Текст книги "Медицинская биология: конспект лекций для вузов"
Автор книги: Жанна Ржевская
Жанр: Медицина, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 13 (всего у книги 14 страниц)
Вопрос 80. Генные мутации как причина наследственных болезней
1. Наследственные аномалии
В общей сложности примерно у 4 % новорожденных проявляются отчетливые симптомы наследственных аномалий, являющихся результатом разнообразных мутаций. Надо учитывать, что действие радиации, химических мутагенных факторов, а возможно и вирусов ведет к последующему увеличению числа мутаций. Наследственные заболевания могут возникнуть при изменениях в строении хромосом половых или соматических клеток, а также наследственных структур на молекулярном уровне.
Среди так называемых молекулярных болезней особенно часто встречаются наследственные нарушения процессов обмена веществ. Нарушение синтеза белков является причиной многих наследственных аномалий.
2. Мутирование гена
Мутирование гена, обеспечивающего синтез определенного белка-фермента, необходимого для осуществления той или иной тканевой реакции, приводит к нарушению последней. Например, для нормального метаболизма аминокислоты фенилаланина необходимо присутствие специфического фермента, под влиянием которого фенилаланин окисляется в другую кислоту – тирозин.
Мутация, которая приводит к появлению рецессивного гена, блокирующего образование фермента, хорошо известна. Если этот мутировавший ген находится гомозиготном состоянии, необходимый фермент не образуется и окисление фенилаланина в тирозин становится невозможным. Вместо этого фенилаланин превращается в кислоту, которая, накапливаясь в крови, выделяется с мочой. Нарушение нормального метаболизма фенилаланина приводит к развитию наследственного заболевания – фенилкетонурии, характеризующейся развитием умственной отсталости.
3. Серповидноклеточная анемия
По такому же принципу мутации могут блокировать обмен многих других белков и ферментов, необходимых для развития человека. Как уже говорилось, при болезни, именуемой серповидноклеточной анемией, эритроциты в венозной крови имеют своеобразную серповидную форму. Строение гемоглобина в таких эритроцитах также аномальное. Он обладает меньшей, чем обычно, растворимостью, из-за чего выпадает в осадок и деформирует клетку, придавая ей серповидность. Выпадение гемоглобина может стать причиной разрушения клетки и выделения гемоглобина с мочой, т. е. гемоглобинурии.
Серповидноклеточная анемия контролируется доминантным геном, проявляющимся в гетерозиготном состоянии. Гомозиготы по этому доминантному гену погибают в раннем детском возрасте (от 3 месяцев до 2 лет). Серповидноклеточная анемия распространена в ряде районов земного шара, сильно пораженных малярией. Концентрация этого летального гена в ряде стран объясняется тем, что гетерозиготы, обладающие аномальными эритроцитами, не болеют малярией и, следовательно, в течение многих веков выживали чаще, чем лица, не имеющие этого гена.
Вопрос 81. Генокопии и фенокопии в патологии человека. Критика представлений о фатальности наследственных заболеваний. Евгенетика
1. Природа генокопий
Ряд сходных по внешнему проявлению признаков, в том числе и наследственных болезней, может вызываться различными неаллельными генами. Такое явление называется генокопией. Биологическая природа генокопий заключается в том, что синтез одинаковых веществ в клетке в ряде случаев достигается различными путями.
В наследственной патологии человека большую роль играют также фенокопии – модификационные изменения. Они обусловлены тем, что в процессе развития под влиянием внешних факторов признак, зависящий от определенного генотипа, может измениться; при этом копируются признаки, характерные для другого генотипа.
2. Природа фенокопий
В развитии фенокопий могут играть роль разнообразные факторы среды – климатические, физические, химические, биологические и социальные. Врожденные инфекции (краснуха, токсоплазмоз, сифилис) также могут стать причиной фенокопий ряда наследственных болезней и пороков развития. Существование гено– и фенокопий нередко затрудняет постановку диагноза, поэтому существование их врач всегда должен иметь в виду.
3. Исправление патологического фенотипа
Представление о фатальности наследственных заболеваний следует признать ошибочными. Естественно, говорить о возможности радикального исправления патологии гена преждевременно. Однако борьба с проявлением наследственных аномалий (т. е. исправление патологического фенотипа) уже сейчас становится реальностью. Необходимо знать, что при раннем распознавании наследственного дефекта, правильной диагностике и лечении в ряде случаев удается добиться полной нормализации развития. Для этого необходимо разрабатывать и внедрять в практику методы ранней диагностики наследственных заболеваний.
4. Ранняя диагностика наследственных заболеваний
Уже существует, например, очень простой и удобный метод ранней диагностики фенилкетонурии, заключающийся в прикладывании реактивного карандаша к влажным пеленкам новорожденного. Раннее выявление болезни позволяет своевременно назначить специфическую диету больным детям и тем самым предотвратить необратимые изменения центральной нервной системы.
Успешное избавление от наследственной патологии можно показать также на примере лечения галактоземии. Это заболевание обусловлено мутацией гена, программирующего выработку фермента галактозы, без которого усвоение сахара, содержащегося в молоке, становится невозможным. Галактоза появляется в крови. У детей поражаются печень и другие органы, возникают психические нарушения, развивается картина тяжелого наследственного заболевания. Если же сразу после рождения ребенка удается диагностировать это заболевание, можно полностью предупредить тяжелые клинические проявления, исключив из диеты новорожденного молоко.
При наследственной болезни Вильсона, передающейся с рецессивным геном, наблюдаются одновременно дегенерация некоторых участков в коре головного мозга, перерождение нормальных клеток печени, образование своеобразного пигментированного кольца на роговой оболочке глаза, накопление меди в пораженных органах. Для лечения этой патологии используется введение группы соединений, способных быстро связывать медь, которая затем выводится из организма.
5. Специальные тесты
Ряд наследственных заболеваний может развиться лишь в зрелом или пожилом возрасте. Но у лиц с отягощенной наследственностью реакции на внешние воздействия отклоняются от нормы с самого раннего возраста. В соответствии с этими особенностями разработаны тесты, которые во время профилактических осмотров позволяют выявлять лиц, предрасположенных к наследственным заболеваниям. Необходимо брать их на диспансерный учет и проводить надлежащие профилактические мероприятия.
Так, у лиц, предрасположенных к гипертонической болезни, обнаруживается повышенная чувствительность к температурным и эмоциональным раздражителям, вызывающим спазм кровеносных сосудов.
Повышенная чувствительность к глюкозе говорит о предрасположении к диабету, увеличение содержания мочевой кислоты в моче – о возможности заболеть со временем подагрой и т. д.
6. Евгенетика
Термин «евгеника» был предложен Ф. Гальтоном в 1883 г. Ф. Гальтон считал задачей евгеники поощрение желательных браков и ограничение нежелательных.
Сторонники реакционных взглядов в ряде капиталистических стран дискредитировали евгенику, положив ее в основу представления о существовании высших и низших рас и национальностей, об умственном превосходстве господствующих классов. Передовые генетики всегда выступали против использования евгеники в политических целях.
Следует помнить, что наследственность у человека проявляется по биологическим законам. В нашей стране в связи с этим существует евгеническое законодательство, по которому не разрешается вступление в брак лицам, признанным слабоумными, или психически больным.
Большое значение в профилактике наследственных болезней приобретают медико-генетические консультации. Они дают рекомендации по предупреждению развития наследственной патологии лицам с отягощенной наследственностью. В тех случаях, когда в семье уже есть ребенок с наследственным пороком, врач-консультант должен объяснить, что брак не предоставляет опасности для потомков, либо рекомендовать воздержаться от вступления в брак.
Вопрос 82. Основные закономерности эмбрионального развития. Взаимоотношения внешнего и внутреннего в онтогенезе
1. Характеристика онтогенеза
Онтогенез – это полный цикл индивидуального развития каждой особи, в основе которого лежит реализация наследственной информации на всех стадиях развития; он начинается образованием зиготы и заканчивается смертью.
Под филогенезом подразумевается исторический процесс возникновения и развития вида.
Взаимоотношения внешнего и внутреннего в онтогенезе. Известно, что организм развивается не из бесструктурного вещества. Яйцо представляет собой особую специализированную клетку, сложившуюся в процессе эволюции органического мира. Подобно тому как структура каждой клетки тела приспособлена к выполнению определенных функций, структура половых клеток обеспечивает возможность развития зародыша.
У каждого вида животных и растений половые клетки несут определенную генетическую информацию. Однако развитие особи совершается не в пустоте. С самых ранний стадий развития новый организм находится в окружении внешней по отношению к нему среде, с которой он связан путем обмена. Следовательно, с самого начала развития деятельность генов в клетках находится в тесной зависимости от условий среды. Для ядер бластомеров непосредственной средой является цитоплазма, для бластомеров – соседние бластомеры, для закладок органов – организм матери и опосредованные им условия природной среды.
2. Факторы
Среди факторов среды различают биологические и абиологические. Под биологическими факторами понимают взаимодействие живых организмов. Абиологические факторы – это факторы неживой природы (климат и пр.).
Факторы могут быть постоянными или временными. Однако даже при кратковременном воздействии они могут оказать весьма существенное влияние на развитие организма.
Онтогенез представляет собой последовательное развитие, при котором ранее образовавшиеся структуры обусловливают развитие последующих, причем и эта тенденция проявляется в единстве с условиями среды. При одном и том же генотипе развиваются различные фенотипические особенности. Однако совершенно очевидно, что в фенотипе не может быть ни одного признака, который не был бы обусловлен генотипом. Из этого вытекает, что именно противоречивое единство внутренних и внешних факторов определяет развитие организма.
3. Проэмбриональный период
В онтогенезе различают два периода – эмбриональный и постэмбриональный. Для высших животных и человека принято деление на пренатальный, или антенатальный (до рождения), период и постнатальный период (после рождения). Предложено также выделять проэмбриональный период, предшествующий образованию зиготы.
Проэмбриональный период развития связан с образованием гамет (гаметогенез). Процессы, характеризующие овуляцию, приводят к образованию гаплоидного набора хромосом и формированию сложных структур в цитоплазме. В яйцеклетках происходит накопление желтка. В зависимости от количества желтка и характера его распределения различают яйца трех основных типов: изолецитальные, телолецитальные и центролецитальные.
Изолецитальные яйца содержат незначительное количество желтка, который распределен равномерно по всей клетке. Телолецитальные яйца содержат большое количество желтка, сосредоточенного на одном из ее полюсов – вегетативном.
Противоположный полюс, содержащий ядро и цитоплазму без желтка, называется анимальным. В центролецитальных яйцах желток находится в центре клетки, а цитоплазма расположена по периферии.
В проэмбриональном периоде развития в яйце накапливается рибосомальная и матричная РНК, а также образуется ряд структур. Многие из низ заметны благодаря присутствию различных пигментов.
4. Эмбриональный период
Эмбриональный период начинается с образования зиготы. Окончание этого периода при разных типах онтогенеза связано с различными моментами развития. Эмбриональный период делится на стадии зиготы, дробления, бластулы, образования зародышевых листиков, гисто– и органогенеза. Зародыши млекопитающих и человека до образования зачатков органов принято называть эмбрионом, а в дальнейшем – плодом.
Зигота, образующаяся в результате слияния женской и мужской гамет, представляет собой одноклеточную стадию развития нового организма. В зиготе осуществляется интенсивный синтез белка, матрицей для которого на начальных стадиях служит и-РНК, синтезированная во время овогенеза, но одновременно синтезируется и новая и-РНК.
5. Дробление
Дробление – это начальный этап развития зиготы. Характер дробления обусловлен типом яйцеклетки. В изолецитальном яйце первая борозда дробления в виде щели начинается на анимальном полюсе и постепенно распространяется в продольном меридиональном направлении к вегетативному, разделяя яйцо на 2 клетки – 2 бластомера. Вторая борозда проходит перпендикулярно первой, в результате чего образуется 4 бластомера. Третья борозда проходит экваториально: возникают 8 бластомеров. При каждом последующем дроблении клетка становится мельче. В результате ряда последовательных дроблений формируются группы клеток, тесно прилегающих друг к другу. У некоторых животных такой зародыш напоминает ягоду малины. Он получил название морулы.
У млекопитающих желтка в яйцах мало, поэтому дробление полное, но также неравномерное. В различных бластомерах оно идет в различном темпе, поэтому можно наблюдать стадии 2, 3, 6, 7, 9, 10 и т. д. бластомеров. Одни из них (светлые) располагаются по периферии, другие (темные) находятся в центре. Из светлых клеток образуется окружающий зародыш трофобласт, клетки которого выполняют вспомогательную функцию и непосредственно в формировании зародыша не участвуют. Клетки трофобласта обладают способностью растворять ткани, благодаря чему зародыш внедряется в стенку матки.
Далее клетки трофобласта отслаиваются от клеток зародыша, образуя полый пузырек. Полость трофобласта заполняется жидкостью, диффундирующей в нее из тканей матки. Зародыш в это время имеет вид узелка, расположенного на внутренней стенке трофобласта. В результате дальнейшего дробления зародыш принимает форму диска, распластанного по внутренней поверхности трофобласта. Во время дробления митотические деления следуют друг за другом.
Дробление яйца заканчивается образованием бластулы. В клетках бластулы устанавливается типичное для каждого вида животных ядерно-плазменное соотношение. Начиная с бластулы клетки зародыша принято называть не бластомерами, а эмбриональными клетками.
При полном равномерном дроблении бластула имеет форму пузырька со стенкой в один слой клеток, который называют бластодермой. Стадию бластулы проходят зародыши всех типов животных.
6. Гаструляция
Гаструляция представляет собой сложный процесс перемещения эмбрионального материала с образованием двух или трех слоев тела зародыша, называемых зародышевыми листками. В процессе гаструляции выделяют два этапа: образование экто– и энтодермы (двухслойный зародыш) и образование мезодермы (трехслойный зародыш).
У животных с изолецитальном типом яиц гаструляция идет путем инвагинации, т. е. втягивания. Вегетативный полюс бластулы втягивается внутрь, наподобие стенки продырявленного резинового мяча. Противоположные полюса бластодермы почти смыкаются в виде незначительной полости, а из шара возникает двухслойный зародыш.
Внешний слой клеток носит название наружного листка, или эктодермы, внутренний слой – внутреннего листка, или энтодермы. Полость называется гастроцеле, или первичной кишкой, а вход в кишку получил наименование бластопоры, или первичного рта. Края его сближаются, образуя верхнюю и нижнюю губы.
Гаструляция происходит не только путем инвагинации. Другим ее способом являются деламинация (расслоение), эпиболия (обрастание) и иммиграция (проникновение внутрь). Чаще всего имеет место смешанный тип гаструляции.
Третий (средний) зародышевой листок называется мезодермой, т. к. он образуется между наружным и внутренним листками. Различают два основных способа образования мезодермы – телобластический и энтероцельный.
7. Телобластический способ
Телобластический способ встречается у многих беспозвоночных.
Энтероцельный способ характерен для хордовых. В этом случае с двух сторон от первичной кишки образуются втягивания – карманы (целомические мешки). Внутри карманов находится полость, представляющая собой продолжение первичной кишки (гастроцеле). Целомические мешки полностью отшнуровываются от первичной кишки и разрастаются между эктодермой и энтодермой. Клеточный материал этих участков дает начало среднему зародышевому листку – мезодерме. Дорсальный отдел мезодермы, лежащий по бокам от нервной трубки и хорды, расчленен на сегменты – сомиты. Вентральный ее отдел образует сплошную боковую пластину, находящуюся по бокам кишечной трубки.
Сомиты дифференцируются на три отдела: медиальный (склеротом), центральный (миотом) и латеральный (дерматом). В вентральной части мезодермальной закладки принято различать нефрогонотом (ножка сомита) и спланхнотом. Закладка спланхнотома разделяется на два листка, между которыми образуется полость. В отличие от бластоцеле, она получила название внутренней полости, или целома. Один из листков (висцеральный) граничит с энтодермальной кишечной трубкой, а другой (париетальный) подлежит непосредственно эктодерме.
Вопрос 83. Гистогенез и органогенез
1. Эмбриональные закладки зародышей
Дифференцированный на три эмбриональные закладки зародышевый материал дает начало всем тканям и органам развивающего зародыша. Расположение главнейших из них, так называемых осевых органов, намечается уже в процессе гаструляции.
В теле зародыша, покрытого эктеродермой, на дорсальной стороне формируется нервная трубка, под ней из энтодермы – хорда и кишечная трубка.
Каждый зародышевый лист дает начало только определенным органам. Так, из эктодермы развиваются ткани нервной системы. Нервная система у хордовых закладывается дорсально, т. е. на спинной стороне зародыша. Нервная пластинка в составе эктодермы растет интенсивнее остальных участков и затем прогибается, образуя желобок. Размножение клеток продолжается, края желобка сливаются, образуя нервную трубку, которая тянется вдоль тела от переднего конца к заднему. На переднем конце нервной трубки путем дальнейшего роста и дифференцировки формируется головной мозг. Отростки нервных клеток центральных отделов нервной системы образуют периферические нервы.
2. Развитие эпидермиса
Кроме того, из эктодермы развивается эпидермис и его производные (ногти, волосы и т. д.). Из энтодермы развивается эпителиальная ткань, выстилающая органы пищеварительной, дыхательной и частично мочеполовой систем, органы желудочно-кишечного тракта, в том числе печень и поджелудочная железа. Миотом дает начало спинной мускулатуре, нефрогонотом – органам выделения и половым железам (гонадам). Клетки, образующие висцеральные и париетальные листки спланхнотома, являются источником эпителиальной выстилки вторичной полости тела – целома. За счет элементов склеротома развивается хрящевая, костная и соединительная ткань, образующая вокруг хорды осевой скелет. Дерматом дает начало соединительной ткани внутренних органов, кровеносным сосудам, гладкой мускулатуре кишечника, дыхательных и мочеполовых путей.
В образовании сердца принимает участие также висцеральный листок спланхнотома. Железы внутренней секреции имеют различное происхождение: одни из них развиваются из закладок нервной системы, другие – из энтодермы. Надпочечники и половые железы являются производными мезодермы.
Органогенез завершается в основном к концу эмбрионального периода развития. Однако дифференцировка и усложнение органов продолжается и в постэмбриональном периоде. Описанные процессы связаны не только с активным клеточным размножением первичных эмбриональных закладок, но и с их значительным перемещением, изменением формы тела зародыша, образованием отверстий и полостей, а также формированием ряда временных зародышевых органов.
Вопрос 84. Ассимиляция и фотосинтез. Преобразование энергии при фотосинтезе
1. Ассимиляция
Ассимиляция – это превращение чужеродных веществ в компоненты собственного организма. Автотрофная ассимиляция зеленых растений, синезеленых водорослей и некоторых бактерий (синтез органических веществ из неорганических) имеет огромное значение для всех живых существ (так называемая первичная продукция). Гетеротрофная ассимиляция остальных организмов – сравнительно более простой процесс превращения одних органических веществ в другие.
Так как органические вещества представляют собой соединения углерода, то решающее значение имеет ассимиляция углерода. Это процесс восстановления, который ведет от максимально окисленного исходного вещества СО2 к менее окисленным продуктам, таким как углеводы. У зеленых растений и синезеленых водорослей источником необходимых для восстановления электронов служит вода, которая при отнятии электронов окисляется. Автотрофные бактерии не способны к окислению воды, им нужны другие доноры электронов. Большую потребность в энергии удовлетворяет фотосинтез или окисление поглощаемых веществ (хемосинтез).
2. Фотосинтез
Фотосинтез – это преобразование энергии света в химическую энергию. Такое преобразование происходит в пластидах. Химическая энергия накапливается прежде всего в форме АТР [H2] (водород, связанный с коферментом). Для облигатных автотрофов (зеленые бактерии, пурпурные серобактерии, многие синезеленые водоросли) фотосинтез – единственный источник энергии: у них нет процессов диссимиляци, поставляющих АТР.
В зеленых клетках высших растений тоже переходят в цитоплазму большие количества АТР [H2]. Значительная часть последнего в (форме NAD*Н+Н+) попадает в митохондрии и там окисляется в цепи дыхания для дополнительного синтеза АТР. У высших растений большая часть АТР и [H2] используется для синтеза углеводов из СО2. Таким образом, фотосинтез включает преобразование энергии (световой фильтр) в тилакоидах хлоропластов и превращения веществ (ассимиляция углерода – темновой процесс) в строме хлоропластов. Восстановитель [H2] образуется при расщеплении воды за счет энергии света (фотосинтез), при котором выделяется О2. АТР синтезируется при прохождении электронов по цепи транспорта электронов. Переносчиком водорода служит NADP (никотинамидадениндинуклеотидфосфат), который по сравнению с NAD содержит на один фосфатный остаток больше. NAD*Н+Н+ и АТР направляются в темновой процесс, где водород и энергия используются для синтеза углеводов из СО2, а затем NADP+ и АДР снова используются в световом процессе. Другие органические вещества (не углеводы), например жирные кислоты или аминокислоты, могут быть побочными продуктами фотосинтеза или же вторично образуются из углеводов. На каждые 6 молей поглощенного СО2 выделяется 6 молей О2. Коэффициент ассимиляции AQ – отношение О2/СО2 – при биосинтезе углеводов равен 1. Для восстановления одной молекулы СО2 необходимо около 9 квантов света, так что на 1 моль СО2 должно приходиться 9 молей квантов. Так как 1 моль квантов красного света содержит 172 кДЖ, затрата энергии равна около 9172 кДЖ на 1 моль СО2, т. е. 6 х 9172 кДЖ = 9288 кДЖ на 1 моль С6Н12О6.
3. Преобразование энергии при фотосинтезе
Преобразование энергии при фотосинтезе (световой процесс). В расчете на 1 молекулу О2 (или 1 молекулу СО2) световой процесс можно представить так: 2Н2О + световая энергия > О2+2 [H2] + энергия АТР. Таким образом, световой процесс представляет собой перенос водорода (электронов и протонов) с одной окислительно-восстановительной системы. Однако перенос электронов от положительного потенциала к отрицательному – процесс эндергонический, он требует затраты энергии. Только для этого и нужна при фотосинтезе энергия света. Таким образом, первичное фотохимическое событие – это перенос электронов против градиента окислительно-восстановительного потенциала (ОВП) за счет энергии света. Для этого переноса используется цепь транспорта электронов. На большинстве этапов электроны перемещаются здесь «вниз» по градиенту ОВП без затраты энергии и без света. И только два этапа осуществляются против градиента ОВП за счет световой энергии; будучи фотохимическими реакциями, эти этапы не зависят от температуры и протекают даже при минимальных температурах.
4. Фотохимическое действие
Фотохимическое действие могут оказывать только те кванты света, которые поглощаются пигментами. Тилакоиды содержат следующие пигменты, связанные с белками: хлорофиллы, каротиноиды (каротины и ксантофиллы), а у красных и синезеленых водорослей – также фикобилипротеиды. Свет поглощают все пигменты, но только фотосинтетически активные пигменты (хлорофилл А у растений и синезеленых водорослей и бактериохлорофилл у бактерий) выполняют при этом фотохимическую работу (транспорт электронов). Добавочные пигменты (хлорофилл В, каротиноиды, фикобилипротеиды) передают поглощенную энергию активным пигментам без существенных потерь. Хлорофиллы поглощают свет в синей и красной областях спектра, каротиноиды – в синей и сине-зеленой областях. В зеленой и желтой областях свет не поглощается (исключение составляют красные и синезеленые водоросли), и фотосинтеза не происходит. При поглощении светового кванта молекулы пигмента возбуждается, т. е. на короткое время переходят в высокоэнергетическое, возбужденное состояние. При их возвращении в исходное состояние выделяется энергия, за счет которой может совершаться различная работа. Хлорофилл может иметь различные возбужденные состояния. При возвращении в исходное состояние энергия может выделяться в виде флуоресценции или тепла, передаваться в качестве возбуждающей энергии другим молекулам или использоваться для фотохимической работы.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.