Текст книги "Биосферные риски"
Автор книги: Владимир Живетин
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 31 страниц) [доступный отрывок для чтения: 10 страниц]
Глава I. Биосфера. Проблема устойчивого развития
1.1. О синтезе объектов биосферы
Истину знает Творец
Человек неразрывно связан с биосферой, которая включает в себя костную материю, растения, животных и человека. Биосфера существует на Земле около 3,8 млрд. лет, причем начала экологической и биологической истории совпадают с точностью до сотен миллионов лет. Хронологическое развитие биосферы представлено в таблице 1.1.
Таблица 1.1
Биосфера и порожденная ей этносфера суть фундамент социосферы. Биосфера неотделима от этносферы, которая создана совокупностью эгосфер (человека). Биосфера, этносфера (человечество) и социосфера в совокупности составляют единую систему с соответствующей структурой, наполненной подсистемами, которые обладают необходимыми функциональными свойствами. Взаимосвязь этноса и биоса, этноса и социума осуществляется посредством участия человека. Выполняя законы биосферы, человек выступает как объект этноса, выполняя законы социальной среды – как объект социальной системы.
В данной работе рассматривается проблема риска биосферы, включенной в систему: «этносфера – системы власти – социосфера – биосфера». При этом биосфера включена в обратную связь и задает условия развития и деградации системы в целом.
Для изучения указанной системы, представляющей собой иерархическую систему, введем ряд понятий, обусловленных взаимодействием систем иерархии и необходимостью их теоретического описания:
– взаимодействие между подуровнями;
– взаимодействие между уровнями одного порядка двух разных систем.
Каждое такое взаимодействие должно быть описано своим типом энергии из разных областей знаний.
Определение 1.1. Обобщенная работа A* = {GL*} в пространстве состояния иерархии систем – это взвешенное с помощью весовой функции G движение L*, совершаемое системой.
Определение 1.2. Обобщенная энергия E* системы – это способность системы совершать обобщенную работу A*, т. е. совершать движение L* в пространстве состояния.
Определение 1.3. Энергетика – это семантическая сеть, структура которой соответствует энергетическим потокам иерархической системы, представляющая собой вектор в пространстве состояния иерархической системы.
Определение 1.4. Обобщенная свободная энергия E*c системы иерархии характеризует часть обобщенной энергии E*, которую она может отдавать в среду, не нарушая энергетики как семантической сети.
Семантическая сеть — обобщение графа, структура, содержащая совокупность узлов и дуг различного типа.
Немецкий естествоиспытатель Александр Гумбольт (1769–1859 гг.) утверждал, что «живое существо есть неразрывная и закономерная часть поверхности планеты, неотделимая от ее химической среды». Венчают монументальное здание биокосмического и планетарного мировоззрения человечества труды В.И. Вернадского (1863–1945 гг.), а именно, его концепции «биосферы», переводящей космические излучения в действенную земную энергию – электрическую, химическую, механическую, тепловую и т. д. [26]. Идея биосферы в общем виде была высказана им еще в середине 80-х годов XIX века в докладе на заседании студенческого научно-литературного общества Петербургского университета [26]. Завершая доклад, Вернадский отметил: «Живая материя скопилась в виде тонкой пленки на поверхности земного сфероида: вверх, в атмосферу, она едва достигает верст 8–10; вниз, вглубь земного шара, – еще меньше. Везде, всюду царит мертвая материя – материя, в которой не происходит никакой жизни. Но что такое жизнь? И мертва ли та материя, которая находится в вечном непрерывном законном движении, где происходит бесконечное разрушение и созидание, где нет покоя? Неужели только едва заметная пленка на бесконечно малой точке в мироздании – Земле – обладает коренными, особенными свойствами, а всюду, везде царит смерть? Разве жизнь не подчинена таким же строгим законам, как и движение планет, разве есть что-нибудь в организмах сверхъестественное, что бы отделяло их резко от остальной природы? Покуда можно только предлагать эти вопросы. Их решение будет найдено наукой».
Что же такое жизнь, и как она возникает в историческом аспекте? Снова обратимся к мнению В.И. Вернадского. Прежде всего, он сосредотачивает внимание на составных элементах и структуре живого вещества, включающих:
– сами живые организмы;
– жизненную среду, в том числе часть костной (абиотической) природы, жидкой, твердой и газообразной, необходимой для поддержания жизнедеятельности организмов;
– отмершие и отмирающие части организмов, трупы и их остатки на земной поверхности;
– выделения живых организмов, находящихся в земной коре.
Вернадский считал, что отмершие части живых организмов и трупы должны быть отнесены к живому веществу, так как они насыщены разнообразными организмами, до конца использующими для жизни находящиеся в них соединения. В среднем масса и энергия этих организмов, в конце концов, будет равна массе и энергии трупов и их отмерших частей. При описании элементов и структуры живого вещества следует иметь в виду, что чем короче промежуток времени, в пределах которого такое описание производится, тем точнее будет определено живое вещество.
Рассмотрим современное описание эволюции жизни, следовательно, живого вещества. Для понимания уникальности живого организма приведем два примера. Некоторые химические реакции вне организмов вообще не происходят при нормальных температурах и давлении:
– жиры и углеводы окисляются в организме при 37ºС, а вне его – при 400÷500ºС;
– синтез аммиака из молекулярного азота в промышленных условиях осуществляется при температуре 500ºС и давлении 300–500 атм., а микроорганизмы без затруднений осуществляют эту реакцию при обычной температуре и атмосферном давлении; такая реакция возможна при помощи белковых катализаторов-ферментов.
Простые органические соединения (гипотетический сценарий: координата х0, которой соответствует энергия Е0) могли образоваться под воздействием ультрафиолетовых лучей солнца, вулканической деятельности из простых химических соединений: СН4, NH3, H2O, CО, N2, H2. Здесь положено начало формирования базиса пространства энергетик биосферы. С этого момента природа начала творить синтез биосферы, создавая необходимые объекты. Новыми соединениями могут быть молекулы сахара, аминокислот, азотных оснований, из которых состоят белки, нуклеиновые кислоты, вещества – энергоносители типа аденозинтрифосфата (АТФ).
Органические молекулы в процессе своего синтеза и разрушения положили начало круговороту органического вещества, в результате образовались первые сгущения органики – коацерваты. При этом первые предбиологические системы должны были обладать способностью поглощать, в том числе ненужные им вещества, и избавляться от них. Здесь заложено самое важное для будущего биосферы как системы со структурой: начало обмена веществ, переноса и преобразования энергии, обмена информацией. В итоге коацерватные капли могли превратиться в простейшие организмы, а сохранялись при этом лишь те капли органики, которые при делении не теряли в дочерних каплях свои признаки, химический состав и структуру. В итоге сложнейшего объединения нуклеиновых кислот и белков были созданы высокоорганизованные предбиологические системы. В дальнейшем были созданы условия для синтеза белков на базе кислот (дезоксирибонуклеиновых и рибонуклеиновых), что дало первичные механизмы наследственности. Таким образом, было положено начало перехода от предбиологического этапа развития к биологическому, характеризуемому энергетиками E0 и E1, состоящими из компонент x0 и x1 (двумерный базис).
Около 2–3 млрд. лет назад возникли первые клетки, похожие на цианобактерии. Наследственность и клеточная структура положили начало биологической эволюции. Химеосинтез сменился фотосинтезом – образованием кислорода, который явился ядом для анаэробов. Окислительная атмосфера была создана в архее (400–500 млн. лет назад), когда количество кислорода составляло лишь 10 % от сегодняшнего (точка Пастера). В итоге появилась возможность распространения жизни из воды на сушу. Возникла область допустимых состояний Ωдоп биосферы внутри области критических состояний Ωкр энергий живого вещества, где его жизнь раньше была невозможна.
Необходимая для синтеза различных веществ энергия E = (E0, E1, E2), включающая в себя компоненты x0, x1, x2 (т. е. имеющая трехмерный базис), в новом организме может быть получена при окислении глюкозы. Часть этой энергии теряется в виде тепла, а основная часть идет на синтез АТФ. Распад АТФ сопровождается выделением энергии, которая используется в организме для поддержания ряда процессов: сокращения мышц, секреторных функций, синтеза новых веществ и т. п. Так, например, возбужденная молекула АТФ в живой клетке зеленого листа растения, содержащего воду и двуокись углерода, способствует образованию молекул сахара и кислорода.
Жизнь функционирует в пределах «квантов» биосферы, которые в 1935 году английский ученый Артур Дж. Тенсли назвал экосистемами. Размеры экосистемы колеблются в широком диапазоне: «от точки до оболочки». Глобальный геохимический круговорот веществ в биосфере не является замкнутым. Система воспроизводства отдельных циклов достигает 90÷98 %. В масштабах геологического времени неполная замкнутость биогеохимических циклов приводит к дифференциации элементов и накоплению их в атмосфере, гидросфере или метабиосфере Земли. Эти несколько процентов вещества, исключаемые из круговорота, составляют «выход в геологию». Жизнь на планете возможна, пока происходит обмен энергией и веществом между недрами и поверхностью. Приведем основные параметры динамики биосферы Земли:
– обновление биоэнергии осуществляется в среднем за 8 лет;
– вещество наземных растений (фитомасса суши) обновляется примерно за 14 лет;
– масса живого вещества в океане обновляется за 33 дня, а фитомасса – каждый день.
Рассмотрим другие свойства живого вещества.
Живое вещество биосферы характеризуется огромной свободной энергией (в термодинамическом смысле), в неживой природе с ним сравнимы лавовые потоки, но они недолговечны.
В живом веществе химические реакции идут в 100–1000 раз быстрее (за счет ферментов), чем в обычных земных условиях.
Слагающие живое вещество химические соединения (белки, ферменты и др.) устойчивы только в живых организмах.
Саморегулируемое произвольное движение – общий признак живого вещества, пассивное движение – это рост организмов, а активное – направленное перемещение (более характерно для животных). Стремление к максимальной экспансии присуще живому веществу так же, как свойственно теплоте переходить от горячего состояния к холодному. Например, если бы все споры гигантского гриба-дождевика (7,5 млрд. спор) пошли в дело, то уже во втором поколении объем дождевиков в 800 раз превысил бы размеры Земли.
Живое вещество имеет значительно большее морфологическое разнообразие, чем неживое. Известно более 2 млн. органических соединений, входящих в состав живого вещества. Природные соединения (минералы) неживого вещества составляют всего 2 тыс. видов. Кроме того, тела живого вещества всегда построены из веществ, находящихся во всех трех фазовых состояниях. Однако при всем многообразии состава живого вещества наблюдается биохимическое единство органического мира. Все живые организмы построены в основном из белков, содержащих одни и те же аминокислоты, осуществляют передачу наследственной информации по одному и тому же пути (ДНК, РНК → белок) и используют один и тот же генетический код. Человек не так уж сильно отличается от травы, растущей у него под ногами.
Живое вещество находится в биосфере в виде дисперсных тел – индивидуальных организмов, размеры которых представлены в большом диапазоне: от 20 нм до 100 м (1 нм = 10–9 м).
Живое вещество всегда представлено биоценозами (экосистемами).
Живое вещество подчиняется принципу Реди: «все живое от живого». При этом современное живое вещество генетически связано с живым веществом прошлых геологических эпох.
Воспроизводство живого вещества происходит путем его морфологических и биохимических изменений.
Жизнь в биосфере существует во внеклеточной и клеточной формах.
Внеклеточные организмы – вирусы (это понятие ввел Дм. Ивановский, 1892 г.) – лишены раздражимости и собственного аппарата синтеза белка, т. е. могут развиваться только в клетках других организмов. Вирус не питается в обычном смысле и не растет. Он вызывает такие болезни, как, например, грипп, корь, свинка, оспа, бешенство, гепатит, энцефалит и т. п., что уменьшает область допустимых состояний Ωдоп живого вещества. Вирус способствует естественному отбору наиболее приспособленных организмов.
Клеточные организмы делятся на прокариотов и эукариотов. Прокариоты (бактерии) не имеют клеточного ядра, у них отсутствует дифференциация соматического (телесного) и репродуктивного живого вещества. Основная роль бактерий – разложение органики и возвращение слагающих элементов в биологический круговорот.
Отметим, что жизнеспособные бактерии были найдены на Луне, куда их занесли с Земли космические аппараты. Один из видов – цианобактерии – экологический феномен, их находят даже в ядерных реакторах. Они являются фотоавтотрофами и, подобно растениям, выделяют кислород. Предположительно именно они создали кислородную атмосферу в докембрии (600 млн. лет назад), появившись еще 3,5 млрд. лет назад (архейская эра). Эти бактерии подготавливают бесплодный субстант для заселения разнообразным живым веществом, например, ногохвостками. Таким образом, самые примитивные на Земле организмы, прокариоты, обнаруживают удивительную приспособленность к невероятным условиям существования. Их значение состоит в следующем: из фиксируемого организмами, полученного естественным путем азота, около 90% – «заслуга» прокариотов и 10 % – результат воздействия молний.
Эукариоты морфологически очень разнообразны: от микроскопических грибов до человека. Клетка эукариота возникла от симбиотического слияния клеток различных прокариотов.
Основным создателем живого вещества является океан. Примерно 80 % массы живого вещества приходится на долю мелких фотосинтезирующих организмов – пикопланктона, вклад которых возрастает с глубиной. Другая жизнеспособная пленка в океане существует на дне океана. Это донная пленка – бентос. К бентосу относится 157 тысяч из 160 тысяч видов морских животных: бактерии, простейшие и многоклеточные живые организмы. На дне копится все, что не успели съесть раньше. Сгущение живого вещества наблюдается в прибрежной зоне, где сходятся планктонная и донная пленки жизни.
Способствуют сгущению живого вещества и тропические леса. Причем биомасса почвенных животных в 4 раза выше, чем биомасса наземных обитателей. Основу почвенной зоомассы составляют дождевые черви. Они пропускают через себя весь почвенный пласт толщиной 1 м за 200 лет. Их биомасса в 10 раз больше человеческой.
По абсолютному количеству биомассы суша во много раз превосходит океан, однако накопление биогенного вещества на континентах не происходит. Высшие растения предпочитают строить свой каркас из лигнина, а не из карбоната кальция, как морские организмы. В результате после отмирания растений их остатки обычно полностью разлагаются.
Все живые организмы существуют только в форме популяций, т. е. совокупности особей одного вида, населяющих определенное пространство, внутри которого осуществляется та или иная степень обмена генетической информацией (панмиксия). Каждая популяция имеет определенные свойства: соотношение особей разного возраста, соотношение полов, размещение в виде колоний, семей, стай, численность и амплитуда ее колебаний. Свойства (структура) популяций определяются экологической нишей данного вида, соответствием условий места обитания (биотопа).
Между живой и неживой природой существует тесная энергетическая связь. Любой живой организм зависит от параметров окружающей среды, химического состава пищи. С другой стороны, например, атмосферный кислород, почва, минеральные ископаемые имеют биогенное происхождение. При этом живая природа формирует неживую, которая определяет ее жизнь.
Это свойство вещества обусловлено его движением по замкнутому кругу. Солнечная энергия трансформируется в другие виды энергии и запасается в виде энергии химических связей. Выделяют большой круговорот вещества и энергии (геологический) и малый (биологический), который непосредственно влияет на человека. Биологический круговорот заключается в непрерывном обмене веществом и энергией между организмом и средой в процессах возникновения и разрушения организмов (рождения и смерти). Элементарной структурной единицей биосферы считается биогеоценоз (экосистема) – совокупность живых организмов и косных компонентов (слой атмосферы, солнечная энергия, почва и др.) в их динамическом взаимодействии (обмен веществом и энергией).
Особо отметим энергетические потоки. Сегодня дополнительная энергия (помимо той, которая создается солнечной радиацией), возникающая по воле человека, составляет 10 млрд. кВт. Это столько же, сколько несет тепловой поток из недр Земли, хотя и существенно меньше потока солнечной энергии, устремленной к Земле, равной 1,23×105 млрд. кВт. Чтобы не причинять вред биосфере, величина дополнительной энергии не должна превышать 0,1 % от солнечной [26], т. е. не должна быть больше 123 млрд. кВт, значит, Едоп ≤ 123 млрд. кВт. При существующих темпах производства и потребления энергии в мире верхний предел Едоп земной энергетики, обусловленной температурой земной поверхности, прогнозируется достигнуть через 200 лет.
Важными в проблеме сохранения и потерь биосферы являются биотические факторы, представляющие собой совокупное влияние жизнедеятельности одних организмов на другие. Взаимоотношения между животными, растениями, микроорганизмами чрезвычайно разнообразны и включают прямые и косвенные связи. Первые характеризуются непосредственным воздействием одних организмов на другие; вторые проявляются в том, что одни живые организмы изменяют режим биотических факторов среды для других организмов. Роль биотических факторов в окружающей среде особенно заметна на примере человеческой деятельности. Горы Древней Греции, как известно из поэм Гомера, были покрыты густым лесом. Сейчас это голые скалы. Их травяной покров был вытоптан стадами домашних коз (из всех домашних животных они нарушают покров наиболее сильно).
В качестве другого примера может служить самая большая пустыня планеты – Сахара. Как показывает результаты бурения долины Нила, пустыни Сахары не существовало во время теплых промежутков между древними ледниковыми периодами. Скорее всего, и она результат деятельности человека, пасшего стада на непрочном травяном покрове. В настоящее время площадь Сахары увеличивается из-за уничтожения аборигенами тропических лесов.
Судьба Аральского моря, строительство плотин на равнинных реках, распашки целинных земель и многие другие факты антропогенного воздействия на окружающую среду убедительно свидетельствуют о роли биотических факторов в биосфере. Альбедо песчаных пустынь выше, чем альбедо участков, покрытых растительностью. В то же время сухость воздуха пустынь способствует их радиационному охлаждению. Поэтому пустыни (занимающие 6 % территории суши), в том числе Сахара, дополнительно охлаждают Землю. Напротив, лесонасаждения и орошение засушливых земель человеком положительно влияют на климат.
Воздействие человека на биосферу сводится к изменениям:
– структуры земной поверхности (распашка, вырубка леса, мелиорация, искусственные водоемы и др.);
– состава биосферы, круговорота и баланса слагающих ее веществ (изъятие ископаемых, выбросы веществ), вызывают глобальные изменения физико-химических параметров среды;
– энергетического баланса отдельных регионов Земли;
– живого мира (изменение биомассы, истребление животных, рыб, снижение генетического разнообразия вследствие того, что генные повреждения у 30 % особей популяции ведут к ее полной гибели).
1.2. Экологические факторы и их действие. Критические области
Экологический фактор — это состояние среды, характеризуемое параметром (свойством) и способное оказывать прямое или косвенное влияние на живые организмы, хотя бы на протяжении одной из фаз их индивидуального развития. К факторам неживой природы (абиотическим) относятся: свет, температура, влажность, давление, скорость потоков, возникающих в воздушной среде; механический состав, влажность, воздухопроницаемость и плотность почвы; рельеф, высота над уровнем моря; газовый состав воздуха, солевой состав воды, концентрация, кислотность и состав почвенных растворов. К факторам живой природы (биотическим) относятся: растительные и животные организмы, включая человека, вирусы, бактерии, грибы, риккетсии (неподвижные микроорганизмы) и другие простейшие микроорганизмы.
Любому живому организму необходимы не вообще температура, влажность, минеральные и органические вещества и прочее, а их определенный режим, т. е. существуют верхние и нижние границы допустимых изменений амплитуды этих факторов, представляющие область допустимых состояний Ωдоп, вне которой, т. е. в критической области Ωкр, жизнь данного организма невозможна. Чем шире допустимые пределы какого-либо фактора, тем выше устойчивость, т. е. толерантность данного организма. Американский ученый В. Шелфорд показал, что факторы, значения которых либо превосходят, либо меньше оптимальных для организма, называются лимитирующими, а соответствующее соотношение получило название закона «лимитирующего фактора» или «закона толерантности». Этот закон частично учитывается в мероприятиях по охране окружающей среды от загрязнения. Превышения нормы вредных веществ в воздухе, воде, почве представляют серьезную угрозу для живых организмов вообще и для здоровья людей в частности.
Динамичность экологических факторов во времени и пространстве, которая вырабатывается в процессе эволюции и естественного отбора и закрепляются на генетическом уровне, зависит от астрономических, климатических и геологических процессов, выполняющих управляющую роль по отношению к живым организмам и к областям Ωдоп и Ωкр.
Рассмотрим наиболее важные виды абиотических факторов.
Освещенность земной поверхности играет важную роль для всего живого. Организмы физиологически адаптированы к смене дня и ночи, к соотношению темного и светлого периода суток, обусловленного вращением Земли вокруг своей оси. Практически у всех живых организмов существуют суточные ритмы активности, связанные со сменой дня и ночи. Поэтому очевидно, что предлагаемые некоторыми учеными искусственные космические устройства для «экономного» освещения поверхности планеты требуют предварительной и тщательной экологической экспертизы.
Освещенность, т. е. световая мощность E на единицу площади, обратно пропорциональна квадрату расстояния r до источника света, и, кроме того, пропорциональна косинусу угла α между направлением на источник света и нормалью к площадке:
здесь SО = 1,36 кВт/м2 – солнечная постоянная (1 Вт/м2 = 679,6 лк); αО = const.
Расстояние до Солнца r в течение года меняется не очень значительно: при эксцентриситете 0,0167 перепад расстояний составляет 3,3 %. Это означает, что различие в освещенности Земли в целом между ее положениями в перигелии и афелии составляет почти 7 %. Это уже заметная величина, и ее необходимо учитывать при вычислении суммарной энергии, получаемой на различных широтах за день.
Поступающая от Солнца лучистая энергия является причиной того, что на нашей планете теплее по сравнению с космосом. Приравнивая потоки падающей на Землю солнечной энергии и отведенной от Земли обратно в космос, можно оценить температуру Т равновесного теплового излучения нашей планеты:
здесь ТО – температура поверхности Солнца; RО – радиус Солнца; аО – радиус земной орбиты; А — альбедо, или доля отраженной световой энергии, которую по данным спутниковых измерений можно принять равной 28 %.
Тепловое излучение Земли происходит в инфракрасной области. Для температуры Т = 257°К максимум теплового излучения приходится на длину волны λ = 11,3 мкм, которая в 22 раза больше максимальной длинны волны солнечного спектра. Заметим, что около 99 % всей энергии солнечной радиации приходится на лучи с длиной волны 0,17–4,0 мкм, в том числе 48 % приходится на видимую часть спектра с длиной волны 0,4–0,76 мкм, 45 % – на инфракрасную (длина волны от 0,75 мкм) и около 7 % – на ультрафиолетовую (длина волны менее 0,4 мкм). Преимущественное значение для жизни имеют инфракрасные лучи, а в процессах фотосинтеза наиболее важны оранжево-красные и ультрафиолетовые лучи.
Величина температуры Т = 257ºК является радиационной, она значительно ниже среднегодовой температуры умеренных широт Земли. Тепло в космос излучает, как правило, не сама земная поверхность, а атмосфера Земли, слой окружающего ее воздуха. Основные компоненты воздуха (азот, кислород и инертные газы) прозрачны в инфракрасном диапазоне длин волн. Однако углекислый газ и водяные пары, присутствующие в атмосфере в малых количествах, настолько сильно поглощают инфракрасное излучение, что именно они и определяют прозрачность земной атмосферы в инфракрасном свете, они же определяют и излучательные свойства нашей атмосферы. От изменяющейся влажности воздуха и от содержания углекислоты зависит та высота в атмосфере, где инфракрасное излучение покидает Землю и в конечном итоге определяет среднюю температуру земной поверхности.
Угол между направлением на Солнце и нормалью к поверхности Земли в данной точке сильно меняется и в течение дня, и день ото дня в течение года. Солнечная энергия, поступающая за сутки, является важнейшей характеристикой климата данной широты. Изменение ее со временем года диктует климатический ход смены сезонов.
Астрономическая теория колебаний климата была создана выдающимся югославским ученым М. Миланковичем в 20-е годы XX века. Эта теория дала возможность вычислить времена ледниковых периодов прошлого и предсказывать наступление следующих ближайших оледенений Земли. Дело в том, что эксцентриситет земной орбиты меняется под действием малых возмущений других планет. Он может достигать значений еmax = 0,0658. Поскольку в перигелии и афелии расстояние до Солнца равно аО(1 – е) и аО(1 + е) соответственно, а освещенность Земли солнечными лучами обратно пропорциональна квадрату расстояния, то в течение года поступающая на Землю солнечная мощность меняется.
Характерный период изменения эксцентриситета составляет около 100 тыс. лет. Кроме того, с периодом 26 тыс. лет прецессирует (меняет свой наклон подобно «волчку», теряющему движение) земная ось, и угол наклона оси Земли к плоскости эклиптики (плоскости земной орбиты) тоже колеблется с периодом в 41 тыс. лет. Поэтому условия освещенности нашей планеты Солнцем существенно изменяются на протяжении как раз таких периодов времени, которые по порядку величины близки временам смены ледниковых эпох.
Влажность атмосферного воздуха связана с величиной насыщения его парами воды. Наиболее богат влагой слой атмосферы до высоты 1,5–2,0 км, где концентрируется примерно 50 % всей влаги. Чем выше температура воздуха, тем больше в нем влаги. Однако для конкретной температуры воздуха существует определенный предел насыщения его парами воды, а разность между максимальным и данным насыщением называется дефицитом влаги или недостатком насыщения. Чем выше дефицит влаги, тем суше и теплее, и наоборот. На анализе динамики дефицита влаги основаны многие способы прогнозирования различных явлений в мире живых организмов.
Напомним, что пары воды не пропускают инфракрасное тепловое излучение поверхности Земли. Поэтому тепловую энергию в космос излучают верхние слои тропосферы, где паров воды уже меньше, – почти вся она сконденсировалась и вымерзла ниже, в облаках. На верхней границе облаков температура примерно равна радиационной температуре Земли (257ºК), и даже насыщенный водяной пар с плотностью, равной 1,27 г/м3, при этой температуре уже прозрачен для теплового излучения. Поэтому верхняя граница облаков определяется общим содержанием влаги в воздухе и проходит примерно там, где инфракрасная прозрачность насыщенного водяного пара атмосферы становится настолько малой, что пропускает тепловое излучение. К низу облака температура растет, и возрастает концентрация насыщенных паров. Поэтому на некоторой высоте температура становится достаточной для испарения всей капельной воды облака, его водность обращается в ноль. Нижняя граница облаков определяется «точкой росы», когда концентрация влаги равна концентрации насыщенного пара.
Мощная конвекция рождает тучу – грозовое кучевое облако, его обычная высота в средних широтах равна 7–10 км, а вблизи экватора она достигает 12–15 км. В тучах имеются восходящие и нисходящие потоки воздуха. Последние возникают за счет падающих льдинок и капель дождя. Осадки – это одно из звеньев в круговороте воды на Земле, причем в их выпадении прослеживается сильная неравномерность. Выделяют гумидные (влажные) и аридные (засушливые) зоны. Максимальное количество осадков выпадает в зоне тропических лесов (до 2000 мм/год), а в некоторых пустынях тропического пояса всего лишь 0,18 мм/год. Зоны с количеством осадков менее 250 мм/год считаются засушливыми (критическими для жизни).
Ветер. Как правило, мощная облачность располагается над теми местами, где давление у поверхности Земли низкое. Туда стремятся, закручиваясь кариолисовыми силами, поверхностные ветры, которые, в свою очередь, обусловлены разной степенью прогрева земной поверхности. В центре такого циклона воздух поднимается вверх и, охлаждаясь, образует облака. В верхних слоях атмосферы над областью пониженного давления, напротив, давление атмосферного воздуха выше среднего, характерного для данной высоты. В верхней тропосфере воздух, гонимый избыточным давлением, расходится от центра циклона.
Антициклоном называется область повышенного атмосферного давления у поверхности Земли. В антициклоне сухой воздух опускается из верхней тропосферы, поэтому над теми местами, где находится антициклон, безоблачное, ясное небо. Циклоны и антициклоны имеют размеры до 3000 км в поперечнике и среднее время жизни около недели.
Есть на Земле один постоянный циклон, и летом, и зимой стоящий около Исландии. Он рождается встречей теплых вод Гольфстрима с холодным полярным воздухом. Над всей Исландией всегда облачное небо. В нашей стране зимой погоду во многом определяет Сибирский антициклон. Главную роль в его формировании играют Гималаи, не пропускающие на север влажный воздух Индийского океана.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?