки технологического оборудования, машин и организации рабочих мест;

8) использование рациональных режимов труда;

9) применение средств индивидуальной защиты от шума.

Строительно-планировочная система мероприятий защиты от шума представляется в виде использования определенных строительных материалов и связана с этапом проектирования. Например, в ИВЦ акустическая обработка помещения – облицовка пористыми акустическими панелями. Для защиты окружающей среды от шума используются лесные насаждения. Снижается уровень звука от 5–40 дБ.


Конструктивная система мер подразумевает:

1) установку звукоизолирующих преград (экранов);

2) реализацию метода звукоизоляции (отражение энергии звуковой волны);

3) использование материалов с гладкой поверхностью (стекла, пластика, металла);

4) акустическую обработку помещений (звукопоглощение);

5) можно снизить уровень звука до 45 дБ;

6) использование объемных звукопоглотителей (звукоизолятор + звукопоглотитель) устанавливаемых над значительными источниками звука. Можно снизить уровень звука до 30–50 дБ.

Снижение шума на пути распространения достигается путем проведения строительно-акустических мероприятий. Методы снижения шума на пути его распространения – кожухи, экраны, звукоизолирующие перегородки между помещениями, звукопоглощающие облицовки, глушители шума. Под акустической обработкой помещений понимаются облицовка части внутренних поверхностей ограждений звукопоглощающими материалами, а также размещение в помещениях штучных поглотителей.

Наибольший эффект – в зоне отраженного звука (60 % от общей площади). Эффективность – 6–8 дБ.

Снижение шума методом звукопоглощения основано на переходе звуковых колебаний частиц воздуха в теплоту вследствие потерь на трение в порах звукопоглощающего материала.

Чем больше звуковая энергия поглощается, тем меньше отражается. Поэтому для снижения шума в помещении проводят его акустическую обработку, нанося звукопоглощающие материалы на внутренние поверхности, а также размещая в помещении штучные звукопоглотители.

Эффективность звукопоглощающего устройства характеризуется коэффициентом звукопоглощения а, который представляет собой отношение поглощенной звуковой энергии E к падающей E:


а = Eпогл / Eпад


Звукопоглощающие устройства бывают пористыми, пористо-волокнистыми, мембранными, слоистыми, объемными и т. п. Звукоизоляция является одним из наиболее эффективных и распространенных методов снижения производственного шума на пути его распространения. С помощью звукоизолирующих преград можно снизить уровень шума на 30–40 дБ.

Метод основан на отражении звуковой волны, падающей на ограждение. Однако звуковая волна не только отражается от ограждения, но и проникает через него, что вызывает колебание ограждения, которое само становится источником шума. Чем выше поверхностная площадь ограждения, тем труднее привести его в колебательное состояние, следовательно, тем выше его звукоизолирующая способность. Поэтому эффективными звукоизолирующими материалами являются металлы, бетон, дерево, плотные пластмассы и т. п.

Для оценки звукоизолирующей способности ограждения введено понятие звукопроницаемости (t), под которой понимают отношение звуковой энергии, прошедшей через ограждение, к падающей на него.

Величина, обратная звукопроницаемости, называется звукоизоляцией (дБ), она связана со звукопроницаемостью следующей формулой:


R = 10 lg (1 / t).

Снижение шума в источнике его возникновения

Самый эффективный метод возможен на этапе проектирования. Используются композитные материалы двухслойные. Снижение: 20–60 дБ.

Организационные мероприятия:

1) определение режима труда и отдыха персонала;

2) планирование рабочего времени.

На основе экспериментальных данных установлено: при шуме, интенсивность которого около 80–90 дБ, продолжительность работы должна составлять в течение рабочего дня не более 4 ч, при 100 дБ – не более 3 ч.

Одним из важных профилактических средств предупреждения утомления при действии интенсивности шума является чередование периодов работы и отдыха при действии шума. Отдых снижает отрицательное воздействие шума на работоспособность лишь в том случае, если продолжительность и количество отдыха соответствует условиям, при которых происходит наиболее эффективное восстановление раздражаемых мер воздействия шума нервных центров. Поэтому при выборе рациональных средств повышения работоспособности для конкретного производства необходимо учитывать влияние отдыха на ограничение воздействия интенсивного шума на организм человека.

Планирование работы при значительных источниках шума в разных источниках, если они генерируют различного характера шум.

Если уровень шума не снижается до пределов нормы, используются индивидуальные средства защиты (наушники, шлемофоны).


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации