Текст книги "Мир электричества"
Автор книги: Анатолий Томилин
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 22 (всего у книги 22 страниц)
Выработка и потребление электрической энергии невозможны без создания крупных энергосистем. В их составе могут параллельно работать и тепловые и гидравлические электростанции. Это дало бы возможность наиболее эффективно использовать природные энергетические ресурсы. Такие идеи не могли не породить грандиозных проектов.
И вот в начале XX столетия появились очень интересные разработки инженеров Вьеля и Зергеля. Вьель предложил создание единой энергетической системы Европы.
Сварка дугой
Но в 1911–1912 годах в Европе бушевали войны. Италия воевала с Турцией за земли Триполитании и Киренаики. В 1912 году началась Балканская война, а в 1914-м – Первая мировая… Войны и политика показали невозможность осуществления межгосударственных проектов.
Зергель предложил энергетическую систему Средиземноморья. По его проекту предусматривалось строительство громадных плотин в Гибралтарском и Дарданелльском проливах, а также Тунисской и Мессинской плотин. При этом уровень Средиземного моря в западной его части должен был понизиться на 100 м, а в восточной – на 200. Обнажившееся морское дно у берегов Южной Европы и Северной Африки даст дополнительные плодородные земли, а гидроэлектростанции, построенные на задуманных плотинах, обеспечат более 200 000 МВ/ч электроэнергии в год.
Интересный проект, жаль только, что кроме экономических трудностей глобального характера он не учитывал трудностей политических. По опыту человечество знает, что труднее всего оказывается договориться с соседями через границу. У всех свои интересы!…
Сварочная машина Томсона
Строительство линий электропередачи в XX веке стало нарастать стремительными темпами. В начале века были построены первые линии на напряжение 35–40 кВ. Через десять лет напряжение поднялось до 50–70 кВ, а еще через десять лет – до 100 кВ. Потом, в начале 30-х годов, американцы построили ЛЭП на 287 кВ, а после войны, в середине 50-х, – на 345 кВ. Напомню еще раз о причине гонки за высоким напряжением: выше напряжение – меньше потери в линии.
До 1990 года потери в сетях Министерства энергетики СССР были немногим меньше 10 %. Много это или мало? Примерно столько же потребляла в то время одна из самых энергоемких отраслей – черная металлургия. Получается, что эти 10 % – цифра громадная. Еще большее впечатление может произвести на вдумчивого читателя известие о том, что при этом до 85 % всех потерь приходилось на распределительные сети низкого напряжения… Весьма наглядные цифры, не так ли?
Для России с ее необозримыми пространствами строительство и совершенствование линий электропередачи имеют особенно важное значение. В 1956 году была введена в эксплуатацию ЛЭП на напряжение 400 кВ протяженностью 85 км. Ее проектирование началось еще до Великой Отечественной войны в Ленинградском политехническом институте под руководством профессора Александра Александровича Горева, одного из крупнейших отечественных ученых не только в области техники высоких напряжений и электроэнергетики, но и в электрофизике.
Установка с динамо-машиной для получения чистой меди электролитическим путем
В ходе развития народного хозяйства в СССР еще в 30-х годы образовались две крупные научные электротехнические школы: ленинградская и московская. В Ленинграде при Политехническом институте под руководством А. А. Горева создается так называемое «Бюро Куйбышевских работ» для проведения предпроектных исследований ЛЭП на 400–500 кВ. Был построен знаменитый высоковольтный корпус, в котором исследователи получали на больших разрядниках искусственные молнии и изучали переходные процессы в линиях, а также работу изоляторов и их характеристики.
В послевоенное время проблемами сооружения сверхвысоковольтных ЛЭП занимались многие институты. Строительство крупных тепловых и атомных электростанций в европейской части СССР потребовало нового повышения напряжения в линиях передачи. В Московском энергетическом институте (МЭИ) ученые-энергетики Валентин Андреевич Веников и Теодор Лазаревич Золотарев разработали метод физического моделирования системы электропередачи. Была построена модель ЛЭП от Волжской ГЭС до Москвы, на которой отрабатывались основные проблемы новой техники. Позже такие физические модели взяли на вооружение специалисты всего мира. Многие проектные и научно-исследовательские институты работали над созданием ЛЭП на 500 кВ. Советские электрики построили высоковольтные линии электропередачи в Венгрии, Польше, Румынии и Болгарии.
В ноябре 1967 года под Москвой заработала во многом еще экспериментальная ЛЭП на 750 кВ, длиной около 100 км. Подобные же линии на 735–800 кВ в то же время начали разрабатывать и строить в ряде стран Северной и Южной Америки и в Японии…
Одна из первых генераторных установок на алюминиевом заводе, построенном на Рейнском водопаде
Но в 70-е годы мир поразил энергетический кризис. И среди специалистов-энергетиков возникла идея, что для передачи энергии от тепловых и гидроэлектростанций на дальние, все увеличивающиеся расстояния скоро потребуются линии ультравысокого напряжения (УВН). В СССР был уже накоплен большой опыт в этом направлении. Однако при таких сверхвысоких и ультравысоких напряжениях перед инженерами и зарубежными специалистами, появились новые проблемы, связанные с электроизоляцией воздушных линий, подстанций и всего оборудования.
Может возникнуть вопрос: а что особенно трудного в повышении напряжения, скажем, на воздушной линии? Как ни странно, главная проблема – это проводимость воздуха. Ведь чтобы не происходило «пробоя» (короткого замыкания) между проводами, воздух должен обладать очень большим сопротивлением. Но его проводимость, к сожалению, после определенного предела начинает резко возрастать. И тут инженерам-электрикам приходится идти на массу ухищрений, чтобы «обмануть природу».
Некоторые специалисты стали связывать дальнейшее развитие передачи электроэнергии не с воздушными линиями, а с кабельными, подземными. Казалось бы, здесь-то проводимость должна быть еще выше, чем в воздухе. Но все дело в изоляции. Ученые предложили использовать в качестве изолятора газ, обладающий чрезвычайно низкой электропроводностью и большой электрической прочностью. Такой диэлектрик уже существует – это шестифтористая сера (SF6). Электрики называют ее элегазом.
Энергетический кризис 70-х годов подтолкнул человечество к поискам удешевления энергоресурсов. Были открыты новые месторождения нефти и газа и придуманы новые способы их транспортировки.
Электрические печи завода карбида кальция у Ниагарского водопада
Построены громадные танкеры и газопроводы. Перевозка нефти и перекачивание газа по трубам оказались дешевле строительства и эксплуатации ЛЭП УВН. Интерес к дорогостоящим линиям ультравысокого напряжения тотчас же угас. Одна лишь Япония построила экспериментальную линию на 1100 кВ на опорах высотой до 120 м и длиной 250 км. На ней хотели отрабатывать ультравысоковольтное оборудование. Но пока, в начале XXI века, эта линия работает на пониженном напряжении в 550 кВ и судьба ее туманна.
В СССР в июне 1985 года было закончено строительство опытно-промышленной ЛЭП УВН на 1150 кВ, длиной 500 км, от Экибастуза до Кокчетава. Были спроектированы, построены и смонтированы подобные линии и на других направлениях. Но и они работают сегодня на пониженном напряжении. У создателей уникальных сооружений накопилось за это время великое множество интереснейших, пока не решенных вопросов.
Известно, например, что если проводник из чистого алюминия (99,99 % Al) охладить до температуры жидкого водорода (-253 °C, или 20 K), то его электрическое сопротивление уменьшится примерно в 500 раз! Это явление называется сверхпроводимостью. Температура, при которой сопротивление некоторых чистых металлов и сплавов стремится к нулю, называется критической и приближается к температуре жидкого гелия (-268,8 °C, или 0,2 K). Правда, для такого охлаждения пришлось бы затратить очень много энергии. Но сегодня известны уже сплавы, имеющие и более высокую критическую температуру. К сожалению, сверхпроводников, существующих в обычных условиях, мы пока не знаем. Однако есть немало специалистов, уверенных в том, что именно сверхпроводимость – будущее ЛЭП.
Продолжая разговор о линиях электропередачи, нельзя не упомянуть о многоступенчатых распределительных сетях, которые обеспечивают непосредственную передачу энергии от понижающих подстанций к потребителю. В них применяются разные значения напряжений. Если энергия подается по ответвлениям длиной 1 км, то напряжение может быть от 35 до 110 кВ. В пределах микрорайонов крупных промышленных городов, многих предприятий, на железнодорожных узлах обычное напряжение – 6 и 10 кВ, а в квартальных сетях, то есть в проводах и кабелях, что подводятся к распределительным щитам наших домов, к цехам заводов, напряжение не превышает 1000 В. Более дешевыми распределительными сетями являются, конечно, воздушные линии. Но в городах и на промышленных объектах приходится прокладывать кабели. Это большое и сложное хозяйство, требующее постоянного контроля и ремонта. И жители городов хорошо знакомы с ним, отмечая постоянно разрытые участки улиц и дворов, развороченные тротуары и прочие прелести кабельного строительства.
Говоря о линиях электропередачи, мы акцентировали все внимание на линиях переменного тока. Вряд ли это правильно. Сегодня и постоянный ток находит широкое применение в промышленности и на транспорте. Линии электропередачи постоянного тока имеют немало преимуществ. На их работу не влияют распределенные реактивные параметры, то есть емкость и индуктивность проводов. Это значит, что не нужно преодолевать накопления в них энергии.
Вы, наверное, знаете, что мощность в электрической цепи переменного тока бывает активной и реактивной. Активная мощность – это реальные потери на нагревание. А реактивная характеризует скорость накопления энергии в емкости и индуктивности цепи, обмен энергией между отдельными участками цепи. Без нее не обходится работа цепей переменного тока. Исследователи выяснили, что одним из эффективных средств повышения КПД линий электропередачи переменного тока могло бы стать уменьшение их реактивной мощности. Но для этого необходимо усложнение всей системы, а следовательно, и ее удорожание. У цепей постоянного тока этих проблем нет.
Другим достоинством линий электропередачи постоянного тока является то, что персонал, обслуживающий не связанные между собой линии, может не заботиться о синхронности их совместной работы. Наконец, ЛЭП постоянного тока создают значительно меньше помех родственной электро– и электронной аппаратуре. Особенно значительны преимущества передачи постоянного тока по кабелям.
В 1947 году в ряде научно-исследовательских институтов СССР начались работы по созданию преобразователей для ЛЭП постоянного тока. Три года спустя была осуществлена первая в мире кабельная электропередача постоянного тока между Каширой и Москвой. Длина опытной линии составляла 120 км, напряжение – 200 кВ и мощность – 30 МВт. Позже построили и ввели в эксплуатацию уже крупнейшую в мире линию электропередачи постоянного тока Волгоград-Донбасс с напряжением 400 кВ и длиной линии 473 км.
В 1981 году началась передача электроэнергии через вставку постоянного тока Россия – Финляндия. Такие вставки облегчают и улучшают работу основных ЛЭП переменного тока. ЛЭП на 330 кВ от подстанции Ленэнерго Восточная шла до преобразовательной подстанции в Выборге. Там энергия преобразовывалась и по вставке постоянного тока уходила в Финляндию. На подстанции Юликкяля постоянный ток снова превращался в переменный с напряжением 400 кВ и входил в систему Иматран Войма, которая являлась частью энергообъединения Скандинавских стран.
Немалую роль играют в строительстве ЛЭП и средства защиты от перенапряжений. При ударе молнии в воздушную линию, в фазовый провод или в опору в проводе возникает импульс грозового перенапряжения. Он распространяется по проводами, дойдя до подстанции, может вывести из строя ее электрооборудование. Это особенно опасно на линиях сверхвысокого напряжения. У подстанций ставят специальные разрядники, а все сооружение защищают стержневыми молниеотводами, предложенными еще Ломоносовым.
Внутренние перенапряжения возникают в основном при переключениях. Оказывает влияние на развитие перенапряжений и коронный разряд на проводах воздушных линий.
ЭлектроприводИнтересно, что еще в 1910 году российский ученый-электротехник Владимир Федорович Миткевич, будущий академик Академии наук СССР, предложил расщепление проводов фаз для подавления коронного разряда. Но тогда эта проблема не была столь актуальной. Напряжения на линиях были незначительными. И лишь сорок лет спустя предложенная идея была реализована и получила признание во всем мире.
До сих пор мы говорили в основном о том, как получать и транспортировать электроэнергию, и лишь вскользь – о ее использовании. Настало время поговорить на эту тему более основательно.
Главное преимущество электрической энергии в ее сравнительно легкой транспортировке для использования в отдалении от места получения, для превращения ее там снова в механическую или в любой другой вид энергии.
Цепочка превращения может быть разной и зависит от уровня развития техники и экономической целесообразности. Согласно закону сохранения, энергия не возникает из ничего и не исчезает бесследно. Она может только превращаться из одного вида в другой. Это мы помним. И вся история цивилизации – это борьба за энергию и превращение ее человеком в нужные ему формы. Костер доисторического человека – превращение энергии, накопленной топливом, в тепло. «Огромная наипаче» баратея Василия Петрова – превращение химической энергии в электрическую и электрической – в свет.
На гидро– или теплоэлектростанциях происходит превращение механической энергии падающей воды или пара в электрическую. Электроэнергия идет по ЛЭП к потребителю, и потребитель (мы с вами) использует ее по своему желанию: превращает в тепло, свет или с ее помощью приводит в действие необходимые ему машины и механизмы. Пожалуй, одним из первых таких примеров можно считать электродвигатель Бориса Семеновича Якоби – типичный электропривод.
Электропривод – чрезвычайно распространенное устройство для преобразования электроэнергии. Но прежде чем перейти к его описанию, вспомним, что такое привод вообще. Начнем с определения. Привод – это устройство для приведения в действие машин или механизмов. Состоит оно из источника энергии, устройства для ее передачи и из управления. Производителем энергии в приводе может служить человек или лошадь (слон, буйвол, любой источник мускульной силы), гидравлический, тепловой или электрический двигатели, а также накопители механической энергии: пружины, гири, маховики и т. д.
Привод может быть групповым, индивидуальным и многодвигательным. В первом движение от одного двигателя через трансмиссии передается группе рабочих машин. Индивидуальным привод становится тогда, когда каждая рабочая машина снабжена собственным двигателем с передачей движения. В многодвигательном приводе уже не вся рабочая машина, а ее отдельные механизмы приводятся в движение отдельными же двигателями через свои системы передачи.
Электродвигатель группового привода в заводском цеху XIX века
Примером самого раннего механического привода являлось, наверное, водяное колесо. Наиболее же распространенным видом привода на любом производстве до изобретения электродвигателя была паровая машина. Она крутила вал со шкивами, от которых шли ременные передачи на станки. Сегодня даже трудно себе представить такой цех с бесконечными ременными передачами.
С появлением электродвигателей наметились два пути развития. Первый – замена единого большого и мощного двигателя (паровой машины), работавшего на трансмиссию. И второй путь – строительство и применение индивидуальных двигателей, малых и больших, в зависимости от обслуживаемых механизмов.
Промышленники во всем мире сразу поняли преимущества электрической энергии по сравнению с паросиловыми установками. А понимаем ли мы ее сегодня так же наглядно?
Только представьте: для обеспечения средней мощности в 200 000 кВт, каковую сегодня легко дает энергетический блок, состоящий из одного котла, одной турбины и одного электрогенератора, нам пришлось бы установить в котельной станции 300 средних паровых котлов конца XIX века и 10 громаднейших, лязгающих поршнями паровых машин.
Первые блок-станции предназначались исключительно для питания осветительных приборов. Однако устройство центральных электростанций с последующим распределением энергии уже дало основание для создания промышленного электропривода.
Уже первые опыты применения электродвигателей в системе групповых приводов существенно изменили ситуацию на производстве. Не нужны стали собственные гидро– и тепловые станции с водяными колесами и паровыми котлами. Дорогостоящие и ненадежные ременные передачи заменились электрическими проводами, хотя при групповом электроприводе внешний вид цеха изменился мало.
В конце XIX века среди сторонников группового и индивидуального приводов было немало споров. Одни считали, что переход к малым индивидуальным двигателям усложнит производство и продукция станет соответственно дороже. Другие настаивали на уменьшении потерь при механических передачах, на независимости размещения оборудования от центрального распределения, на повышении безопасности и общей культуры производства, а следовательно, и на повышении производительности труда. Почти четверть века шли эти препирательства, пока индивидуальный привод не победил полностью.
В 50-60-е годы XX столетия в системах управления приводом стали применяться полупроводниковые приборы. Новая силовая электроника существенно повлияла на многие области техники, в том числе и на схемы питания и управления электропривода. Особенно большую роль сыграли мощные тиристоры. Они позволили отказаться от громоздких и ненадежных ртутных выпрямителей и тиратронов.
Тиратронами (от греческого «дверь или «вход» – thyra и (элек)трон) назывались ионные приборы тлеющего разряда (с холодным катодом) или несамостоятельного дугового разряда (с подогревным катодом) и управляющими сетками. Тиратроны тлеющего разряда применялись в качестве реле, а тиратроны дугового разряда – в качестве управляемых вентилей.
В конце ХХ столетия тиратроны были вытеснены полупроводниковыми тиристорами, выполняющими те же функции.
Одна из важнейших задач в проектировании и создании электропривода – его силовое управление. В 90-х годах ХХ века ряд фирм выпустили силовые транзисторы на немыслимые, казалось бы, токи силой до 600 А при напряжениях до 1200 В. Эти приборы позволили создать новые управляющие схемы и устройства для регулируемого привода.
Современный регулируемый элекропривод – сложная комплексная система, которая является основным поставщиком механической энергии для большинства агрегатов, связанных с движением. Единый силовой канал, состоящий из разного рода преобразователей энергии, тесно сплетен с информационным каналом, в который входят всевозможные измерительные и управляющие устройства. Диапазон применений современного электропривода неоглядно широк: от аппарата для искусственного дыхания и до гигантского рольганга или шагающего экскаватора.
По прогнозам специалистов, в будущем подавляющее большинство регулируемых электроприводов будет работать на переменном токе. Лишь примерно 15 % останется на долю постоянного тока и около 10 % займут гидроприводы. Ну и 7 % устройств останется за механическими приводами.
Заключение
Конечно, по чести говоря, следовало бы продолжить описание, добавив в него рассказы об изобретении телеграфа, телефона и радио, без которых не мыслится современная жизнь. Но тогда потребовали бы рассказов телевидение и лазерная техника, полупроводниковые приборы, интегральные схемы и компьютеры, промышленная электроника, современная светотехника, электроизмерительные приборы и электротехнические материалы!… Список можно было бы, наверное, еще и продолжить. Но вспомним незабвенного Козьму Пруткова: «Нельзя объять необъятное». Так и в данном случае. Электричество прочно вошло в нашу жизнь, создало новую цивилизацию. И трудно, даже невозможно себе представить, что еще полтора века назад все было совсем иначе. Ведь начало электротехнической промышленности, примерно в 40-х годах XIX века, было весьма скромным. Пожалуй, с развитием телеграфии наметился некоторый спрос на электроприборы. Затем мощный толчок новой отрасли дало электрическое освещение. Из механической промышленности постепенно стала выделяться отрасль, которая занималась изготовлением в основном электроприборов и электромашин. В конце XIX столетия возникла электрохимия, первые успехи ощутили создатели электропривода. Была решена проблема передачи электрической энергии на большие расстояния, введен в обиход переменный ток… Электротехника шагнула от вольтова столба до центральных электростанций и от первых магнитоэлектрических машин к серьезным генераторам и турбогенераторам переменного трехфазного тока.
Что ждет нас дальше? Пытаться предсказать путь развития науки и техники – занятие неблагодарное. Действительность, как правило, опережает фантазию. Научно-технический прогресс продолжает набирать скорость. Но сколь долго это продлится и к чему приведет хотя бы за время жизни одного поколения, сказать трудно. Слишком много неизвестных в системе уравнений, описывающих жизнь общества.
Правда, есть и одно незыблемое правило, древнее, как сам человек, и справедливое на все время нашего существования: жить и творить надо так, чтобы результат был во благо, а не во вред другим людям. Только тогда имена таких творцов, как Гильберт, Ломоносов, и многих других, о ком вы прочитали в этой книге, останутся жить в памяти потомков.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.