Электронная библиотека » Андрей Брюховецкий » » онлайн чтение - страница 5


  • Текст добавлен: 28 февраля 2023, 13:26


Автор книги: Андрей Брюховецкий


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 35 страниц) [доступный отрывок для чтения: 12 страниц]

Шрифт:
- 100% +

Клонирование гемопоэтических предшественников в краткосрочной культуре вязких сред с добавлением ростовых факторов дало возможность изучать коммитированные клетки-предшественники гемопоэза (КПГ) – клетки, имеющие определенную направленность дифференцировки (Colony assays of Haematopoietic cells, 1995). Считается, что клетка становится коммитированной, как только выходит из состояния покоя, хотя данное утверждение может оспариваться.

Были подробно описаны типы КПГ, вступивших на путь дифференцировки. В настоящее время в пуле коммитированных КПГ выделяют несколько популяций. На 14—18-й день после посева колонии в культуре образуется КОЕ-бласт – клоны из 40—1000 клеток без окончательной дифференцировки, с высокой способностью к самоподдержанию, которые при вторичных пересевах генерируют гетерогенные колонии из зрелых гемопоэтических клеток. Возможно, КОЕ-бласт – это переходная форма от ГСК к коммитированным КПГ (Leary, Ogawa, 1987; Rowley et al., 1987). КОЕ-бласт как клетки, инициирующие долгосрочные культуры, определяются рядом авторов как плюрипотентные.

Следующая в ряду дифференцировок – общий предшественник всех линий гемопоэза с высоким пролиферативным потенциалом – полипотентная КОЕ-ГЕММ (колониеобразующая единица гранулоцитов, эритроцитов, макрофагов и мегакариоцитов). Клетки именно этого пула восполняют при необходимости все ростки гемопоэза. В культуре КОЕ-ГЕММ образует смешанные колонии, в их составе обнаруживаются гранулоциты, эритроидные клетки, мегакариоциты и макрофаги. Клетки данной субпопуляции способны восстанавливать и лимфоидное звено, что было доказано методами меченых генов в сочетании с клонированием клеток (Чертков, Дризе, 1998; Lemieux et al., 1995). КОЕ-ГЕММ очень гетерогенны по размеру и составу, потенциал пролиферации у большей части клеток данного пула чрезвычайно высок, а грань между КОЕ-ГЕММ и СГК несколько размыта; возможно, часть клеток, формирующих такие колонии, могут быть отнесены к разряду стволовых.

Бипотентные клетки-предшественники относятся к разряду коммитированных в отношении миелоидного ростка гемопоэза предшественников, способных дифференцироваться по 2 направлениям. К данному классу клеток-предшественников относят КОЕ-ГМ – колониеобразующие единицы гранулоцитов, макрофагов, а также БОЕ-Э/Мег – раннего общего предшественника эритроцитов и мегакариоцитов (Bol, Williams, 1980; Debile, Columbel, 1996; Ferrero, Broxmeyer, 1983). БОЕ-Э/Мег представлены эритробластами в окружении мегакариоцитов, а КОЕ-ГМ формируют гетерогенные лейкоцитарные колонии в культуре полужидких (вязких) сред на 12-й день от посева и состоят из 100—1000 клеток. (Debile, Columbel, 1996). С точки зрения характеристики трансплантационного материала именно данный класс предшественников имеет наибольшее значение. КОЕ-ГМ определяет быстрое восстановление нейтрофильного звена, тогда как БОЕ-Э/Мег обеспечивают восполнение гемопоэза тромбоцитами и формируют красный росток.

Унипотентные клетки-предшественники: клоногенные предшественники гранулоцитов (КОЕ-Г), макрофагов (КОЕ-М) так же, как и КОЕ-ГМ, формируют колонии как минимум из 20—50 зрелых клеток (более 50 – критерий других лабораторий). При этом клеточные колонии гранулоцитов, содержащие меньшее число клеток, определены как кластеры, большие и малые (10—20 и 20—50 клеток соответственно). Кроме того, некоторыми исследователями принято, что гранулоцитарные колонии, содержащие более 500 клеток, соответствуют наиболее ранним гемопоэтическим предшественникам (в литературе встречаются термины «пре-КОЕ-Г» и «пре-КOЕ-ГМ»), подобным ранним эритроидным предшественникам (БОЕ-Э – бурстобразующие единицы эритроцитов) (Bender, van Epps, 1991; Cashman et al., 1983). БОЕ-Э формируются ранними эритроидными предшественниками на 18—20-й день от посева, могут быть малыми – включают 3—8 кластеров, средними – включают 9—16 кластеров, и большими – более 16 кластеров. Наиболее зрелые эритроидные предшественники – колониеформирующие единицы эритроцитов (КОЕ-Е) – образуют 1 или 2 кластера из 8—100 гемоглобинизированных эритробластов. Колонии такого типа формируются к 10—12-му дню с момента посева. Все клетки класса унипотентных обладают низкой способностью к самоподдержанию и высоким потенциалом пролиферации, обеспечивая быстрое, но кратковременное восстановление определенного (каждая единица – лишь одного) ростка гемопоэза. Материал с преобладанием гемопоэтических клеток-предшественников такого уровня дифференцировки наиболее успешно может быть применен в качестве гематологической поддержки при проведении полужестких химиотерапевтических режимов.

По мере накопления знаний в области изучения клоногенных предшественников были определены нормы количественного содержания различных колониеобразующих единиц при посеве 200 тыс. мононуклеарных клеток костного мозга и 1 мл нормальной периферической крови (табл. 1).



Данные, получаемые при оценке колониеобразования клеток крови, включая КПГ, имеют большое значение с точки зрения качества гематологического материала, который будет применен с целью гематологической поддержки при высокодозной химиотерапии.

Длительное время оценка качества гемопоэтического материала при аутологичной трансплантации проводилась на основании определения роста колоний клеток в различных полужидких системах. Однако отсутствие единых стандартов данного теста из-за многообразия реактивов, а также временная отсрочка в получении результатов делали достаточно информативный метод колониеобразования не совсем удобным для клинического применения.

И всегда возникал вопрос определения момента начала проведения сборов ПСК. Гематологические показатели крови не всегда отражали реальный выброс клеток-предшественников в периферическое русло, и часто сборы требовали проведения более 3 повторных сеансов аферезов.

Данная проблема была решена с момента открытия антигена CD34 – основного маркера гемопоэтических клеток-предшественников (Civin, Strauss, 1984; Katz et al., 1985).

Внедрение в клиническую практику методов проточной цитометрии позволило оценить фенотип клеточной мембраны с помощью моноклональных антител к различным дифференцировочным антигенам. Стало возможным иммунофенотипически охарактеризовать все типы КПГ, включая СГК, и иммунологически различать клетки-предшественники различных классов по уровням коэкспресии на CD34+-клетках других антигенов (Bender et al., 1991; Андреева и др., 2000).

Было установлено, что в норме популяция CD34+-клеток составляет 1—5% мононуклеарных клеток костного мозга и 0,01—0,1% клеток периферической крови, морфологически расцениваемых как бластные формы (Krause, Fackler, 1996; Sperling, Buchner, 1995). При этом уровни экспрессии CD34 могут быть как яркими (++), что определяет СГК, так и средними (+) у коммитированных предшественников и слабыми (-/+) на последних стадиях дифференцировки КПГ.

В настоящее время используется несколько моноклональных антител (МКА) к молекуле CD34: My10, HPCA2, ICH3, IMM3, ICO115, QBEND10 с различными спектрами чувствительности к данной молекуле и ее функциональным эпитопам. Показано, что наиболее качественными с точки зрения определения количеств циркулирующих КПГ являются МКА HPCA-2 с изотипом IgG-1 (Andrews et al., 1986; Loken, 1987; Siena et al., 1991).

Разработано несколько цитометрических протоколов для корректной оценки количества CD34+-клеток в кроветворной ткани, и наиболее распространенным является ISHAGE-протокол, однако в наших исследованиях показано, что применение этого метода может привести к некоторым погрешностям в количестве наиболее примитивных CD45, CD34+ стволовых кроветворных клеток. Изучение более 1 тыс. образцов мобилизованных стволовых кроветворных клеток крови и стволовых клеток костного мозга позволило нам разработать новый подход к оценке количества CD34+-клеток в любой кроветворной ткани на основании сочетания CD34 и нуклеотропных красителей семейства Syto (Гривцова, 2016).

Важным моментом изучения CD34+-клеток была демонстрация существования высокодостоверной корреляционной положительной взаимосвязи между числом CD34+-клеток в кроветворной ткани и количеством всех основных классов колониеобразующих единиц (Андреева (Гривцова) и др., 2000).

Исследование коэкспрессии на CD34+-клетках других дифференцировочных антигенов подтвердило установленную ранее высокую гетерогенность гемопоэтических стволовых клеток. В сочетании с оценкой роста колоний определение иммунологического фенотипа клеток-предшественников позволило наиболее полно охарактеризовать субпопуляции КПГ и их последовательность в ряду дифференцировок (Socinski et al., 1988), а также соотнести мембранный фенотип КПГ с функциональной активностью клеток (Андреева (Гривцова) и др., 2000; Андреева (Гривцова), 2000; Andreeva (Grivtsova) et al., 1999).

Так, общее число CD34+-клеток складывается из КОЕ-ГЕММ, КОЕ-ГМ, КОЕ-Э, кластеробразующих клеток, а также стволовых, би– и унипотентных клеток-предшественников. В пределах CD34+ СКК существуют минорные субпопуляции непролиферирующих и недифференцирующихся клеток, а также наиболее ранние некоммитированные предшественники, обладающие значительным потенциалом к самоподдержанию.

По мере дифференцировки СКК от истинно стволовых до линейно рестриктированных унипотентных происходят изменения мембранного фенотипа клеток. Иммунологический фенотип CD34+-клеток очень точно отражает стадию зрелости стволовой клетки, или, точнее, клетки-предшественника. На основании экспрессии ряда антигенов на мембране CD34+ можно судить о субпопуляционном составе СКК, т.е. о присутствии среди них полипотентных и линейно коммитированных клеток.

В настоящее время имеются достаточно четкие представления о соответствии между уровнем дифференцировки стволовой клетки или клетки-предшественника и иммунологическим фенотипом ее мембраны (Lanza et al., 2001; Seita et al., 2010).

Говоря об иммунологическом фенотипе клетки, мы подразумеваем под этим целый спектр антигенов и рецепторных молекул экспрессируемых, т.е. присутствующих на мембране и (или) в цитоплазме клетки.

Наиболее ранней стволовой, линейно не рестриктированной (не приобретшей черты какого-либо направления дифференцировки) соответствует клетка, экспрессирующая антиген CD34, но отрицательная в отношении экспрессии таких линейно неограниченных антигенов, как HLA-DR и CD38. Рядом исследований показано, что на клетке такого уровня может выявляться слабая экспрессия молекулы Thy-1, большинство из изотипов которой экспрессируются клетками негемопоэтической природы (D’Arena et al., 1998; Humeau et al., 1996; Mayani et al., 1994). Таким образом, истинной СКК может удовлетворять иммунофенотип CD34+CD90±HLA-DRCD38.

Стволовым кроветворным клеткам, только вступившим в цикл дифференцировок, инициирующим рост долгосрочных клеточных культур (КИ-ДККM) и формирующим селезеночные колонии у мышей, с точки зрения иммунологического фенотипа могут соответствовать сразу несколько популяций. Экспрессия антигена CD34 на подобных клетках выраженная (CD34++). Среди данных субпопуляций клеток выявляют СКК, отличающиеся по экспрессии антигенов CD38 и HLA-DR.

На части клеток выявляется молекула CD90, и целый ряд работ подтверждает возможность экспрессии панмиелоидных антигенов CD13, CD33. Однако большинство клеток пула КИ-ДККМ являются CD13CD33 и, возможно, на данном этапе дифференцировки клетка выбирает путь между лимфоидным и миелоидным путями развития (Gaipa et al., 2002).

Неоднозначной является экспрессия клетками данного уровня дифференцировки молекулы трансферринового рецептора CD71. Классически принято относить данный антиген к клеткам-предшественникам эритроидного ростка (van Dongen et al., 2012), но экспрессия данного антигена возможна на активно пролиферирующих кроветворных клетках ранних этапов дифференцировки.

Именно клетки пула КИ-ДККМ, наряду с истинно стволовыми СКК, способны длительно поддерживать травмированный гемопоэз.

Следующий этап дифференцировки – это уже коммитированные клетки-предшественники. Данному уровню соответствуют полипотентные СКК, формирующие крупные смешанные колонии гранулоцитов, макрофагов, мегакариоцитов, эритроцитов (КОЕ-ГЕММ), а также бурст-образующие клетки (БОЕ), полипотентные в отношении миеломоноцитарного и эритроидного (с его преобладанием) ростков. Клетки, формирующие колонии подобного рода, наряду с выраженной экспрессией стволовоклеточного антигена CD34, позитивны в отношении линейно не ограниченных антигенов HLA-DR и CD38, кроме того, имеют четкие признаки миелоидной направленности дифференцировки (CD13+CD33+). Возможно существование субпопуляций, различающихся по уровням экспрессии панмиелоидных молекул. Часть клеток данного пула СКК приобретают черты мегакариоцитарной направленности дифференцировки (CD61+), а также демонстрируют возможность дифференцировки в направлении эритроидного ростка (CD71+CD236a+) (Hoffman et al., 1996; Krause et al., 1996; Akashi et al., 2000; Azouna et al., 2011; Babovic et al., 2014).

Завершают ряд коммитированных СКК бипотентные (КОЕ-ГМ) и унипотентные (КОЕ-М, КОЕ-Г) миелидно-коммитированные клетки-предшественники, различающиеся по уровням экспрессии панмиелоидных антигенов CD13 и CD33. Естественно, существует и унипотентный лимфоидно коммитированный росток. Однако клетки данных субпопуляций практически не формируют краткосрочных колоний, и изучение СКК данного пула возможно только с применением иммунологических методов.

Именно пул линейно коммитированных (КОЕ-ГЕММ, КОЕ-ГМ, КОЕ-М, КОЕ-Г) клеток обеспечивает при трансплантации кроветворной ткани достаточно быстрое восстановление как лейкоцитов (в основном за счет нейтрофилов), так и тромбоцитов (популяция полипотентных КОЕ-ГЕММ).

С точки зрения фенотипических характеристик клеточной мембраны стволовым клеткам соответствует популяция CD34++, CD38, HLA-DR, CD45—/+ (Huang, 1994).

Поэтому изучение уровней коэкспрессии антигенов CD38 и HLA-DR на CD34+-клетках может представлять значительный интерес при характеристике как всего пула гемопоэтических предшественников, так и субпопуляций стволовых, наиболее примитивных гемопоэтических клеток (CD34++).

Конечно, была подробно изучена экспрессия ГСК и общелейкоцитарного антигена CD45, определяющего все клетки гемопоэтической природы. Показано, что все CD34+-клетки экспрессируют как высокомолекулярные, так и низкомолекулярные изоформы CD45. При этом проявляются разные уровни коэкспрессии данной молекулы, что дает дополнительные возможности подробной характеристики субпопуляций КПГ. Ожидаемо уровни экспрессии CD45-антигена в популяции CD34+-клеток оказались различными как у взрослых, так и у детей и варьировали в зависимости от дня сбора периферических стволовых кроветворных клеток (Андреева, Тупицын, 2002; Гривцова, 2009).

Несомненный интерес представляет оценка коэкспрессии на мембране ГСК трансферринового рецептора, антигена CD71. Экспрессия CD71 описана в ходе созревания эритроидных клеток. Данный антиген представлен на пролиферирующих клетках и на эритроидных предшественниках (БОЕ-Э/КОЕ-Э) (Olweus, 1998; Sieff et al., 1987).

Изучение коэкспрессии антигена CD71 на клетках костного мозга показало, что фракция CD34+, lin (т.е. когда линейно направленные антигены не экспрессированы и клетки не дифференцированны) была высокообогащенной в отношении экспрессии CD71 (CD71++). Незначительное количество клеток, экспрессирующих какие-либо линейно направленные маркеры, имело коэкспрессию CD71 (в основном активированные Т– и В-клетки). Отмечено также, что большинство CD34++-клеток костного мозга были CD71++ или CD71+, тогда как CD34+-клетки периферической крови были представлены популяцией CD34++, CD45, CD71+, что может подтверждать их более низкий потенциал пролиферации по отношению к клеткам костного мозга с фенотипом CD34++, CD45, CD71++. Нами установлено существование субпопуляции стволовых кроветворных CD34+-клеток с фенотипом Thy-1+CD71+, которая предположительно и является наиболее ранней активно пролиферирующей популяцией, соответствующей КОЕ-ВПП (Андреева, Тупицын, 2005).

Изучению роли Thy-1 антигена (CD90) на CD34+-клетках также уделяется много внимания. Данная молекула вовлечена в регуляцию процессов пролиферации и опосредует отрицательный сигнал, приводящий к ингибированию пролиферации ранних КПГ. При использовании метода проточной цитометрии была установлена коэкспрессия CD90 и CD117 (c-Kit рецептора) на CD34+-клетках (D’Arena et al., 1998, 1996), что в дальнейшем подтверждено нашими исследованиями (Grivtsova, Tupitsin, 2016). Продемонстрировано присутствие популяции Cd34+Thy-1+ стволовых клеток с коэкспрессией миеломоноцитарного антигена, CD33, экспрессия которого характерна только для клеток кроветворной природы (Андреева, Тупицын, 2005; Grivtsova, Tupitsin, 2016).

В последнее время показано, что ранние гемопоэтические клетки-предшественники экспрессируют антигены миелоидного ростка – CD33 и CD13. Продемонстрирована экспрессия CD33 на КОЕ-ГЕММ, в дополнение к экспрессии на КОЕ-ГМ и КОЕ-Э; таким образом, CD33 является маркером КПГ, коммитированных в направлении миелоидного ростка. Позднее было показано, что КОЕ-ВПП содержат CD33+-клетки. Однако трансплантация гемопоэтического материала, истощенного в отношении CD33+-, CD34++-клеток, приводит к медленному, но стойкому восстановлению гемопоэза. Кроме того, CD33-, CD34+-клетки содержат популяцию предшественников, способную к выраженной пролиферации в долговременных культурах клеток костного мозга (la Russa, Giffin, 1992; Olweus, 1998). Это подтверждает факт, что основная часть СГК является CD33-отрицательной.

Подобно CD33, CD13 является маркером начального миелопоэза, однако было обнаружено, что клетки-предшественники эмбриональной печени с фенотипом CD34++, CD38, lin, экспрессировали CD13. Кроме того, обнаружено, что магнитная селекция с применением антител к молекуле CD13 способствовала удалению значительной пропорции CD34++-, CD38—/+-клеток. Таким образом, подтверждается наличие рецепторов к данной молекуле на стволовых гемопоэтических клетках, но следует заметить, что экспрессия CD13 обнаружена на В– и Т-лимфоцитах. При характеристике особенностей субпопуляционного состава CD34+-клеток установлено, что CD13 появляется на достаточно ранних этапах, практически в самом начале дифференцировки клеток-предшественников, и уровни его сохраняются достаточно долго. Хотя, возможно, молекула CD33 и появляется на начальных этапах дифференцировки (пре-КОЕ-ГМ), но, вероятно, постепенно утрачивается по мере гранулоцитарной дифференцировки.

Кроме перечисленных антигенов ранних этапов дифференцировки, на клетках-предшественниках отмечена экспрессия целого ряда более поздних кластеров дифференцировки.

Описана также коэкспрессия на КПГ линейно рестриктированных маркеров лимфоидного звена, как Т-клеток, так и В-клеток. В частности, описана небольшая фракция CD34+-клеток костного мозга, коэкспрессирующих CD7, причем данные клетки имели миелоидный дифференцировочный потенциал и в культуре in vitro формировали гранулоцитарно-макрофагальные колонии клеток (Cannabon et al., 1992). Популяция CD34+-, CD7+-клеток, способных образовывать как Т-клеточные, так и миелоэритроидные колонии, выделена также из тимуса человека (Kurtzberg, Waldman, 1989). Кроме того, обнаружено, что CD34+-, CD7+-популяция клеток из эмбриональной печени человека, дифференцирующихся в тимической культуре в Т-клетки, содержит также примитивные клетки-предшественники с характеристикой КОЕ-ВПП (Barcena, Muench, 1993). В ряде работ показано, что полипотентные клетки мышей экспрессируют CD4-антиген; выявлена популяция CD34+-клеток костного мозга человека, также коэкспрессирующая данный антиген. Функциональные исследования in vitro выявили, что во фракции CD34+-, CD4-/+-клеток присутствовал целый ряд клоногенных предшественников: КОЕ-ГМ, КОЕ-Э, КОЕ-Мег, а также клетки, инициирующие долгосрочные клеточные культуры (Louache, Debili, 1994; Wineman, Gilmore, 1992).

В отношении В-клеточной лимфоидной рестрикции (Janossy et al., 1991) к сказанному выше следует добавить, что пропорции CD34+-клеток периферической крови и костного мозга, экспрессирующие В-клеточный антиген CD19 и общий (common) антиген CD10, в процентном отношении несколько различаются – содержание таких клеток в периферической крови ниже, чем среди КПГ костного мозга (Bender et al., 1991). Дополнительно нами установлен факт существования CD34+CD10+-клеток, не экспрессирующих пан-В-клеточный антиген CD19 (Grivtsova, Tupitsin, 2016). Данный факт подтверждает возможность мобилизации наиболее ранних субпопуляций стволовых кроветворных клеток.

Изучение субпопуляционного состава ГСК не только является фундаментальным аспектом, дающим более детальное представление о биологии стволовой клетки, но также очень важно с практической точки зрения. Не секрет, что у части больных мобилизация бывает неуспешной, а у части, даже в случае набора достаточной для восстановления кроветворения дозы стволовых кроветворных клеток, оптимального восстановления одного или нескольких ростков не происходит. Одним из возможных объяснений являются особенности субпопуляционного состава CD34+-клеток. При этом особенности субпопуляционного состава CD34+-клеток крови могут определять эффективность мобилизации; особенно значимой в данном контексте оказалась субпопуляция CD34+CD45—/low стволовых клеток крови (Андреева, Тупицын, 2015).

Нозологическая форма заболевания у онкологических пациентов также отразилась на субпопуляционном составе мобилизованных СКК (Гривцова, 2016). Кроме того, оказалось, что субпопуляционный состав СК отличается у онкологических больных взрослого возраста и детей, больных раком; также имеются различия в количестве отдельных субпопуляций у онкологических больных и здоровых доноров (Grivtsova, Tupitsin, 2016).

Исследования субпопуляционного состава мобилизованных ГСК значимы не только для онкологических больных; изучаются особенности пула стволовых клеток и при других фатальных заболеваниях, таких как боковой амиотрофический склероз (Tupitsyn et al., 2006). Показано, что мобилизованные СК (CD34+) больных позднего периода травматической болезни спинного мозга гетерогенны по экспрессии CD45, CD38, мономорфных детерминант HLA-DR, эпитопов трансдуцерной молекулы ИЛ-6 -gp130 (CD130). У большинства пациентов обнаруживается фракция CD34+-клеток, на которых отсутсвует или представлен с низкой плотностью общелейкоцитарный антиген CD45. Пропорция наиболее примитивных ГСК (HLA-DR-CD38) клеток лишь у 2 пациентов была> 15% в пределах CD34+-клеток. Интересным оказалось то, что экспрессия gp130– общей трансдуцерной молекулы цитокинов семейства ИЛ-6 на CD34+-клетках имела место во всех случаях, у 26% больных – в активированной форме (сочетание эпитопов С7 + А7).

Таким образом, особое значение, на наш взгляд, приобретает исследование субпопуляционного состава CD34+-клеток. Полученные данные указывают на неоднородность состава циркулирующих в крови и трансплантируемых клеток-предшественников гемопоэза. Наличие антигенов CD13 и CD33 указывает на миелоидную направленность дифференцировки, а экспрессия CD7 и CD2, часто в сочетании с В-линейными антигенами CD19, CD20, CD10, свидетельствует о лимфоидной коммитированности клеток-предшественников. Возможно, пропорция HLA-DR-негативных клеток в CD34-позитивном пуле отражает фракцию истинно стволовых клеток. Однако для подтверждения этого факта потребуются дополнительные опыты, целью которых явится экспериментальная проверка отсутствия миелоидно-коммитированных клеток с фенотипом HLA-DR-. Важным подтверждением существования субпопуляций в пределах пула CD34+-клеток является наличие сильных ассоциативных связей между отдельными антигенами. Эти связи наиболее выражены между линейно не рестриктированными антигенами и некоторыми миелоидными маркерами, а также ранними Т– и В-линейными маркерами. Последнее, на наш взгляд, указывает на то, что коммитированность по лимфоидной линии, по-видимому, касается как Т-, так и В-лимфоцитопоэза и происходит синхронно, а не разобщенно. Накопление этих данных может помочь в решении вопросов полноты и стабильности гемопоэза на основе субпопуляционного состава стволовых клеток. К сожалению, приходится признать, что практическое решение этих вопросов пока нигде в мире не достигнуто. Препятствиями служат как сама процедура трансплантации, при которой больному вводится материал, собранный за несколько (обычно 2—3) лейкаферезов, так и недостаточная иммунологическая оценка субпопуляционного состава трансплантируемого материала и показателей иммунитета в посттрансплантационном периоде.

Детальные сведения о мембранном иммунофенотипе стволовой клетки, а соответственно, и о субпопуляционном составе пула стволовых кроветворных клеток чрезвычайно важны как с клинических (прогноз скорости восстановления каждого конкретного кроветворного ростка), так и с фундаментальных (понимание особенностей дифференцировки нормальных клеток крови на ранних этапах кроветворения) позиций.

С учетом полученных различий в субпопуляционном составе ГСК у онкологических больных разного возраста и здоровых доноров можно взглянуть на проблему более широко и обсуждать возможность присутствия у онкологических больных некоего травмированного пула ГСК.

Несмотря на то что трансплантация ГСК и трансплантация костного мозга осуществляется в России более 70 лет, специальных отечественных препаратов, содержащих ГСК, не существует, а трансплантации ГСК и подбор доноров костного мозга осуществляются только как «трансплантация костного мозга», на основе гистосовместимости и количества ГСК. Не существует и официальных клеточных препаратов для восстановления поврежденного гемопоэза после химиотерапии (ХТ) и лучевой терапии (ЛТ). При угнетении миелоидного ростка при ХТ или ЛТ (преимущественно при облучении плоских костей – грудины и таза) быстро (7—12 дней) или отсроченно (3—6 нед.) возникает нейтропения, опасная развитием инфекционных осложнений, грибковых поражений, повреждений кожи (мукозид, раны, трещины); присоединяются сопутствующий иммунодефицит и ЦМВ-инфекция. К лечению добавляют антибиотики для лечения внутритканевой инфекции и Г-КСФ (нейпоген, граноцид, нейпомакс, грановесил и т.д.). Тромбоцитопения опасна развитием геморрагического диатеза, поэтому применяется тромбоцитопенический концентрат. Поэтому вопрос о новых клеточных продуктах, которые могут быть использованы для терапии осложнений и побочных эффектов ХТ и ЛТ опухолей, по-прежнему крайне актуален для современной отечественной и мировой онкологии. И перспективными здесь могут оказаться и стволовые кроветворные клетки в том числе.

Подводя итоги этой главы, следует сформулировать очень важные и концептуальные положения о функциональной и системообразующей роли ГСК в организме человека. Очевидно, что ГСК является не только основной кроветворной клеткой организма человека и прародительницей всех миллиардов клеток гемопоэза и иммунопоэза, но ГСК и ее прямые потомки, клетки-предшественники гемопоэза, являются основным системообразующим компонентом системы биоуправления и саногенеза органов и тканей, базовым элементом регуляции гомеостаза организма человека и причиной формирования большинства болезней цивилизации. Мы считаем, что именно ГСК принадлежит центральное место в возникновении и формировании основных болезней цивилизации человечества.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации