Электронная библиотека » Яков Перельман » » онлайн чтение - страница 3


  • Текст добавлен: 6 июля 2014, 11:33


Автор книги: Яков Перельман


Жанр: Учебная литература, Детские книги


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 17 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Легко ли сломать яичную скорлупу?

Если вы думаете, что яичная скорлупа очень хрупкая и нежная вещь, то попробуйте раздавить яйцо между ладонями, напирая на его острые концы. Вам удастся это далеко не так легко, как вы воображаете: нужно немалое усилие, чтобы сломить скорлупу при подобных условиях.

Столь необычайная крепость яичной скорлупы зависит исключительно от его выпуклой формы и объясняется совершенно так же, как и прочность всякого рода сводов и арок.

На прилагаемом чертеже (рис. 17) изображен разрез небольшого каменного свода над окном. Груз S (т. е. вес вышележащих частей кладки), напирающий на клинообразный средний камень свода, давит вниз с силою, которая обозначена на чертеже стрелкой А. Но сдвинуться вниз камень не может, вследствие своей суживающейся формы, – и он давит на соседние камни. Другими словами, сила А разлагается, по правилу параллелограмма, на две боковые силы, обозначенные стрелками С и В; силы эти уничтожаются сопротивлением прилегающих камней, в свою очередь зажатых между соседними. Таким образом, сила, давящая на свод снаружи, не может его разрушить. Зато сравнительно легко разрушить его силой, действующей изнутри. Это и понятно, так как клинообразная форма камней, мешающая им опускаться, нисколько не мешает им подниматься.


Рис. 17. Причина прочности свода.


Скорлупа яйца есть тот же свод, только сплошной, а не составленный из отдельных частей. При давлении снаружи он разрушается далеко не так легко, как можно бы ожидать от такого хрупкого материала. Теория доказывает, что наибольшее сопротивление давлению оказывает свод не строго полушаровидный, а именно такой формы, как выпуклость на остром конце яйца. Можно поставить ножки довольно тяжелого стола на четыре сырых яйца, и последние не раздавятся. (Для устойчивости яиц и увеличения площади давления надо снабдить яйца гипсовыми расширениями на концах; гипс легко пристает к известковой скорлупе.)

Теперь вы понимаете, почему наседке не приходится опасаться сломить скорлупу яиц тяжестью своего тела. И в то же время, слабый птенчик, желая выйти из своей природной темницы, без труда пробивает скорлупу клювиком: тонкий известковый свод не может противостоять давлению изнутри.

С легкостью разламывая скорлупу яйца боковым ударом, мы и не подозреваем, как прочна она, когда сила действует на нее при естественных условиях, и какой надежной броней природа защитила развивающееся в ней живое существо.

Загадочная, почти чудесная прочность электрических лампочек, казалось бы столь нежных и хрупких, объясняется совершенно так же, как и прочность яичной скорлупы. Их необыкновенная крепость станет еще поразительнее, если вспомним, что они почти абсолютно пусты, и давлению внешнего воздуха ничто не противодействует изнутри; между тем, на пористую стенку куриного яйца атмосферное давление, конечно, не оказывает никакого влияния. А величина давления воздуха на электрическую лампочку весьма не мала. Шарообразная лампочка, поперечником, например, в 20 сантиметров, имеет поверхность в 1 260 см². На каждый сантиметр, как известно, воздух давит с силою 1 килограмма: эта дает на всю лампочку давление 1 260 килограммов, или 75 пудов! Вот какое огромное давление непрерывно выдерживает тонкая стеклянная пленка электрической лампочки! Достаточно четвертой части этого давления, чтобы, действуя изнутри, разнести лампочку вдребезги.

На парусах против ветра

Для всякого не моряка представляется непостижимым, как могут парусные суда идти «против ветра». Правда, моряк скажет вам, что прямо против ветра на парусах идти нельзя, а можно двигаться под очень острым углом к направлению ветра. Но угол этот так мал (12°), что представляется, пожалуй, одинаково непонятным – плыть ли прямо против ветра, или под углом к нему в 12°.

Для теории это, однако, небезразлично, и мы сейчас объясним, каким образом можно силою ветра идти навстречу ему под небольшим углом. Сначала рассмотрим, как вообще действует ветер на парус, т. е. куда он толкает парус, когда дует на него в каком-либо направлении. Если вы не моряк, то, вероятно, думаете, что ветер всегда толкает парус в ту сторону, куда дует. Но это не так: куда бы ни дул ветер, он толкает парус перпендикулярно к его плоскости. В самом деле: пусть ветер дует в направлении, указанном стрелками на рис. 18; линия АВ обозначает парус. Так как ветер напирает равномерно на всю поверхность паруса, то мы можем заменить давление ветра силой R, приложенной к середине паруса. Эту силу мы разложим на две: силу Q, перпендикулярную к парусу, и силу Р, направленную вдоль него. Последняя сила будет скользить по парусу, не толкая его, так как трение ветра о полотно очень незначительно. Остается только сила Q, которая толкает парус в перпендикулярном к нему направлении.


Рис. 18. Почему ветер всегда толкает парус под прямым углом к его плоскости.


Итак, под каким бы углом к парусу ни дул ветер, он во вся́ком случае напирает под прямым углом к парусу.

Зная это, мы уже без труда поймем, как может парусное судно идти под очень острым углом навстречу ветру. Пусть линия KK (рис. 19) изображает килевую линию судна. Ветер дует под острым углом к этой линии в направлении, указанном рядом стрелок. Линия АВ изображает парус; его помещают так, чтобы плоскость его делила пополам угол между направлением киля и направлением ветра. Проследите на рис. 19 за разложением сил. Напор ветра на парус мы изображаем силой Q, которая, как мы знаем, должна быть перпендикулярна к парусу. Силу эту разложим на две: силу R, перпендикулярную к килю, и силу S, направленную вперед, вдоль килевой линии судна. Так как движение судна в направлении R вызывает сильное сопротивление воды (киль в парусных судах делается очень глубоким), то сила R почти полностью уничтожается; остается одна лишь сила S, которая, как видите, направлена вперед, а следовательно, подвигает судно под углом, как бы навстречу ветру.


Рис. 19. Разложение сил, объясняющее, почему возможно идти на парусах против ветра.


Рис. 20. «Лавирование» парусного судна.


Моряки заметили, что наименьшая величина угла ВРS, под которым можно идти против ветра, равна 11–12 градусам. Из чертежа видно, что скорость такого движения против ветра очень невелика (в сравнении с силою ветра), так как при этом используется лишь часть полного напора ветра на паруса. Но как бы то ни было, идти против ветра можно. Обыкновенно это движение выполняется зигзагами, как показывает рис. 20. На языке моряков такое движение судна называется «лавированием».

Мог ли Архимед поднять Землю?

«Дайте мне точку опоры – и я подниму всю Землю», – сказал, если верить преданию, Архимед, когда открыл закон рычага. И действительно, нет такой тяжести, которую нельзя было бы поднять самой слабой силой, если воспользоваться рычагом: стоит только приложить эту силу к очень длинному плечу рычага, а короткое плечо заставить действовать на груз. Поэтому может показаться, что Архимед был вполне прав в своем смелом утверждении: напирая на чрезвычайно длинное плечо рычага, он мог бы силою своих рук поднять тяжесть, равную весу всего земного шара.

Но если бы великий механик древности знал, как огромен вес земного шара, он, вероятно, воздержался бы от своего горделивого восклицания. Вообразим на мгновение, что ему дана та точка опоры, которую он так тщетно искал; вообразим далее, что он изготовил рычаг нужной длины. Знаете ли, сколько времени понадобилось бы ему, чтобы поднять земной шар хотя бы на один дюйм? Десять биллионов лет! Сто тысяч миллионов веков!..

В самом деле, Земля весит круглым числом – 365.000.000.000.000.000.000.000 пудов.


Рис. 21. Архимед поднимает Землю. (Из старинного сочинения по механике.)


Если человек может прямо поднять только пять пудов, то чтобы поднять Землю, ему понадобится приложить свои руки к длинному плечу рычага, которое больше короткого в 73.000.000.000.000.000.000.000 раз!

Простой расчет убедит вас, что пока конец короткого плеча поднимется на 1 дюйм, другой конец опишет во вселенной огромную дугу в 1.740.000.000.000.000.000 верст!

Вот какой невообразимо длинный путь должна была бы пройти рука Архимеда, чтобы поднять земной шар только на один дюйм. Сколько же времени понадобилось бы ему для совершения этого подвига? Считайте, что он способен в секунду поднять пятипудовую гирю на одну сажень; тогда, чтобы пройти путь в 1.740.000 биллионов верст и тем поднять нашу планету на один дюйм, ему понадобилось бы не менее десяти биллионов лет!

Следовательно, если бы даже Архимед налегал на рычаг целый миллион лет, он не поднял бы Землю даже на толщину волоса. И если бы рука Архимеда пробегала этот путь с самой большой скоростью, какую только мы наблюдаем в природе, именно – со скоростью света (280.000 верст в секунду), то и тогда понадобилось бы полтораста тысяч лет, чтобы поднять Землю на один дюйм! За всю свою жизнь Архимед даже при такой фантастически быстрой работе не успел бы поднять земной шар на сотую долю толщины волоса…

И никакие ухищрения гениального ученого не помогли бы ему сократить этот срок. «Золотое правило механики» гласит, что на всякой машине выигрыш в силе неизбежно сопровождается соответствующей потерей в скорости, т. е. во времени.

Жюль-верновский силач и – формула Эйлера

Вы помните у Жюля Верна силача-атлета Матифу? «Великолепная голова, пропорциональная исполинскому росту; грудь, похожая на кузнечный мех; ноги, как хорошие бревна; руки – настоящие подъемные краны, с кулаками, похожими на молоты»… Вероятно, из всех подвигов этого силача, описанных в романе «Матиас Сандорф», вам более других памятен поразительный случай со спуском судна «Trabocolo», когда гигант Матифу силою своих могучих рук задержал спуск целого корабля.

Вот как рассказывает романист об этом подвиге:

«Судно, освобожденное уже от подпорок, которые поддерживали его по бокам, было готово к спуску. Хотя оно имело не более 50 тонн водоизмещения, но представляло значительную массу, вследствие чего нужно было принять все необходимые предосторожности. Все уже было готово и приспособлено для спуска, ожидали только сигнала. Достаточно было отнять швартов[14]14
  Швартов – трос или цепь, предназначенные для подтягивания и удержания судна у причала, у рейдовой бочки или у другого судна. Число швартовых, их толщина и длина зависят от размеров судна и условий стоянки. – Прим. изд.


[Закрыть]
, чтобы судно начало скользить вниз. Уже с полдюжины плотников возилось под килем судна, стараясь приподнять его, покачнуть и направить его путь к морю. Среди всеобщей тишины зрители с живым любопытством следили за операцией. В этот момент, обогнув береговой выступ, который прикрывает с юга порт Гравозу, появилась увеселительная яхта. Чтобы войти в порт, яхта должна была пройти перед верфью, где подготовлялся спуск «Trabocolo», и как только она подала сигнал, пришлось, во избежание всяких случайностей, задержать спуск, чтобы снова приняться за дело после прохода яхты в канал. Если бы суда, – одно, стоявшее поперек, другое, подвигающееся с большой быстротой, – столкнулись, яхта погибла бы.

Рабочие перестали стучать молотками, а один из них, который должен был отнять швартов, получил приказание подождать. Все взоры были устремлены на грациозное судно, белые паруса которого казались позолоченными в косых лучах солнца. Скоро яхта очутилась как раз против верфи, где замерла тысячная толпа любопытных. Вдруг раздался крик ужаса: «Trabocolo» закачалось и пришло в движение в тот самый момент, когда яхта повернулась к ней штирбортом[15]15
  Штирборт и старборд [нем. Steuerbord] (мор.). – Правый борт судна. – Прим. изд.


[Закрыть]
! Оба судна готовы были столкнуться; не было ни времени, ни возможности помешать этому столкновению. В ответ на испуганные крики зрителей раздался крик экипажа яхты. Тем временем «Trabocolо» быстро скользило вниз по наклону… Белый дымок, появившийся вследствие трения, закрутился перед его передней частью, тогда как корма погрузилась уже в воду бухты (судно спускалось кормой вперед).

Вдруг появляется человек, схватывает швартов, висящий у передней части «Trabocolo», и старается удержать его, пригнувшись к земле. В одну минуту он наматывает швартов на вбитую в землю железную тумбу и, рискуя быть раздавленным, держит с нечеловеческой силой в руках канат в продолжение 10 секунд. Наконец, швартов обрывается. Но этих 10 секунд было достаточно: «Trabocolo», погрузившись в воду, только слегка задело яхту и пронеслось вперед.

Яхта была спасена. Что касается человека, которому никто не успел даже прийти на помощь – так быстро и неожиданно все это произошло, – то это был Матифу».

* * *

Легко представляю себе, как изумился бы талантливый автор «Матиаса Сандорфа», если бы ему сказали, что для совершения подобного подвига не нужно вовсе быть великаном и обладать, как Матифу, «силою тигра»: каждый находчивый человек, при самой обыкновенной силе мышц, мог бы без труда сделать то же самое!

Механика учит, что при скольжении каната, обвитого на тумбе, трение возрастает в сильнейшей степени. Чем большее число раз навить канат, тем трение больше; правило возрастания трения таково, что с увеличением числа завитков в арифметической прогрессии трение растет в геометрической прогрессии. Поэтому даже слабый ребенок, держа за свободный конец каната, 3–4 раза навитого на неподвижный вал, может уравновесить огромную тяжесть. Подростки, служащие на речных пароходных пристанях, именно этим приемом останавливают подходящие к пристаням пароходы с сотней пассажиров. Помогает им здесь не феноменальная сила их рук, а изученная знаменитым Эйлером зависимость величины трения от числа оборотов веревки вокруг столба.

Для тех из читателей, которых не пугает сжатый язык алгебраических выражений, приводим здесь эту поучительную формулу Эйлера:

F = fе.

Здесь F – та сила, против которой направлено наше усилие f. Буквой e обозначено основание натуральных логарифмов, которое равно 2,718…; k – коэффициент трения между канатом и тумбой. Буквой α обозначен «угол навивания», т. е. отношение длины дуги, охваченной веревкой, к радиусу этой дуги.

Попробуем применить эту формулу к тому случаю, который описан у Жюля Верна. Результат получится поразительный. Силой F в данном случае является сила тяги судна, скользящего по доку. Вес судна нам известен: 50 тонн, т. е. 3000 пудов. Пусть наклон дока 1/10; тогда на канат действовал не полный вес судна, а 1/10 его, т. е. 300 пудов. Итак, F=300 пудов.

Далее, величину k – коэффициента трения каната о железную тумбу – будем считать равной 1/3. Величину α легко определим, если примем, что Матифу обвил канат вокруг тумбы всего три раза. Тогда:

α = 3×2πr/r = 6π.

Подставив все эти значения в приведенную выше формулу Эйлера, получим уравнение:

300 = 2,7186π 1/3 = 2,718.

Неизвестное f (т. е. величину необходимого усилия) можно определить из этого уравнения, прибегнув к помощи логарифмов:

lg300 = lg f + 2π lg2,718;

откуда:

f = 0,6 пуда = 24 фунта[16]16
  Фунт – единица измерения массы; 1 фунт = 0,454 кг. – Прим. изд.


[Закрыть]
.

Итак, великану Матифу, чтобы совершить свой подвиг, достаточно было тянуть канат с силою всего 24 фунтов!

Не думайте, что эта цифра – 24 фунта – только теоретическая и что на самом деле потребуется гораздо большее усилие. Напротив, у нас получился результат даже чересчур значительный: при пеньковой[17]17
  Пенька – прядильное волокно из стебля конопли. Из пеньки делают канаты и шпагат. – Прим. изд.


[Закрыть]
веревке и деревянной свае усилие потребуется до смешного ничтожное. Лишь бы веревка была достаточно крепка и могла выдержать натяжение, – тогда даже ребенок, благодаря формуле Эйлера, мог бы, навив веревку 3–4 раза, не только повторить подвиг жюль-верновского исполина, но и превзойти его.

От чего зависит крепость узлов?

В обыденной жизни мы часто пользуемся той выгодой, на которую указывает нам формула Эйлера. Что такое, например, любой узел, как не бечевка, навитая на валик, роль которого в данном случае играет другая часть той же бечевки? Крепость всякого рода узлов – обыкновенных, «беседочных», «морских», – всякого рода завязок, бантов и т. п. зависит исключительно от трения, которое здесь усиливается во много раз вследствие того, что шнурок обвивается вокруг самого себя, как веревка вокруг тумбы. В этом не трудно убедиться, если проследить за изгибами шнурка в узле. Чем больше этих изгибов, чем больше раз бечевка обвивается вокруг самой себя – тем больше «угол навивания» в формуле Эйлера, а следовательно, тем крепче узел.

Бессознательно пользуется формулой Эйлера и портной, когда пришивает пуговицу. Он много раз обматывает нить вокруг захваченного стежком участка сукна и затем обрывает нить. За прочность шитья он может быть спокоен: если только нитка крепка, пуговица не отпорется. Здесь применяется уже знакомое нам правило: с увеличением числа оборотов нитки в арифметической прогрессии крепость шитья возрастает в геометрической прогрессии.

Если бы не было трения, мы не могли бы связать двух бечевок или завязать шнурки ботинок; не могли бы мы пользоваться и пуговицами: нитки размотались бы под их тяжестью, и наш костюм остался бы без единой пуговицы.

Глава третья
Вращательное движение. Центробежная сила

Почему не падает вращающийся волчок?

Без преувеличения можно сказать, что из тысячи людей, забавлявшихся в детстве верчением волчка, едва ли хоть один сможет правильно ответить на этот вопрос. В самом деле: не странно ли, что вращающийся волчок, поставленный вертикально или даже наклонно, не опрокидывается вопреки всяким ожиданиям? Какая сила удерживает его в таком, казалось бы, неустойчивом положении? Разве тяжесть не действует на этот маленький предмет?

Конечно, никакого исключения из законов природы для волчка не делается. Здесь имеет место лишь чрезвычайно любопытное взаимодействие сил.


Рис. 22. Почему волчок не падает?


На рис. 22 изображен волчок, вращающийся в направлении черных стрелок. Обратите внимание на часть А впереди волчка и на часть В, диаметрально противоположную ей. Часть А стремится двигаться справа налево, не падает? часть В – слева направо. Теперь проследите, какое движение получают эти части, когда вы толкаете ось волчка от себя. Таким толчком вы заставляете часть А двигаться вверх, часть В – вниз, т. е. обе части получают толчок под прямым углом к их собственному движению. Но так как при быстро вращающемся волчке первоначальная скорость частей диска очень велика, то вполне понятно, что волчок как бы сопротивляется попытке опрокинуть его. Чем массивнее волчок и чем быстрее он вращается, тем упорнее сопротивляется он опрокидыванию.

Итак, мы уже знаем, какая причина мешает волчку опрокинуться, несмотря на то, что он находится, казалось бы, в неустойчивом положении. Это хорошо знакомая нам инерция – основное свойство материи, состоящее в том, что всякая материальная частица стремится сохранять неизменным направление своего движения. Мы не будем рассматривать здесь всех движений волчка, которые возникают при действии на него посторонней силы. Это потребовало бы очень подробных объяснений, которые, пожалуй, покажутся скучными большинству читателей. Мы хотели лишь разъяснить причину основного стремления всякого вращающегося тела – сохранять неизменным направление оси вращения. Этим свойством объясняется целый ряд явлений, с которыми мы сталкиваемся в обыденной жизни. Самый искусный велосипедист ни минуты не усидел бы на своем стальном коне, если бы быстро вращающиеся колёса не стремились сохранять горизонтальность своих осей: ведь колёса – те же волчки, только оси их не вертикальны, а горизонтальны. И вот почему так трудно ехать на велосипеде медленно: колёса перестают быть волчками. Ребенок, катящий свой обруч, бессознательно пользуется тем же свойством вращающихся тел: пока обруч находится в быстром вращении, он не падает. Игра с диаболо[18]18
  Диаболо (от итал. diabolo – перекидывать через что-либо) – игра, пришедшая в Средние века в Италию от китайских циркачей, когда раскручивают на веревке и высоко подкидывают предмет, напоминающий две склеенные донышками пиалы. В Китае этот предмет изначально назывался коуэн-ген и изготавливался из бамбука. В наши дни диаболо делают из двух каучуковых полусфер, скрепленных между собой коротким стальным сердечником. Получившийся агрегат раскручивают на веревке, закрепленной между двух палочек. После пары движений диаболо раскручивается и приобретает небывалые аэродинамические свойства, превращаясь в маленькое НЛО, которое можно лихо подбрасывать метров на пять и ловить все на ту же веревку то за спиной, то под ногой. – Прим. изд.


[Закрыть]
целиком основана на том же принципе: сначала мы с помощью бечевки приводим двойной конус диаболо в быстрое вращательное движете и затем кидаем его высоко вверх; но, летя вверх и падая затем вниз, вращающийся диаболо не перестает сохранять горизонтальность оси вращения – вот почему его так легко поймать на вытянутую бечевку, снова подкинуть, вновь поймать и т. д. Если бы диаболо не вращался, все это было бы неисполнимо даже для самого искусного жонглера.


Рис. 23. Диаболо легко поймать только потому, что он во время взлета и падения не перестает вращаться.


Искусство жонглеров

Кстати о жонглерах: почти все удивительнейшие «номера» их разнообразной программы основаны опять-таки на стремлении вращающихся тел сохранять направление оси вращения. Позволю себе привести здесь выписку из увлекательной книги современного[19]19
  Книга была издана в 1913 году. – Прим. изд.


[Закрыть]
английского физика, проф. Джона Перри «Вращающийся волчок»:

«Однажды я показывал некоторые из моих опытов перед публикой, пившей кофе и курившей табак в великолепном помещении концертной залы «Виктория» в Лондоне. Я старался заинтересовать моих слушателей, насколько мог, и рассказывал о том, что плоскому кольцу надо сообщить вращение, если его желают бросить так, чтобы можно было наперед указать, куда оно упадет; точно так же поступают, если хотят кому-нибудь бросить шляпу так, чтобы он мог поймать этот предмет палкой. Всегда можно рассчитывать на сопротивление, которое оказывает вращающееся тело, когда изменяют направление его оси. Далее я объяснял моим слушателям, что, отполировав гладко дуло пушки, никогда нельзя рассчитывать на точность прицела; что вращение, в которое приходит обыкновенное ядро, зависит прежде всего от того, каким образом ядро коснется отверстия пушки в момент, когда оно из нее вылетает; вследствие этого теперь делают нарезные дула, т. е. вырезывают на внутренней стороне дула пушек спиралеобразные желоба, в которые приходятся выступы ядра или снаряда, так что последний должен получить вращательное движение, когда сила взрыва пороха заставляет его двигаться по дулу пушки. Благодаря этому снаряд покидает пушку с точно определенным вращательным движением, относительно которого не может возникнуть никакого сомнения». Рис. 26 указывает на вид движения, которое затем совершает снаряд: совершенно так же, как у шляпы или кольца, его ось вращения остается почти параллельной сама себе.


Рис. 24. Вращающиеся волчок и монета при подбрасывании сохраняют в пространстве свое первоначальное положение; монета же, подброшенная без вращения, не сохраняет первоначального положения.


«Это было все, что я мог сделать во время этой лекции, так как я не обладаю ловкостью в метании шляп или дисков. Но после того, как я закончил свою лекцию и затем молодая дама пропела комическую песню, на подмостки выступили два жонглера, господин и дама, и я не мог пожелать лучшей иллюстрации упомянутых выше законов, нежели та, которую давал каждый отдельный фокус, показанный этими двумя артистами. Они бросали друг другу вращающиеся шляпы, обручи, тарелки, зонтики… Один из жонглеров бросал в воздух целый ряд ножей, ловил их опять и снова подбрасывал с большой точностью вверх; моя аудитория, только что, прослушав объяснение этих явлений, ликовала от удовольствия и обнаруживала самым явным образом, что она замечала вращение, которое жонглер сообщал каждому ножу, выпуская его из руки, так что он мог наверное знать, в каком положении нож снова вернется к нему. Я был тогда поражен, что почти все без исключения жонглерские фокусы, показанные в тот вечер, представляли иллюстрацию изложенного выше принципа».


Рис. 25. Если вы хотите подбросить шляпу так, чтобы удобно было ее поймать – сообщите ей вращение (вокруг вертикальной оси).


Рис. 26. Ядро, вылетевшее из нарезного канала пушки, вращается вокруг своей продольной оси (АА) и поэтому во все время полета остается параллельным самому себе.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 4.8 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации