Электронная библиотека » Анатолий Томилин » » онлайн чтение - страница 11

Текст книги "Мир электричества"


  • Текст добавлен: 21 декабря 2013, 04:19


Автор книги: Анатолий Томилин


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 11 (всего у книги 22 страниц)

Шрифт:
- 100% +
Электрические «консервы» и проблема энергоемкости

Давайте еще раз вернемся ко времени, когда Алессандро Вольта построил свою первую батарею. Для большинства это было чудо, которое привлекло еще больше любителей физики к электрическим экспериментам. Год или два спустя учитель музыки в Париже, некто Готеро, проводящий эксперимент по разложению воды на кислород и водород с помощью вольтова столба, обнаружил, что две золотые проволочки нехитрого прибора, соединенные вместе по окончании опыта и приложенные к языку, дают такое же ощущение, как и батарея Вольты, только значительно слабее. Объяснить это незначительное явление никто не мог, да оно было и не очень-то впечатляющим. Но несколько лет спустя к его опыту вернулся немецкий формацевт Иоганн Вильгельм Риттер, ставший позже за смелость мысли и широту взглядов членом Мюнхенской академии. Он построил столбик из сорока только медных кружков, проложенных суконками, которые были смочены подкисленной водой. Соединил полюса столбика с вольтовой батареей и через некоторое время убедился, что его конструкция зарядилась электричеством. Теперь вторичные, или заряжаемые, столбы привлекли к себе внимание многих. Тем более что имеющиеся гальванические элементы очень быстро утрачивали свою силу из-за поляризации. В 1839 году Грове изобрел газовый «вторичный элемент», который давал ток лишь после зарядки его от какого-нибудь постороннего источника. Однако из-за неудобства пользования «газовый элемент» Грове распространения не получил.

Примерно в 1859–1860 годах в лаборатории Александра Беккереля – второго представителя славной династии французских физиков – работал в качестве ассистента Гастон Планте. Молодой человек решил заняться совершенствованием вторичных элементов, чтобы сделать их надежными источниками тока для телеграфии.



Аккумуляторы XIX века


Сначала он заменил платиновые электроды «газового элемента» Грове свинцовыми. А после многочисленных опытов и поисков вообще перешел к двум тонким свинцовым пластинкам. Он их проложил суконкой и навил этот «сэндвич» на деревянную палочку, чтобы он влезал в круглую стеклянную банку с электролитом. Затем подключил обе пластины к батарее. Через некоторое время «вторичный элемент» зарядился и сам оказался способен давать достаточно ощутимый постоянной ток. При этом, если его сразу не разряжали, способность сохранять электродвижущую силу оставалась в нем на довольно длительное время. Это было настоящее рождение накопителя электрической энергии, или аккумулятора.

Слово «аккумулятор» происходит от латинского accumulator, что означает «собиратель». В технике так называют устройства, позволяющие накапливать энергию с целью ее дальнейшего использования. При этом аккумулятор может быть не только электрическим. Самым простым видом можно считать сжатую или растянутую пружину, в которой запасается механическая энергия, или тяжелый маховик, раскрученный до большого числа оборотов и запасающий таким образом кинетическую энергию. На гидроаккумулирующих станциях избыток электроэнергии используется для подъема воды из нижнего резервуара в верхний. Есть пневматические аккумуляторы, тепловые и, наконец, электрические.

Первые электрические аккумуляторы Гастона Планте имели очень незначительную емкость, то есть запасали совсем немного электричества. Но соединив несколько банок последовательно, напряжение батареи можно было увеличить, а при параллельном их включении увеличивалась емкость. При этом ток прибора оказывался тем сильнее, чем большая поверхность пластин соприкасалась с раствором электролита.



Свинцовые пластины аккумуляторов разных конструкций


Затем изобретатель заметил, что если заряженный первоначально прибор разрядить, затем пропустить через него ток в обратном направлении, да еще проделать эту операцию не один раз, то возрастает слой окисла на электродах и емкость вторичного элемента увеличится. Этот процесс получил название формовки пластин и занял у изобретателя Камилла Фора около трех месяцев…

Камилл Фор с юных лет увлекался техникой. Но он был беден и не получил образования. Вынужденный зарабатывать на жизнь, Камилл сменил множество специальностей. Был рабочим, чертежником, техником, химиком на английском пороховом заводе, работал и у Планте. Разносторонние практические знания сослужили самоучке добрую службу.

После Парижской выставки 1878 года Фору пришла идея нового способа формовки пластин. Он попробовал заранее покрывать их оксидом свинца, свинцовым суриком. При зарядке сурик на одной из пластин превращался в перекись, а на другой соответственно раскислялся. При этом слой окисла приобретал очень пористое строение, а значит, площадь его поверхности значительно увеличивалась. Процесс формовки протекал значительно быстрее. Аккумуляторы Фора при том же весе запасали значительно больше электрической энергии, чем аккумуляторы Планте. Другими словами, их энергоемкость была больше. Это обстоятельство особенно привлекало к ним симпатии электротехников. Но главная причина их возросшей популярности заключалась в другом.

В конце столетия во многих странах на улицах и в домах появилось электрическое освещение. Лампы накаливания питались энергией пока еще маломощных машин постоянного тока. Ранним утром и поздним вечером, когда энергии требовалось больше, на помощь машинам приходили аккумуляторы. Это было значительно дешевле, чем устанавливать дополнительные генераторы. Тем более что в спокойные дневные и ночные часы аккумуляторы могли заряжаться, поглощая излишки вырабатываемой машинами энергии.

Дальнейшее совершенствование свинцово-кислотных аккумуляторов шло по пути улучшения их конструкции и изменения технологии изготовления пластин.

Несмотря на широкое распространение, свинцовый аккумулятор – довольно капризное детище электротехники. Он требует очень чистого электролита. Аккуратные мотоциклисты и автолюбители это хорошо знают и доливают «банки» с электролитом только дистиллированной водой. Аккумулятор не терпит перегрузок. Если ток разряда чересчур сильный, пластины разрушаются. Не любит свинцовый аккумулятор перегрева, переохлаждения, глубокого разряда и частых перезарядов. Корпуса свинцово-кислотных аккумуляторов, изготовленные из стекла или пластмассы, хрупки. А кислотный электролит на зарядных станциях создает совершенно неприемлемую экологическую обстановку.

В 80-х годах XX столетия был предложен проект создания гигантского свинцово-кислотного аккумулятора весом более двух тысяч тонн. Предполагалось, что он займет площадь около пятой части гектара и будет предназначен для подключения к электросети в часы пиковой нагрузки. Проектная мощность – порядка сорока пяти мегаватт. Заряжать его можно в ночное время, когда потребление энергии падает.

Применение такого супераккумулятора позволило бы выровнять работу тепловых электростанций, особенно страдающих от неравномерности нагрузки, и дало экономию нефтяного топлива. Однако проект реализован не был.

Недостатки кислотных аккумуляторов еще на заре их развития заставляли изобретателей искать замену свинцу. Попыток было много. Большинство безуспешных. Удача выпала на долю Томаса Алвы Эдисона. После множества опытов американский изобретатель построил железо-никелевый щелочной аккумулятор, который широко используется в наши дни. В нем отрицательный электрод выполнен из пористого железа или кадмия с большой рабочей поверхностью. Положительный электрод – никелевый, окруженный окисью трехвалентного никеля. В качестве электролита используется 20 %-ный раствор едкого кали или едкого натра. Корпус чаще всего изготавливается из стали.



Томас Алва Эдисон (1847–1931)


Правда, электродвижущая сила щелочного аккумулятора немного ниже, чем у свинцового. Коэффициент полезного действия тоже меньше (примерно в два раза). Да и стоит щелочной аккумулятор дороже. Но… Он хорошо переносит перегрузки. Нечувствителен к избыточному заряду и сильному разряду, прочен, легко переносит перегрев и не нуждается в ремонте. А поскольку из щелочных аккумуляторов не выделяются газы, их можно делать герметично закрытыми. Согласитесь, что преимущества впечатляющие.

Но не менее впечатляющи и недостатки. И прежде всего недостаточная емкость. Вот почему во всех промышленно развитых странах внимание многих научно-исследовательских коллективов направлено на разработку новых типов аккумуляторов и супераккумуляторов. Главная задача – повысить энергоемкость: увеличить количество запасаемой энергии на единицу веса аккумулятора.

На пути к супераккумулятору

Проблема создания энергоемких аккумуляторов приобретает особое значение в связи с бурным развитием транспорта. Автомобили пожирают запасы дорогостоящего горючего и загрязняют атмосферу. В 1898 году француз Ж. Шасслу-Лоба достиг на электромобиле скорости 63 км/ч. А через год гонщик К. Иенатци установил мировой рекорд скорости на суше – почти 160 км/ч на машине, снабженной аккумуляторной батареей массой около 2 т.

Между тем в Чикаго в начале XX века количество электромобилей примерно вдвое превосходило количество машин с бензиновыми двигателями. В чем же дело? Почему до сих пор автомобилестроители не перешли на экологически безвредную электроэнергию? Увы, главная проблема как раз и заключается в аккумуляторах. Ведь современный свинцово-кислотный аккумулятор весом пять с половиной килограммов, который стоит на автомобиле, способен накопить и удержать в себе столько энергии, сколько ее заключено. в рюмке бензина! Сорок литров бензина – емкость бака обычной легковой машины – по заключенной в них энергии эквивалентны энергии аккумуляторных батарей весом четыре с половиной тонны. А время заряда-заправки? Сорок литров бензина вы зальете за пять, ну, за десять минут. Перезарядка же аккумуляторов длится часами.

Электромобили не вписываются и в общий темп существующего дорожного движения. Они медленно разгоняются и трудно берут подъемы. Их максимальная скорость и дальность пробега между перезарядками аккумулятора незначительны. Так что пока эта техника, на радость нефтегазовым «королям», не конкурентоспособна.

Существуют серно-натриевые и хлорно-литиевые аккумуляторы с удельной емкостью раз в десять, а то и в двенадцать большей, чем у свинцово-кислотных аккумуляторов. Натрий – металл, обладающий высокими энергетическими свойствами. В рабочем состоянии и натрий и сера нуждаются в подогреве, чтобы перейти в расплавленное состояние. Их разделяет сосуд из пористой керамики, изготовленной на основе алюминия. Главное свойство сосуда – его способность пропускать только ионы натрия. Для ионов серы и для атомов обоих химических элементов керамическая мембрана – непреодолимый барьер. Таким образом, керамика играет роль как бы твердого электролита. Но хотя натрий и сера плавятся при температуре 97-119 °C, для успешного протекания электрохимической реакции их нужно нагреть до 300 °C, не меньше. Правда, серно-натриевый аккумулятор требует постороннего источника тепла только для начала работы. Потом необходимая температура поддерживается за счет тепла, выделяющегося в ходе химической реакции.

Серно-натриевый элемент дешев. Применяемые в нем материалы не дефицитны. Во время работы из него не выделяются газы, значит, его можно герметизировать. А если добавить к этому еще и простоту заряда, то может показаться, что решение проблемы у нас в кармане. Но попробуем перечислить и недостатки. Сера и натрий – огнеопасны. А перед работой аккумулятор необходимо подогревать. Едкие вещества легко разъедают герметическую оболочку. И натрий так активно соединяется с водой, что эта реакция подобна взрыву. Да и расплавленная сера при контакте с воздухом образует ядовитый сернистый газ. Так что, несмотря на герметичность, такой аккумулятор требует большой осторожности при эксплуатации.

Похож и хлорно-литиевый аккумулятор, удельная энергоемкость которого еще выше. Но у него серьезным недостатком является ядовитость хлора. А ну как прорвется он где-нибудь!.. Конечно, бензин тоже не такое уж безобидное вещество, особенно если поблизости есть открытый огонь. Но к свойствам бензина все привыкли. А вот к характеру натрия и лития, хлора и серы мы относимся пока настороженно.

Тем не менее созданы очень любопытные «электрические консервы». Вот, например, литиево-никельгалоидный аккумулятор. В нем работает уже знакомый нам металл литий и неядовитое неорганическое фтористое соединение никеля. Этот аккумулятор не требует подогрева, не выделяет газ, что позволяет сделать его полностью герметичным. Энергоемкость его – на уровне супераккумуляторов, описанных выше, а процесс зарядки длится всего несколько минут. Прекрасно, не правда ли? Вот мощность его невелика. Но не будем забывать, что и современная техника сильно миниатюризировалась.

Существуют воздушно-цинковые аккумуляторы, в которых кислород атмосферы окисляет цинковый анод. В них запас энергии определяется количеством цинка, способного вступить в реакцию. Но у них пока мал срок службы. Идея использовать воздух в качестве одной из составляющих системы накопителя энергии очень заманчива, хотя реализовать ее нелегко.

Интересное и перспективное направление – разработка топливных элементов. Правда, некоторые исследователи считают, что эти системы, занимающие промежуточное положение между гальваническими элементами и аккумуляторами, относятся скорее к электрическим машинам. Они их так и называют: электрохимические генераторы (ЭХГ). В топливных элементах свободная энергия электрохимической реакции переходит непосредственно в электрическую энергию. Вот, например, как работает водородно-кислородный топливный элемент: газ водород поступает из баллона-термоса, где хранится в сжиженном состоянии, к отрицательному электроду-катализатору. Здесь он ионизуется. Точно так же к положительному электроду поступает кислород. Ионы водорода проходят через ионообменную мембрану, соединяются с ионами кислорода. Образовавшаяся в результате реакции вода – единственный «выхлоп» такого элемента-генератора. Заманчивая перспектива, не так ли? Тем более что в качестве топлива может применяться не только сжиженный водород, но и другие вещества.

Потребность в разработке новых аккумуляторов особенно остро проявилась в 70-е годы XX века в связи с внедрением в космической технике солнечных батарей. Для налаживания выпуска специальных серебряно-цинковых аккумуляторов технологам пришлось создать не только новые конструкции, но и новые материалы, и электролиты.

В серебряно-цинковых аккумуляторах отрицательный электрод, как и полагается, сделан из цинка, а положительный – из окиси или перекиси серебра. Электролитом служит едкое кали. Энергоемкость таких аккумуляторов раз в шесть больше, чем у свинцовых. Кроме того, они могут работать при достаточно низких (до -60 °C) температурах, давать сильные токи и долгое время находиться в разряженном состоянии.

В результате были получены аккумуляторы, которые могут работать длительное время, в том числе в буферном режиме и в весьма жестких условиях космоса. В 80-е годы XX века для межпланетной станции «Венера» и программы спускаемого аппарата «Союз» потребовались герметичные буферные батареи, устойчивые не только к условиям открытого космоса, но и способные выдерживать серьезную ударную нагрузку. Еще более жесткие требования были предъявлены к аккумуляторам для обеспечения питания аппаратуры на космических станциях «Союз» и на спутниках серии «Космос». Эти работы велись как в Советском Союзе, так и в США. Велись параллельно и примерно в едином темпе. В долгосрочных космических программах «Венера», «Марс», «Молния», «Салют», равно как и в американских: «Маринер», «Пионер», «Эксплорер», – использовались в основном герметичные никель-кадмиевые аккумуляторы со сроком службы в несколько лет, что особенно важно для межпланетных полетов.

Огромную работу проделали наши специалисты по энергообеспечению космической системы «Энергия-Буран». Ракетчики потребовали от электриков создания аккумуляторов рекордной емкости до 130–140 А · ч при удельной энергии до 150 В · ч на килограмм веса. Таких параметров мировая практика раньше не знала. И тем не менее подобные аккумуляторы были созданы на Государственном научно-производственном предприятии «Квант».

На космических аппаратах «Радуга» и «Горизонт» прошли испытания новые никель-водородные аккумуляторы со сроком службы до пяти лет, и специалисты «Кванта» работают над созданием еще более долгодействующих никель-водородных и никель-металлгидридных аккумуляторов.

Интересным направлением современной научно-технической мысли является возможность использования в сверхпроводящих катушках больших значений электрического тока, а следовательно, и впечатляющего запаса электроэнергии.

Глава 7. Три кита электротехники
«Электрический конфликт» Ханса Эрстеда

Компасные мастера XVII века не раз замечали, что у кораблей, пришедших из дальних плаваний и побывавших в жестоких грозовых бурях, компасные стрелки оказывались перемагниченными. Северный конец указывал на юг, а южный – на север. «Что за чудо?» – удивлялись они, перекрашивая или меняя испорченные стрелки на «правильные». Никому, конечно, и в голову не приходило связать «болезнь перемагничивания компасной стрелки» с атмосферным явлением, а точнее – с молнией. Но вот жарким грозовым днем в июне 1731 года молния ударила в дом почтенного купца города Уэкфилда. Услышав грохот, испуганный негоциант вбежал в комнату и обнаружил, что громовая стрела разбила ящик со столовыми приборами. Стальные ножи и вилки разлетелись по всей столовой. Когда прислуга принялась их подбирать и складывать в буфет, оказалось, что ножи и вилки намагничены. И случай явно указывал на то, что причиной явления могла быть… только молния. А что такое молния? На дворе, слава богу, XVIII век. Просвещенные люди увлекаются науками и знают, что молния – это всего-навсего огромная электрическая искра.

7 сентября 1753 года в Санкт-Петербургской императорской академии профессор Эпинус прочел на конференции трактат «О сходстве электрической силы с магнитною». В своем фундаментальном труде «Опыт теории электричества и магнетизма», изданном шесть лет спустя, господин Эпинус утверждал, что между электрическими и магнитными явлениями существует непременная связь и силы взаимодействия электрических и магнитных зарядов изменяются обратно пропорционально квадрату расстояния между ними…

Сам Алессандро Вольта высоко оценил работы петербургского академика. А уж кому бы этого не знать… Интресно, что английский химик Гемфри Дэви, соорудив гигантский вольтов столб, состоящий из двух тысяч пар пластин, и получив электрическую дугу, обнаружил, что пламя дуги отклоняется магнитом. Правда, это было не совсем то. Пламя есть пламя. А вот подтвердить строгим физическим опытом подозреваемую связь электричества с магнетизмом не удавалось никому из физиков.

Уже были найдены связи электричества со светом, электричества со звуком – треск электрической искры, даже связь между электричеством и теплом – тонкие проводники нагревались, когда по ним проходил электрический ток от вольтова столба. А вот убедительно показать, что существует связь электричества с магнетизмом, никак не удавалось. Мюнхенский физик Иоганн Вильгельм Риттер утверждал, что всякий вольтов столб есть магнит, поскольку ток от него, пропущенный через серебряную проволоку, делает ее магнитной. Риттер пользовался славой гениального, но сумасбродного человека, и к его словам не очень-то прислушивались. Директор Политехнического института в Вене Иоганн Иозеф Прехтль, желая изучить магнитные свойства вольтова столба, подвешивал его на шелковых нитях. Он писал: «…В природе все явления имеют значение или притягательных, или химических действий электричества. так что в сущности магнетизм и химизм суть главные ветви общей науки, электрицизма».

Сегодня даже удивительно читать столь проницательные суждения, во многом соответствующие нашим воззрениям. Но в те времена это было лишь мнением, лишенным экспериментального подтверждения.

В 1802 году Джан Доменико Романьози – падуанский адвокат, увлекавшийся электрическими опытами, обнаружил отклонение магнитной стрелки током, проходившим по серебряному проводнику. Романьози хотел было описать открытое явление в подробном мемуаре, но так и не собрался.



Ханс Кристиан Эрстед (1777–1851)


Опыты, сопровождавшиеся странными магнитными проявлениями электрического тока, продолжались до 15 февраля 1820 года. В тот день в Копенгагенском университете должен был читать лекцию о связи электричества с теплотой профессор Эрстед. Сорокатрехлетний ученый был довольно известной фигурой в Дании.

Ханс Кристиан Эрстед родился в семье аптекаря. Окончив медицинский факультет Копенгагенского университета, он получил диплом фармацевта. В двадцать два года стал доктором философии, затем профессором и принялся учить студентов в alma mater.

Его научные интересы были широки и разносторонни. За работы по получению хлористого и металлического алюминия Эрстед был принят в члены Датского королевского научного общества и стал его непременным секретарем. Он много ездил по европейским государствам и был знаком с учеными разных стран.

Эрстед был хорошим лектором и умелым популяризатором науки. Немудрено, что на его лекции собиралось достаточно много студентов. В те годы свободного посещения лекций студенты попросту игнорировали тех профессоров, которые читали плохо или худо знали предмет.

Сегодня, рассказывая о нагревании проволоки под действием протекающей в ней электрической жидкости, профессор Эрстед подошел к столу, чтобы показать опыт. Он хотел подключить к полюсам вольтова столба платиновую проволочку и дать желающим потрогать, чтобы убедиться в том, что она стала горячей. В те времена подобный результат вызывал настоящий восторг очевидцев.

Как случилось, что на столе рядом с нагреваемой проволокой оказался компас, сказать сегодня невозможно. Сей прибор отношения к теме лекции не имел. И его присутствие здесь было чистой случайностью. Но это была великолепная случайность!



Компас, сыгравший роль «великолепной случайности» в опытах Эрстеда


Не менее удачным было и то, что один из студентов, которого, по-видимому, не слишком интересовали электрические чудеса с нагреванием, заметил, что при замыкании цепи магнитная стрелка почему-то дергается. И надо же было этому студенту задать вопрос о причине «дерганья». Он был, по-видимому, все-таки любознательным молодым человеком, и жаль, что в истории не осталось его имени… Эрстед даже растерялся от неожиданности вопроса.

– Я не понимаю, господин студент, о чем вы говорите.

– Я говорю, герр профессор, о том, что видел собственными глазами. В момент замыкания цепи стрелка компаса отклонилась.

– Вы уверены, что это было так? – медленно переспросил Эрстед, оглядывая демонстрационный стол. Он сразу заметил, что один из проводов, идущий от батареи, образовал петлю и лежал на компасе почти параллельно стрелке.

– Я могу поклясться, что все было именно так! – воскликнул возмущенный недоверием студент и стал продвигаться к столу сквозь группу товарищей.

– Не двигайтесь! – закричал Эрстед. – Сейчас мы повторим опыт, ничего не изменяя. Господа, я прошу всех следить за стрелкой и сказать мне, что вы увидите.

Он снова замкнул цепь и едва не оглох от дружного крика студентов: «Отклонилась!»

Сколько времени Эрстед ждал этого момента! На какие только ухищрения не шел, чтобы обнаружить связь электричества с магнетизмом. А все оказалось так просто…



Эрстед демонстрирует отклонение магнитной стрелки под действием электрического тока


– Отклонение магнитной стрелки, господа, может быть вызвано единственной причиной, – голос его дрожал от волнения и прерывался, – электрическим конфликтом, то есть воздействием на магнитную стрелку электрической жидкости, которая движется в проводнике.

Пять месяцев спустя из печати вышли небольшие мемуары Эрстеда, озаглавленные «Опыты, касающиеся действия электрического конфликта на магнитную стрелку». В них он излагал правило, уже похожее на закон: «Гальваническое электричество, идущее с севера на юг над свободно подвешенной магнитной стрелкой, отклоняет ее северный конец к востоку, а проходя в том же направлении под стрелкой, отклоняет ее на запад». Однако почему все происходило именно так, а не иначе, Эрстед объяснить не мог.

Свой труд, напечатанный на латинском языке, Эрстед разослал во все известные научные общества, в редакции физических журналов и физикам, занимающимся вопросами электричества.

Интересно отметить, что, по мнению Эрстеда, магнитные свойства проводник с током проявлял лишь в том случае, когда находился в нагретом состоянии. Заблуждался он, полагая, что в проводнике происходит встречное движение положительной и отрицательной «электрической материи». Была ли это ошибка или ограниченность мышления, привычка просто следовать букве эксперимента и существующему общему мнению в науке?.. Сам Эрстед писал в своих мемуарах: «Этот конфликт образует вихрь вокруг проволоки». И сегодня мы понимаем, что этим «вихрем» было не что иное, как магнитное поле вокруг проводника.

Следом за мемуарами Эрстеда появился целый поток сообщений об исследовании нового явления. Условия его опыта изменяли, исследовали со всех сторон. Немецкий физик Иоганн Швейггер предложил использовать открытый эффект отклонения магнитной стрелки электрическим током для создания первого измерительного прибора – индикатора тока. Другие экспериментаторы обнаружили, что холодный проводник, по которому течет электрическая жидкость, так же хорошо отклоняет стрелку, как и нагретый. В разных странах физики стали вспоминать, что о сродстве вольтова столба и магнита уже давно велись разговоры и открытие Эрстеда вовсе не так уж и ново. Потом, как всегда, нашлись ученые, которые утверждали, будто бы они также проделывали аналогичный опыт и не раз получали сходный результат, но не обратили, дескать, на него внимания.

Но в том-то и заключается величие подлинного таланта. Мало поставить удачный опыт и обнаружить неизвестный до того эффект. Нужно еще осознать важность своей находки!


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | Следующая
  • 4.2 Оценок: 5

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации