Электронная библиотека » Алексей Гладкий » » онлайн чтение - страница 6


  • Текст добавлен: 8 января 2014, 21:45


Автор книги: Алексей Гладкий


Жанр: Автомобили и ПДД, Дом и Семья


сообщить о неприемлемом содержимом

Текущая страница: 6 (всего у книги 13 страниц)

Шрифт:
- 100% +
Карданная передача и главная передача

Карданная передача на автомобилях с задним приводом используется для передачи крутящего момента от вторичного вала КПП к главной передаче (о ней мы поговорим чуть позже) под изменяющимся углом. Другими словами, карданная передача необходима для передачи крутящего момента между агрегатами, оси валов которых не совпадают и могут изменять свое положение относительно друг друга при движении автомобиля. Карданная передача включает в себя передний и задний валы, промежуточную опору с подшипником, шарниры с вилками, крестовины, шлицевое соединение и эластичную муфту.

Передача крутящего момента под изменяющимся углом достигается за счет использования механизма шарниров с вилками и крестовинами.

У автомобиля с ведущими задними колесами задний мост связан не жестко с колесами и кузовом. А вот мотор, КПП и передний вал карданной передачи крепятся к кузову прочно и неподвижно. Во время движения автомобиль подпрыгивает на неровностях проезжей части, в результате чего кузов относительно заднего моста перемещается по вертикали – то вверх, то вниз. Соответственно, постоянно изменяется угол между передним валом карданной передачи и главной передачей, находящейся в заднем мосту.

Но крутящий момент поступает как раз в это «трясущееся» место, и данный процесс должен быть постоянным и равномерным. А задний вал карданной передачи не может и не должен быть жестким. Поэтому он оснащен двумя шарнирами, с помощью которых крутящий момент передается от КПП к главной передаче ровно и стабильно даже тогда, когда машина трясется на неровной дороге.

Шлицевое соединение обеспечивает компенсацию линейного перемещения карданной передачи относительно кузова при любом изменении угла передачи крутящего момента. А эластичная муфта компенсирует резкое и излишне жесткое обращение с педалью сцепления за счет поглощения проходящей по трансмиссии ударной волны. Важность этой детали существенно возрастает, когда за рулем находится новичок.

На автомобилях с передними ведущими колесами карданная передача имеет иную конструкцию. Поскольку крутящий момент передается на передние колеса, для каждого из них предусмотрен свой карданный вал и по два шаровых шарнира (другими словами, каждое ведущее колесо имеет индивидуальную карданную передачу). Этот механизм известен под названием ШРУС, что расшифровывается как «шарнир равных угловых скоростей».

Стоит отметить, что слабым местом ШРУСов являются шарниры: при попадании частичек песка, пыли или грязи шарнир быстро выходит из строя. Для защиты от воздействия внешней среды шарниры оснащены специальными резиновыми колпаками – пыльниками. Состояние пыльников необходимо держать на контроле: если на пыльнике появились отверстия, трещины или иные механические повреждения – его нужно срочно заменить, или через короткое время придется менять весь ШРУС.

На срок службы ШРУСов, а также шарниров карданного вала заднеприводных автомобилей отрицательное влияние оказывают следующие факторы: неправильный выбор скоростного режима на ухабистых и разбитых дорогах, буксование в грязи, резкий разгон, резкий старт, езда по грунтовой дороге с глубокими колеями.

Что касается главной передачи, то у заднеприводных и переднеприводных автомобилей ее конструкция и назначение отличаются. На машинах с задним приводом она используется для увеличения крутящего момента, для его передачи на полуоси колес под прямым углом, а также для уменьшения частоты вращения ведущих колес. Главная передача состоит из пары шестерен – ведущей и ведомой, расположенных под прямым углом по отношению друг к другу, причем ведущая шестерня по размеру меньше ведомой. Эти шестерни находятся в постоянном зацеплении друг с другом. Крутящий момент, возникающий в двигателе автомобиля, через коленчатый вал, сцепление, коробку переключения передач и карданный вал, передается на ведущую шестерню, а от нее под прямым углом – на ведомую шестерню, откуда, в свою очередь, передается на полуоси колес.

При повороте автомобиля ведущие колеса должны пройти разное расстояние: колесо внутри поворота – меньшее, а колесо снаружи поворота – большее. Поскольку главная передача не обеспечивает такого эффекта, на первый взгляд поворот автомобиля должен быть невозможен. Эта проблема решается с помощью устройства под названием «дифференциал». Он автоматически распределяет крутящий момент между полуосями (соответственно – между колесами) при выполнении поворотов, а также при движении по дороге с неровным дорожным покрытием. Другими словами, с помощью дифференциала колеса получают возможность вращаться с разной угловой скоростью, что позволяет им проходить разное расстояние, не проскальзывая при этом по поверхности дороги. Дифференциал включает в себя две шестерни полуосей и две шестерни сателлитов, и в комплексе с главной передачей образует с ней единый механизм.

На автомобилях с передними ведущими колесами устройство главной передачи и дифференциала несколько отличается. Это обусловлено тем, что у таких машин мотор установлен поперек направления движения, поэтому необходимость передачи крутящего момента под прямым углом отпадает: ведь он и так передается в плоскости, соответствующей движению колес. У переднеприводных машин главная передача и дифференциал расположены непосредственно в коробке переключения передач. В остальном же функции главной передачи и дифференциала такие же, как и у машин с задним приводом.

Чтобы механизмы главной передачи и дифференциала преждевременно не изнашивались, у заднеприводных автомобилей заливается трансмиссионное масло в картер заднего моста. Визуально он выглядит как характерное утолщение в центральной части заднего моста. У переднеприводных автомобилей масло заливается в коробку передач. Уровень масла необходимо контролировать, при необходимости доливать его, а также своевременно менять износившиеся сальники, которые должны предотвращать утечку масла.

Как работает тормозная система современного автомобиля?

Тормозная система автомобиля включает в себя рабочую тормозную систему и стояночную тормозную систему.

Задача рабочей тормозной системы – уменьшение скорости движения транспортного средства и вплоть до полной остановки. Другими словами, рабочая тормозная система должна обеспечивать преднамеренное прекращение движения транспортного средства при выполнении водителем соответствующих действий. Она приводится в действие нажатием педали, расположенной в салоне автомобиля между педалями газа и сцепления (в автомобилях с механической КПП) или слева от педали газа (в автомобилях с автоматической КПП). Приложенное к педали усилие передается через гидравлический тормозной привод на тормозные механизмы всех колес транспортного средства.

Что касается стояночной тормозной системы, то ее главная задача состоит в том, чтобы обеспечить неподвижное состояние автомобиля во время его стоянки (иначе говоря, она предотвращает самопроизвольное начало движения автомобиля). Также стояночная тормозная система применяется для удержания транспортного средства от скатывания назад при трогании с места на подъеме, а также для ручного управления тормозными механизмами задних колес с помощью рычага стояночного тормоза, находящегося, как правило, между передними сиденьями автомобиля.

Приведение в действие стояночной тормозной системы осуществляется поднятием ее рычага в верхнее положение (этот рычаг более известен под названием «ручник», рис. 3.9). При этом тормозные колодки задних колес прижимаются к дискам или барабанам (в зависимости от типа используемого тормозного механизма), и в результате колеса блокируются, что обеспечивает неподвижность транспортного средства. Когда ручник установлен в верхнее положение, то для предотвращения самопроизвольного снятия он блокируется защелкой. Поэтому, чтобы опустить рычаг, водитель должен большим пальцем нажать на специальную кнопку, которая находится на конце рычага.

Рис. 3.9. Рычаг стояночного тормоза (ручник)


Рабочая тормозная система состоит из двух основных компонентов: тормозной привод (который передает приложенное к педали усилие) и тормозные механизмы колес (с помощью которых и осуществляется торможение). Рассмотрим подробнее каждый из них.

Устройство тормозного привода

Тормозной привод предназначен для передачи усилия от тормозной педали, на которую нажимает водитель при торможении, на колесные тормозные механизмы. Автомобили оснащаются гидравлическими тормозными приводами; рабочим элементом в них является тормозная жидкость.

Гидравлический привод содержит следующие элементы: педаль тормоза, рабочие тормозные цилиндры, главный тормозной цилиндр (рис. 3.10), тормозные трубки (шланги), вакуумный усилитель тормозов (правда, в старых машинах этот элемент отсутствует).

Рис. 3.10. Главный тормозной цилиндр


Для того чтобы замедлить движение или остановить автомобиль, водитель нажимает ногой на педаль тормоза. Через специальный шток это усилие поступает на поршень главного тормозного цилиндра, который, в свою очередь, давит на залитую в системе тормозную жидкость. Тормозная жидкость передает это усилие через топливные трубки и шланги на рабочие (колесные) тормозные цилиндры. Вследствие этого у тормозных цилиндров выдвигаются поршни, которые давят на тормозные колодки, прижимая их либо к тормозным дискам, либо к тормозным барабанам, в зависимости от используемой конструкции тормозов. Диск или барабан имеется у каждого колеса и непосредственно связан с ним, поэтому, когда колодки давят на вращающийся вместе с колесом диск (барабан), вращение колеса замедляется и, если водитель продолжает давить на педаль тормоза – полностью прекращается.

Недостатком гидравлического привода является то, что при разгерметизации тормозная жидкость полностью или частично вытекает из системы, что может привести к отказу тормозов. Для предотвращения такой ситуации в современных машинах применяются двухконтурные гидравлические тормозные приводы. Сущность их конструкции состоит в том, что они состоят из двух независимых контуров – отдельно для каждой пары колес. Отметим, что эти контуры не обязательно связывают колеса одной оси: например, левое переднее колесо может быть связано с правым задним, а правое переднее – с левым задним. Если по каким-то причинам отказывает один контур (например, вытекла тормозная жидкость, заклинило тормозной цилиндр и т. п.), то срабатывает второй. Разумеется, эффективность такого торможения заметно падает, но все же оно позволяет остановить автомобиль и избежать серьезных неприятностей.

Вакуумный усилитель тормозов (рис. 3.11) – прибор, который позволяет повысить эффективность работы тормозной системы, а также уменьшить усилие, с которым водитель должен давить на педаль для получения требуемого результата.

Рис. 3.11. За расширительным бачком – вакуумный усилитель тормозов


Этот усилитель связан непосредственно с главным тормозным цилиндром. Ключевой элемент вакуумного усилителя – камера, разделенная резиновой диафрагмой на две части. Одна часть камеры связана с впускным трубопроводом двигателя, в котором создается разряжение, вторая с атмосферой. В разряженном пространстве давление где-то на 20 % меньше атмосферного, и благодаря этому перепаду давлений, а также большой площади резиновой диафрагмы, создается эффект, позволяющий существенно снизить усилие при нажатии на педаль тормоза.

Тормозные механизмы колес

Колесный тормозной механизм, как мы уже отмечали ранее, имеется на каждом колесе. Он предназначен для снижения скорости вращения колеса вплоть до полной его остановки за счет силы трения, возникающей между тормозными колодками и тормозным диском либо тормозным барабаном. В настоящее время автомобили оснащаются тормозными системами двух видов: дисковыми или барабанными, причем на одной машине могут использоваться тормоза как одного, так и одновременно двух видов. Например, на многих моделях ВАЗ, АЗЛК, «Форд», «Опель» и др. спереди стоят дисковые тормоза, а сзади – барабанные.

Барабанный тормозной механизм включает в себя тормозной барабан (рис. 3.12), тормозной цилиндр, тормозной щит, тормозные колодки (2 штуки) и стяжные пружины.

Рис. 3.12. Тормозной барабан


На колесной балке крепится тормозной щит, на котором установлен рабочий тормозной цилиндр. При нажатии на педаль тормоза поршни в тормозном цилиндре расходятся в стороны и оказывают давление на тормозные колодки, изготовленные в виде полуколец. Под воздействием такого давления тормозные колодки прижимаются к внутренней поверхности тормозного барабана (на который сверху надето колесо), замедляя его вращение вплоть до полной остановки.

Когда торможение нужно прекратить, водитель перестает нажимать на педаль тормоза. Соответственно, усилие на тормозные колодки больше не передается и стяжные пружины возвращают их в первоначальное положение. Колодки больше не касаются тормозного барабана, трение между ними и барабаном отсутствует и колесо получает возможность свободно вращаться.

Что касается дискового тормозного механизма (рис. 3.13), то он устроен несколько иначе и содержит следующие элементы: тормозной диск, тормозной суппорт, тормозной цилиндр (один или два) и тормозные колодки (2 штуки).

Рис. 3.13. Дисковый тормозной механизм


В данном случае на поворотном кулаке колеса устанавливается суппорт, внутри которого располагается тормозной цилиндр (один или два – это зависит от модели автомобиля), а также две тормозные колодки. Колодки расположены одна напротив другой так, что они находятся по разные стороны тормозного диска. Другими словами, диск располагается между тормозными колодками, при этом он вращается вместе с колесом, с которым жестко связан.

При нажатии тормозной педали из рабочих тормозных цилиндров выходят поршни и оказывают давление на тормозные колодки, которые с двух сторон прижимаются к тормозному диску. Под воздействием возникшей силы трения диск (а вместе с ним и колесо) замедляет вращение, и автомобиль останавливается. Для прекращения торможения нужно отпустить педаль тормоза. В результате поршни тормозного цилиндра вернутся в первоначальное положение, и больше не будут давить на тормозные колодки, которые, в свою очередь, «разжимаются» и «отпускают» тормозной диск. Следовательно, колесо вновь получает возможность свободного вращения.

Отметим, что тормозные колодки являются расходным материалом: из-за постоянного трения они изнашиваются, и тогда их следует заменить. Дисковые колодки нужно менять в среднем через 15 000-25 000 километров пробега, а барабанные – примерно через 50 000-60 000 километров (но они могут прослужить и больше).

Рулевое управление автомобиля

Рулевое управление необходимо для придания движущемуся автомобилю нужного направления. Попросту говоря, куда водитель повернет руль (рис. 3.14) – туда машина и поедет.

Рис. 3.14. Рулевое колесо автомобиля


Рулевое управление включает в себя два элемента: рулевой механизм и рулевой привод.

Рулевой механизм предназначен для передачи на рулевой привод усилия, прилагаемого водителем к рулевому колесу, находящемуся в салоне. В современных автомобилях применяются рулевые механизмы двух типов: червячный механизм и реечный механизм. Кратко рассмотрим каждый из них.

Червячный механизм рулевого управления состоит из рулевого колеса, вала рулевого колеса, червячной пары (червяк и ролик), картера червячной пары и рулевой сошки.

Элементы червячной пары (червяк и ролик) находятся в постоянном зацеплении друг с другом. Они располагаются в картере: червяк – на нижнем конце рулевого вала, а ролик – на валу рулевой сошки. При повороте рулевого колеса ролик скользит по зубьям червяка, и вал рулевой сошки начинает вращаться.

Задача червячной пары состоит в том, чтобы преобразовать вращение рулевого колеса, которым манипулирует водитель автомобиля, в поворот рулевой сошки в соответствующем направлении. В результате приложенное усилие поступает на рулевой привод, а затем – на передние колеса.

Рулевой механизм реечного типа имеет несколько иную конструкцию. Его отличительной чертой является то, что в нем вместо червячной пары задействуется пара «шестерня-рейка». При повороте рулевого колеса вращается и шестерня, которая передает приложенное к рулевому колесу усилие рейке, заставляя ее поворачиваться в соответствующем направлении (рейка находится в постоянном зацеплении с шестерней). В свою очередь, рейка это усилие передает на рулевой привод, откуда он поступает на передние колеса.

Рулевой привод, помимо передачи приложенного к рулевому колесу усилия на передние колеса автомобиля, также обеспечивает поворот колес на разные углы в зависимости от выбранной водителем траектории движения.

Важно

В данном случае разница углов необходима для того, чтобы колеса двигались по дороге без проскальзывания – иначе покрышки будут очень быстро изнашиваться. Ведь при выполнении поворота или разворота каждое колесо «прочерчивает» индивидуальную окружность, которая отличается от окружности другого колеса. При этом внешнее колесо имеет больший радиус поворота, чем внутреннее. Но, поскольку центр поворота у них один и тот же, то угол поворота внешнего колеса должен быть больше, чем у внутреннего.

Для решения данной задачи рулевой привод оснащен специальным механизмом, который называется «рулевая трапеция» и включает в себя поворотные рычаги, рулевые тяги и шарниры рулевых тяг. Свой шарнир имеется у каждой рулевой тяги; он обеспечивает всем подвижным деталям рулевого привода возможность свободно поворачиваться в разных плоскостях относительно кузова и друг друга.

Совместно с рулевым механизмом червячного типа используется рулевой привод, включающий в себя среднюю рулевую тягу, правую и левую рулевые тяги, маятниковый рычаг, а также правый и левый поворотные рычаги колес.

Рулевой привод, используемый с рулевым механизмом реечного типа, имеет иную конструкцию. Он включает в себя две рулевые тяги (рис. 3.15), предназначенные для передачи усилия на поворотные рычаги, в результате чего колеса автомобиля поворачиваются в требуемом направлении.

Рис. 3.15. Рулевые тяги


На современные машины устанавливается также гидравлический усилитель рулевого управления. Этот элемент позволяет уменьшить усилие, которое водитель должен прикладывать к рулевому колесу автомобиля. Попросту говоря, при использовании гидроусилителя руль поворачивается очень легко, это можно делать чуть ли не пальцем.

Гидроусилитель состоит из насоса, распределительного устройства и гидравлического цилиндра. При повороте рулевого колеса специальное распределительное устройство под давлением направляет жидкость в одну из полостей гидравлического цилиндра, благодаря чему и достигается существенное снижение прилагаемого водителем усилия.

Помни об этом

Гидроусилитель рулевого управления функционирует только при работающем двигателе.

Рулевое управление является важнейшим механизмом каждого автомобиля, поэтому водитель должен следить за его состоянием и своевременно выполнять необходимую профилактику или ремонт. Эксплуатация автомобиля с неисправным рулевым управлением может привести к катастрофическим последствиям. Кстати, в соответствии с ПДД запрещается эксплуатация транспортных средств, у которых:

• суммарный люфт в рулевом управлении превышает 10 градусов;

• в рулевом управлении имеются конструктивно не предусмотренные перемещения деталей и узлов;

• в рулевом управлении резьбовые соединения не затянуты или не зафиксированы установленным способом;

• отсутствует или неисправен усилитель рулевого управления (если его использование предусмотрено конструкцией автомобиля).

Учтите

Дальнейшее движение автомобиля категорически запрещается при любых неисправностях рулевого управления: соответствующее положение закреплено в действующих ПДД.

Глава 4
Электрооборудование автомобиля и дополнительное оборудование

Современный автомобиль имеет сложную электронную «начинку», которая называется одним общим словом «электрооборудование». Электрооборудование транспортного средства – это его осветительные приборы, механизм запуска двигателя, охрана машины, отопитель и кондиционер и др. Электричество вырабатывается из источников (аккумулятор и генератор) и передается потребителям.

Потребителями тока в системе электрооборудования легковой машины являются: система пуска двигателя, система зажигания автомобиля, система освещения и сигнализации, контрольноизмерительные приборы и дополнительное оборудование, которое у каждого автомобиля может отличаться.

С системой зажигания двигателя мы уже познакомились ранее (см. Главу 2, раздел «Система зажигания»). Напомним лишь, что для работы двигателя внутреннего сгорания необходима свеча зажигания, дающая электрическую искру, от которой воспламеняется рабочая смесь в цилиндре (в дизельных двигателях используются свечи накаливания). А появляется эта искра благодаря наличию в автомобиле системы электрооборудования. С остальными потребителями электричества мы познакомимся в данной главе. Другими словами, далее мы узнаем о том, как возникает и используется электрическая энергия современного автомобиля.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации