Текст книги "Мир электричества"
Автор книги: Анатолий Томилин
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 8 (всего у книги 22 страниц)
Шарль Огюстен Кулон был военным инженером. Родился он в 1736 году в Ангулеме. Учился в Париже. Окончив учебу, поступил на военную службу и, прослужив несколько лет в разных гарнизонах, вышел по нездоровью в отставку. Следует отметить, что все годы службы он не оставлял научных занятий, интересуясь исследованиями в области механики, магнетизма и электричества. За свои научные работы, послужившие улучшению устройства компаса, Кулон получил премию Парижской академии наук. А два года спустя – вторую премию за «теорию простых машин». В 1781 году его избрали членом академии. И скоро он стал одним из генерал-инспекторов министерства народного просвещения.
Изучив явление кручения как деформацию упругих тел, Кулон в 1784 году изобрел крутильные весы – необыкновенно чувствительный прибор, с помощью которого можно было измерять совсем слабые взаимодействия. Состояли они из тоненькой не проводящей электричество палочки, подвешенной горизонтально на конце проволочного волоска. Палочка заканчивалась крохотным бузинным шариком. Рядом находился еще один такой же шарик, насаженный на неподвижный вертикальный изолированный стержень. Наэлектризованные одинаково, шарики взаимно отталкивались. При этом подвижный шарик закручивал проволочный волосок. Законы круче ния, найденные Кулоном, позволяли измерять как силу отталкивания, так и силу притяжения заряженных шариков, а потом и магнитов. Проделав множество раз одни и те же измерения, чтобы избавиться от возможной ошибки, Кулон обобщил их и вывел закон, по которому следовало, что электрические заряды взаимодействуют с силой, обратно пропорциональной квадрату расстояния между ними.
Шарль Огюстен Кулон (1736–1806)
Раньше Кулона предположение о том, что сила взаимодействия двух наэлектризованных тел должна быть обратно пропорциональна квадрату расстояний между ними, уже высказывал Джозеф Пристли в «Истории электричества», написанной по настоянию Франклина. В один из своих приездов в Англию Франклин в беседе с Пристли обратил его внимание на то, что пробковые шарики, подвешенные внутри металлического сосуда, не обнаружили никакого воздействия со стороны стенок наэлектризованного сосуда. Сам Франклин не смог объяснить причины наблюдаемого явления. Пристли в конце 1766 года повторил опыт Франклина и высказал предположение: «Нельзя ли заключить из этого опыта, что электрическое притяжение подчиняется такому же закону, как и тяготение, то есть оно изменяется пропорционально квадратам расстояния».
Это предположение не обратило на себя внимания современников. И к тому же оно было только предположением. Доказал же его Кулон!..
В качестве гипотезы о природе электрической материи Кулон принял существование двух электрических жидкостей – положительной и отрицательной. Эту же гипотезу он распространил и на магнитные тела. Его теоретические выводы позволили ученым в дальнейшем вычислять распределение электричества по поверхности тел правильной формы и дали направление применению математического анализа в науке об электричестве.
Так и вошел в науку закон о взаимодействии электрических зарядов под названием закона Кулона.
Крутильные весы Кулона
На первых порах могло показаться, что открытие Кулоном закона взаимодействия электрических зарядов не внесло никаких кардинальных изменений в развитие учения об электричестве. Лишь двадцать пять лет спустя, когда французский ученый Пуассон с помощью этого закона решил математическую задачу о распределении заряда по поверхности проводника, исследователи должным образом смогли оценить его значение. Сегодня, оглядывая путь, пройденный человеческим познанием за два с лишним столетия, мы видим, что именно на период работ Кулона приходится начало новой эпохи в развитии науки об электричестве – эпохи количественных соотношений.
Гений-мизантропСпустя более полувека после того, как закон Кулона получил официальное признание, английский физик Джеймс Клерк Максвелл разбирал рукописи Генри Кавендиша. Среди пожелтевших от времени бумаг он случайно наткнулся на прекрасное опытное доказательство выдвинутой Пристли гипотезы. Относились эти опыты примерно к 1773 году, то есть на двенадцать лет опережали работу Кулона. Кем же был Генри Кавендиш, оставивший неопубликованным великое открытие века? Его фигура необычна и примечательна, а его труды достойны того, чтобы о них рассказать подробнее.
В 1731 году в семье лорда Карла Кавендиша, герцога Девонширского, родился второй сын. Ребенок увидел свет в благословенной Ницце, где его молодая мать пыталась вернуть себе здоровье, потерянное на берегах туманного Альбиона. Увы, два года спустя, когда ее маленький сын, получивший имя Генри, только начинал говорить, она умерла. Мальчика ждала незавидная судьба младших детей из английских аристократических фамилий. Генри не мог наследовать герцогский титул. А в связи с тем, что волей судьбы он оказался младшим в роду, ему не приходилось рассчитывать и на фамильное состояние. Усвоив это, юный Кавендиш раз и навсегда отказался от честолюбивых мыслей, сосредоточив весь свой интерес на естествознании.
Генри Кавендиш (1731–1810)
Генри рос нелюдимым, замкнутым ребенком, с недетским взглядом глубоко посаженных глаз. На каждое замечание он реагировал болезненно, подозревая покушение на свою независимость, самостоятельность и гордость.
Он получил хорошее домашнее воспитание. Отец, увлекавшийся вопросами метеорологии, много времени уделял младшему сыну. Привлекая его к своим опытам, учил строить приборы.
Поздно по сравнению с окружающими подростками поступил он в Питерхаус – один из колледжей Кембриджского университета. Но проучился там недолго. Не желая из гордости подвергаться экзаменам, Генри покинул Питерхаус. Он уединился в своем доме, свел до минимума потребности, чтобы прожить на имеющийся небольшой доход, и полностью отдался науке. Примерно с 1764 года он провел серию исследований газов. Однако и здесь, не желая признавать чей-либо авторитет, полный безразличия к окружающему обществу, не публиковал своих результатов.
В эти годы сложился окончательно его характер. Современники рассказывают, что с домашними Кавендиш объяснялся по преимуществу жестами. Так было короче. Он не выносил присутствия женщин и старался не заводить вообще никаких новых знакомств.
В сорок один год он получил огромное наследство от умершего дяди, но это ни на йоту не изменило его привычек. Разве что он стал тратить без оглядки деньги на постановку экспериментов и на пополнение своей библиотеки.
История не оставила нам подлинного портрета этого ученого. Существует только рисунок, являющийся собственностью Британского музея. Он, правда, больше похож на шарж…
В. П. Карцев в биографии Максвелла приводит любопытное описание Генри Кавендиша:
«Странная нелюдимость, паническая боязнь женщин, угрюмый характер, молчаливость. Визгливый голос, с каким-то великим трудом исторгающийся из горла. Друзья злоупотребляли его доверием в пользовании его библиотекой. Незнакомцы не могли и думать о приглашении в дом. Все, что он делал, он, казалось, делал с великим трудом: писал, ходил.
Странной казалась его походка, быстрая, но вместе с тем какая-то болезненная и искусственная, нелегкая. Ходил он, чтобы ни с кем не здороваться, посредине мостовой, между экипажами. Ко всему, что не касалось науки, Кавендиш был холодно-безразличен, никогда не слышали, чтобы он о чем-то отозвался более или менее положительно».
Такова характеристика этого человека – воплощения английской эксцентричности и чудачества. И вместе с тем Кавендиш был блестящим ученым. В его манускриптах Максвелл нашел описание удивительных по тонкости, оригинальности замысла и по выполнению экспериментов. Целый ряд великолепных открытий был сделан им за закрытыми дверями домашней лаборатории. Открытий, о которых он и не подумал оповестить ученый мир.
«В своих рукописях, – пишет Максвелл, который пять лет разбирал рукописный архив Кавендиша, готовя 25 пакетов манускриптов к изданию, – он обнаруживает знакомство с законами параллельного и последовательного соединения проводников, однако, для того чтобы пролить свет на смысл его слов, нужно обратиться к его опубликованной статье (о скате-торпедо). Он провел весьма обширные исследования в области проводимости солевых растворов в трубках, которые можно уподобить проволокам из разных металлов. Создается впечатление, что он достоин еще больших почестей, так как он превзошел Ома задолго до того, как были открыты постоянные токи. Его измерения емкости заставляют нас попотеть в кавендишской лаборатории, прежде чем мы достигнем точки, где он остановился…»
Удивительно, что все его открытия были сделаны до того, как в руках экспериментаторов появился первый электрический элемент – вольтов столб, дающий, хоть и кратковременно, постоянный ток. Источниками электричества Кавендиша были легко бегущие облака, несущие в себе едва уловимые заряды, и ненадежная электрическая машина. «Его единственным несчастьем, – добавляет Максвелл, – было то, что он не имел электрометра Томсона. И тем не менее. Он нашел диэлектрические постоянные для стекла, смолы, воска и т. п.».
Опыт Кавендиша, показывающий, что электричество распределяется только по поверхности проводника
Тончайшие измерения были проделаны Кавендишем фактически без контрольных приборов – их еще просто не изобрели. Единственным регистрирующим прибором ученого был он сам и его столь же молчаливый слуга Ричард – «физиологический гальванометр».
Фактически он предвосхитил открытие закона Кулона и раньше Фарадея нашел влияние диэлектрика на емкость конденсатора. Кроме физических опытов, Кавендиш много занимался химией. В 1766 году он получил водород и углекислый газ и измерил их плотность. В 1789 году определил количество кислорода в воздухе, нашел состав воды. Дитя своего века, он был тем не менее сторонником теории флогистона и именно с этих позиций объяснял результаты многих химических экспериментов.
Закончив одну работу, Кавендиш занимался следующей проблемой, ни словом публично не обмолвившись о сделанных открытиях. Удивительный характер! Впрочем, мизантропия и оригинальность не столь уж уникальные качества гениев – героев истории науки.
Кавендиш никогда не болел. Лишь на восьмидесятом году жизни, впервые почувствовав недомогание, он понял, что умирает. Потребовал, чтобы никто из слуг не входил в его комнату, а врачу, прибывшему к нему, запретил помогать себе.
Таков был этот удивительный человек, гениальный ученый, во многом опередивший свое время.
Приглашение в БолоньюА теперь путешествие по времени приводит нас в итальянский город Болонью. На календаре дата: 26 сентября 1786 года. Мы идем по узким и кривым улочкам вдоль бесчисленных и, увы, обветшавших палаццо XIII и XIV веков – времени расцвета города. Многочисленные портики и аркады, зубчатые стены и башенки, выкрашенные в серый и розоватый цвета, придают окружающему определенный колорит. Улицы ведут к центральной площади, но наша цель – знаменитый Болонский университет. За время своего существования, с XI века, он не раз менял местонахождение, так что лучше спросить, как пройти. Благо в студентах на улицах недостатка нет… Итак: «Где находится помещение медицинского факультета?» Как же это будет по-итальянски?..
Экспериментальный стол болонского физиолога Луиджи Гальвани
Вот он! Давайте поднимемся на второй этаж, где в лаборатории практической анатомии синьор профессор Гальвани готовит экспериментальный материал к завтрашней лекции.
О, да здесь не только препараторская! На столе, на котором Гальвани препарирует лягушек, стоит электрическая машина и ряд лейденских банок. Трещат искры. Диковатого вида студент крутит ручку, а под ножом препаратора в сумасшедшем танце дергаются отрезанные лапки болотных квакух. Но дадим слово самому синьору профессору. В первой части «Трактата о силах электричества при мышечном движении», вышедшего из печати в 1791 году, он пишет: «Я разрезал и препарировал лягушку и, имея в виду совершенно другое, поместил ее на столе, на котором находилась электрическая машина при полном разобщении от кондуктора последней и довольно большом расстоянии от него. Когда один из моих помощников острием скальпеля случайно очень легко коснулся внутренних бедерных нервов этой лягушки, то немедленно все мышцы конечностей стали так сокращаться, что казались впавшими в сильнейшие тонические судороги. Другой помощник заметил, что это удается тогда, когда из кондуктора машины извлекается искра.
Удивленный новым явлением, он тотчас же обратил на него мое внимание, хотя я замышлял совсем другое и был поглощен своими мыслями. Тогда я зажегся невероятным усердием и страстным желанием исследовать это явление и вынести на свет то, что было в нем скрыто».
Вы скажете: «Случайность! Какой-то итальянский врач препарировал лягушку и натолкнулся на непонятное явление…» Чтобы развеять это заблуждение, познакомимся поближе с синьором Гальвани.
Луиджи Гальвани (1737–1798)
Луиджи Гальвани родился в Болонье 9 сентября 1737 года в семье, имеющей достаточно средств, чтобы в двадцать два года он смог окончить медицинский факультет Болонского университета. В нем он и остался преподавать. В 1763 году синьор Гальвани становится профессором. Он не только хороший лектор, но и анатом. На его счету не одна удачная хирургическая операция. И при всей своей занятости Гальвани не бросает занятий наукой. В 1780 году он начинает исследования по физиологии нервов и мышц.
Но вернемся в лабораторию анатома. Зачем на препараторском столе стоят электрическая машина и лейденские банки?
Заметим – 1786 год, последняя четверть XVIII столетия! Как я уже рассказывал, середина века была отмечена поголовным увлечением электрическими опытами. Их количество должно было дать качественный скачок… Электризацией пытались не только выводить цыплят, но и лечить людей. Врачи электризовали лекарства, пациентов и, независимо от результатов, писали о «безусловно положительном эффекте». Кстати, ведь и лейденскую банку открыли, желая «зарядить» микстуру от кашля.
К описываемому времени появилось немало «целителей», уверявших, что они обладают особенно сильным электрическим воздействием и потому могут излечивать больных. Возникли даже «методики лечения», согласно которым расслабленных (парализованных) людей надо заряжать для излечения положительным электричеством, а безумных – отрицательным.
Опыты Гальвани с разнородными металлами
Думаю, теперь понятно, почему на столе у Гальвани оказался такой модный прибор, как электрическая машина. Она была ему необходима для медицинских опытов.
Обнаружив влияние электричества на лягушачьи лапки, Гальва-ни предположил, что все дело в электрических искрах. Но если слабая искра электрической машины заставляет лягушачью лапку дергаться, то что должно произойти во время грозы, при блеске молнии?.. Надо только дождаться грозы. И когда желанная погода наступила, ассистенты синьора профессора тотчас же отправились к соседнему пруду, откуда обычно черпали материал для экспериментов. Правда, злые языки утверждали, что после демонстрации студентам мясистые лапки частенько шли в кастрюльку, обеспечивая не только духовную пищу достопочтенному экспериментатору и его болезненной супруги. Но чего не говорят люди…
Так или иначе, но к началу грозы на железной ограде балкона лаборатории висела впечатляющая гирлянда лягушачьих лапок, нанизанных на медные проволочки. Наконец подул ветер. Забарабанил дождь, и блеснула первая молния. Отрезанные лапки исправно задергались, правда, не сильнее, чем в лаборатории, и вовсе не в такт с разрядами небесного электричества. Тем не менее эксперимент удовлетворил Гальвани.
«После успешных опытов во время грозы я пожелал обнаружить действие атмосферного электричества в ясную погоду. Поводом для этого послужило наблюдение, сделанное над заготовленными лапками лягушки, которые, зацепленные за спинной нерв медным крючком, были повешены на железную решетку забора моего сада: лапки содрогались не только во время грозы, но иногда, когда небо было совершенно ясно. Подозревая, что эти явления происходят вследствие изменения атмосферы в течение дня, я предпринял опыты. В различные часы в продолжение ряда дней я наблюдал нарочно повешенную на заборе лапку, но не обнаружил каких-либо движений в ее мускулах. Наконец, утомленный тщетным ожиданием, я прижал медный крюк, который был продет в спинной мозг, к железной решетке, желая посмотреть, не возникнут ли благодаря этому приему мышечные движения и не обнаружат ли они в чем-нибудь отличия и изменения, смотря по различному состоянию атмосферы и электричества». Лапка задергалась. Но ее сокращение никак не удавалось соотнести с «переменами в электрическом состоянии атмосферы».
Гальвани перенес опыты в помещение. Он укладывал лягушачьи лапки на подставки из разных металлов. В одних случаях сокращения были сильнее, в других – слабее. Он пробовал экспериментировать с деревянной дощечкой в качестве подложки, со стеклом, смолой. Эффект не наблюдался. Казалось бы, все подталкивало к тому, чтобы изучить роль разнородных металлов в обнаруженном явлении. Но Гальвани по этому пути не пошел. Анатом и физиолог, он решил, что лягушачьи лапки сами являются не чем иным, как источником особого вида электричества, неким подобием лейденской банки. В своем дневнике Гальвани записал: «Это было несколько неожиданно и заставило меня предположить, что электричество находится внутри животного». Металлы же в его понимании были просто проводниками открытого им нового «животного электричества».
Утверждая, что он открыл именно новый вид электричества, Галь-вани приводил в пример электрических рыб. Их способность наносить чувствительные удары была известна с глубокой древности. Есть свидетельства, что уже римские врачи помещали парализованных больных с целью излечения в бассейны с электрическими скатами. А когда испанские мореплаватели достигли берегов Америки и худо-бедно познакомились с природой Нового Света, то в XVII веке появились описания электрического угря.
Естественно, что в те времена никто этих рыб «электрическими» не называл. Сам термин появился лишь после работ Гильберта. Но когда выяснилось, что электрический удар от разряда лейденской банки такой же, как от прикосновения к электрическому скату, французский ботаник Марсель Адансон предположил, что и то и другое имеет одинаковую природу.
Проверяя высказанную гипотезу, английский физик Дж. Уолш выяснил, что «удар» электрического ската передается по проводнику, но не передается через стекло, дерево и другие изоляторы. Он даже наблюдал искры, проскакивающие между полосками фольги, наклеенными на теле ската, при разряде, и повторил опыт аббата Нолле, пропустив разряд (теперь уже не удар, а разряд) электрической рыбы через нескольких добровольцев. Этим была почти доказана электрическая природа явления.
Занимался электрическими рыбами и Гальвани. (Одна из них даже носит ныне его имя – «торпедо Гальвани».) Эти опыты лишь утвердили его в мнении, что если скаты могут вырабатывать электричество, то его должны давать и мышцы любого другого животного. При этом болонский профессор подчеркивал в своем «Трактате…», что считает электричество, возникающее при трении, так же как атмосферное и электричество скатов, сходным с «животным электричеством», которое открыл он. Это важно отметить, поскольку еще и пятьдесят лет спустя находилось немало ученых, считавших, что «животное электричество» должно иметь какие-то признаки, отличающие его от обычного. И лишь серия специальных работ Фарадея, показавшего, что все известные науке виды электричества ничем не отличаются друг от друга, смогла положить конец этому заблуждению.
Еще за десять лет до опытов Гальвани гениальный ученый-одиночка Кавендиш присоединил проволочки к брюху и спине ската и с помощью электроскопа с бузинными шариками измерил заряд на теле рыбы. Но Кавендиш никогда не публиковал результаты своих опытов.
Опыты Гальвани повторяли буквально во всех странах. Лягушки гибли тысячами во славу новой науки. Современники писали: «В течение целых тысячелетий хладнокровное племя лягушек беззаботно совершало свой жизненный путь, как его наметила природа, зная только одного врага, господина аиста, да еще, пожалуй, терпя урон от гурманов, которые требовали для себя жертвы в виде пары лягушачьих лапок со всего несметного рода. Но на исходе XVIII столетия наступил злосчастный век для лягушек. Злой рок воцарился над ними, и вряд ли когда-либо лягушки от него освободятся. Затравлены, схвачены, замучены, скальпированы, убиты, обезглавлены – но и со смертью не пришел конец их бедствиям. Лягушка стала физическим прибором, отдала себя в распоряжение науки. Срежут ей голову, сдерут кожу, расправят мускулы и проткнут спину проволокой, а она все еще не смеет уйти к месту вечного упокоения; повинуясь приказаниям физиков или физиологов, нервы ее придут в раздражение и мускулы будут сокращаться, пока не высохнет последняя капля «живой воды». И все это лежит на совести у Алоизо Луиджи Гальвани».
Опыты Гальвани
Со временем от лягушачьих лапок экспериментаторы перешли к конечностям кроликов и овец, пробовали действие электричества на ампутированной человеческой ноге. Английский врач из Глазго на публичной лекции приложил электроды от батареи лейденских банок к нервам и мышцам трупа повешенного и воспроизвел у него дыхательное движение грудной клетки. А когда покойник под действием электрического разряда открыл глаза и лицо его стало подергиваться, многие из присутствующих лишились сознания от ужаса.
«Гальвани – воскреситель мертвых!» – кричали заголовки газет. Казалось, оставалось совсем немного до исполнения вековечной мечты человечества. Для этого надо было только тщательно изучить «животное электричество Гальвани», найти его источник в теле и научиться заряжать этот источник, когда он иссякает со смертью.
Сначала Гальвани вел только дневники своих опытов. Но через десять лет он решил объединить результаты исследований и выпустил «Комментарий о силах электричества в мускульном движении». Книга вызвала большой интерес среди физиков и врачей, наперебой повторявших описанные опыты. Уже давно было известно, что электрические разряды от машин и лейденских банок вызывают конвульсии у людей, подвергавшихся их ударам. И хотя природа таких явлений оставалась неисследованной, медики-практики широко пользовались «электрической жидкостью» для лечения своих пациентов от всевозможных болезней.
Гальвани сравнивал мышцу с лейденской банкой, предполагая, что ее внешняя и внутренняя части заряжаются противоположным электричеством. Именно потому, что нерв – кондуктор этой банки соединяли с поверхностью мышцы, соответствовавшей внешней обкладке, происходил разряд, результатом которого было сокращение мышцы.
«Волнение, вызванное появлением книги Гальвани, среди физиков, физиологов и врачей, – писал историк науки Эмиль Дюбуа-Реймон, – можно сравнить лишь с бурей, появившейся в то же самое время на политическом горизонте Европы. Повсюду, где только имелись лягушки и где можно было раздобыть два куска разнородного металла, всякий хотел собственными глазами убедиться в чудесном воскрешении отрезанных членов».
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.