Автор книги: Андрей Брюховецкий
Жанр: Медицина, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 35 страниц) [доступный отрывок для чтения: 12 страниц]
Глава 1. Стволовые клетки – мистерии жизни?! (соавт. д.б.н., к.м. н. Л.Ю. Гривцова)
На протяжении многих десятков лет в мире присуждаются высшие премии за передовые и новаторские исследования в науке, медицине и биологии. Одной из таких самых престижных мировых премий за выдающиеся достижения в области биологии и медицины является Нобелевская премия. Однако, как это ни покажется странным, среди ее престижных номинантов нет (за исключением японских исследователей К. Такахаши и C. Яманака (Takahashi, Yamanaka, 2006) ученых, посвятивших свою жизнь изучению стволовых клеток (СК).
Что же собой представляют таинственные стволовые клетки? Почему их открытие сначала было не замечено научным сообществом, а затем, почти через 100 лет, привело к революции в биологической науке и глобальному научному прорыву в медицине, с одной стороны, а с другой стороны, послужило глубокому расколу в научных представлениях и в понимании их роли в биологии и медицине между различными мировыми научными школами ученых и клиницистов?
Почему сегодня именно СК рушат фундаментальные догмы биологии и медицины и целые школы академических ученых отводят им центральное место во всех системообразующих и фундаментальных процессах организма эукариот? Почему большая часть мировых ученых считает СК биологическим фундаментом жизни и основой регенерации органов и тканей млекопитающих, птиц и человека, а с другой стороны, отдельные, высокопрофессиональные мировые ученые заявляют, что СК – это фантом, главная мистификация и «мировой блеф» современной науки? И этих необъясненных «почему», связанных с понятием «стволовые клетки», сегодня так много, что сам этот термин стал жить своей независимой жизнью как в науке и средствах массовой информации, так и в нашем обществе.
Очевидно, что сегодня о СК знает каждая домохозяйка и имеет о них свою собственную точку зрения. Спросите любого политика и политтехнолога, что такое СК, и вы получите исчерпывающий ответ, зависящий от того, какую из вышеперечисленных точек зрения на СК он занимает. Будущее применения СК достаточно туманно и неопределенно. В одних случаях будущее наук о жизни различными мировыми учеными связывается с перспективой «выращивания из СК органов и тканей человека» (Сухих и др., 2020), а также они рассматриваются как средство «продления продолжительности жизни» и «улучшения качества жизни человека и всего человечества» (Брюховецкий А. С., 2003, 2021). В других случаях термин «стволовые клетки» стал синонимом шарлатанства, обмана и лженаучности. Он стал «токсичен» как для целого поколения ученых и врачей, так и просто для людей, работающих в науке и находящихся вне ее. Многие обыватели очень боятся лечения стволовыми клетками, т.к. миф о том, что они вызывают рак и другие злокачественные опухоли, стал неотъемлемой частью «информационной ауры» вокруг СК.
И все же у значительного большинства современных мировых ученых термин «стволовые клетки» стал перспективным символом современного научного прогресса и новых горизонтов в науке вообще и в биологии и медицине в частности. Возможно, парадоксы терминологии СК связаны с неординарной историей их открытия и с глобальными методологическими ошибками их первоначального клинического применения и использования в медицине. Сам термин «стволовые клетки» в настоящее время представляется крайне неоднозначным.
И все же что такое стволовые клетки, согласно классическому научному представлению? Это гетерогенная популяция наивных недифференцированных клеток, находящихся на вершине иерархической лестницы необратимых клеточных дифференцировок. Такая точка зрения оказала влияние на то, как сейчас проводятся исследования стволовых клеток (СК), и объясняет то, чего мы можем от них ожидать в практическом смысле. Немного переиначивая вышесказанное, можно утверждать, что СК – это гетерогенная популяция недифференцированных клеток, которые присутствуют на эмбриональной и взрослой стадиях жизни и дают начало дифференцированным, зрелым тканеспецифическим клеткам, строительному материалу органов и тканей организма. В послеродовом периоде и в течение зрелой жизни немногочисленные тканеспецифические стволовые клетки (СК взрослых, СКВ, adult stem cells) обнаруживаются в различных органах и системах и играют важную роль в восстановлении органа после повреждения.
Основными характеристиками СК являются самообновление и самоподдержание (способность к интенсивному размножению с сохранением небольшого пула исходно недифференцированных клеток), из чего вытекают такие их свойства, как клональность (обычно возникающая из одной клетки) и мультипотенциал, или мультипотентность (способность дифференцироваться в разные клеточные типы). Следует учитывать, что клональность СК не имеет отношения к патологической клональности. Термин определяет их особенность формировать клон нормальных (не патологических) клеток с практически схожими свойствами. Эти свойства могут отличаться у различных СК. Например, эмбриональные стволовые клетки (ЭСК), полученные из бластоцисты, обладают высокой способностью к самообновлению и значительным дифференцировочным потенциалом, в то время как у тканевых СК возможности самообновления и дифференцировки ограничены тканеспецифическими рамками потенциала этих клеток.
Вместе с тем постепенно накапливаются факты, заставляющие нас менять парадигму наших представлений относительно СК. Например, в некоторых исследованиях предполагается, что интестинальные стромальные клетки могут заменить СК, обновляющие слизистую оболочку кишечника (Теттех и др., 2016); подтверждением тому также являются работы С. Яманаки (Takahashi, Yamanaka, 2006), демонстрирующие возможность программирования дифференцированных клеток в подобие стволовых клеток. Такая пластичность предполагает, что «стволовость» может не ограничиваться какой-то одной определенной популяцией клеток, и побудила некоторых биологов более глубоко задуматься над вопросом, что такое СК на самом деле.
Традиционные представления о СК возникли в результате исследований кроветворной ткани в костном мозге, где клетки крови образуются у взрослых. Однако в конце 1970-х гг. Рэй Скофилд (R. Schofield) предположил, что «стволовость» на самом деле зависит от взаимодействия гемопоэтических стволовых клеток (клеток, которые дают начало другим клеткам крови) с микроокружением, в котором они находятся (Schofield, 1978). Хотя это долгое время отрицалось, важность этой «ниши» в настоящее время все более признается: гемопоэтические стволовые клетки не могут быть поняты вне их контекста, что может объяснить трудности с их получением, размножением и сохранением in vitro.
Наконец, новые технологии, позволяющие проследить зарождение клеток, еще больше поставили под сомнение наше понимание биологии СК, поскольку исследования показали, что не каждая отдельная гемопоэтическая СК (ГСК) является полипотентной (дискутируется в работе: Hass et al., 2021; Хасс и др., 2018), их компартмент, как и предполагалось, также иерархически гетерогенен (Гривцова, 2020). Кроме того, не гемопоэтические стволовые клетки, называемые мультипотентными предшественниками, могут поддерживать производство кроветворных клеток в течение длительного периода времени (Sun et al., 2014).
Это лишь некоторые из примеров, иллюстрирующих потенциальное разнообразие этих клеток. Накопление таких противоречивых фактов относительно СК привело к двум противоположным взглядам: СК может быть либо дискретной популяцией клеток со стабильными свойствами, количество которых ограничено на протяжении жизни (Чертков, Дризе, 1998), либо состоянием клетки, свойством, которое приобретается в определенном контексте (Клеверс, Уотт, 2018; Зипори, 2004). Эти вопросы остаются предметом дискуссий по настоящее время. Более того, в статье On the origin of the term «stem cell» в журнале Cell Stem Cell до сих пор также обсуждается вопрос о первоисточнике самого термина «стволовая клетка» (Ramalho-Santos, Willenbring, 2007).
Исторические аспекты. Происхождение термина «стволовая клетка», зарождение учения о стволовых клетках
История термина «стволовая клетка» начинается с конца XIX в. Тогда этот термин возник в контексте двух основных вопросов эмбриологии: непрерывности зародышевой плазмы и происхождения кроветворной системы. Теодор Бовери (Boveri, 1887) и Валентин Хакер (Hacker, 1892) использовали термин «стволовая клетка» для описания клеток, призванных дать начало зародышевой линии. Параллельно Артур Паппенхайм (Pappenheim, 1896, 1907, 1908a, 1908b; Pappenheim, Ferrata, 1910), Александр Максимов (Maximow, 1908, 1909), Эрнст Нейман (Neumann, 1868) и др. использовали его для описания предполагаемого прародителя клеток системы крови.
Термин «стволовая клетка» появляется в научной литературе еще в 1868 г. в работах выдающегося немецкого биолога Эрнста Геккеля (Haeckel, 1868). Геккель, главный сторонник теории эволюции Дарвина, нарисовал ряд филогенетических деревьев, представляющих эволюцию организмов, имеющих общего предка, и назвал эти деревья Stammbaume (по-немецки – «фамильные деревья» или «стволовые деревья»). При этом Геккель использовал термин Stammzelle (по-немецки – «стволовая клетка») для описания одноклеточного организма-предка, из которого, как он предполагал, произошли все многоклеточные организмы (Haeckel, 1868, 1874). В пересмотренном, 3-м издании своей «Антропогении» (Haeckel, 1877) Геккель совершил один из своих характерных скачков от эволюции (филогения) к эмбриологии (онтогенез) и предложил, чтобы оплодотворенная яйцеклетка также называлась стволовой клеткой. Таким образом, Геккель применил термин «стволовая клетка» в двух смыслах: как одноклеточный предок всех многоклеточных организмов и как оплодотворенная яйцеклетка, которая дает начало всем клеткам организма.
Вильсон (Wilson, 1896) еще в 1-м издании своей книги «Клетка в развитии и наследственности» предположил существование стволовых клеток, обеспечивающих поддержание сперматогенеза.
Использование термина «стволовая клетка», относящегося к отдельной клетке эмбриона, способной давать начало более специализированным клеткам, можно найти позже в этом столетии. Центральная дискуссия в эмбриологии конца XIX в. вращалась вокруг теории Августа Вейсмана о непрерывности зародышевой плазмы (Weismann, 1885). А. Вейсман предположил, что зародышевая плазма, которая передавалась от одного поколения к следующему, была разделена на ранних стадиях эмбрионального развития на специализированные клетки (зародышевые клетки), которые отличались от зрелых клеток остальной части тела (соматические клетки).
Вдохновленные теорией Вейсмана, Теодор Бовери и Валентин Хакер задались целью идентифицировать самые ранние зародышевые клетки в эмбрионах животных, которые, предположительно, будут нести зародышевую плазму. Т. Бовери проследил клеточные линии нематоды Ascaris и изобразил их в виде древовидных диаграмм, которые он, так же как и Геккель, назвал Stammbaume (Boveri, 1892a, 1892b). Тогда (Boveri, 1887, 1892a, 1892b) Теодор Бовери пришел к выводу, что эти ранние зародышевые клетки сохранили полный набор хроматина, чтобы передать неповрежденный генетический материал следующему поколению, в поддержку теории Вейсмана. В 1892 г. при исследовании цикла развития ракообразных циклопов В. Хакер идентифицировал большую клетку, которая стала интернализованной при гаструляции (Hacker, 1892). Он наблюдал, как клетка, которую он также назвал стволовой клеткой, подверглась асимметричному делению клеток и что одна из дочерних клеток стволовой клетки дала начало мезодерме, в то время как другие дали начало зародышевым клеткам. В. Хакер описывает стволовые клетки как клетки, которые позже, в процессе развития, производят ооциты в гонаде (Там же). В этих ранних исследованиях термин «стволовая клетка» относился к тому, что мы сегодня называем зародышевой линией.
Четыре года спустя Эдмунд Б. Уилсон популяризировал термин «стволовая клетка» на английском языке, рассмотрев работу Хакера и Бовери в своей книге «Клетка в развитии и наследовании» (Wilson, 1896). Еще в 1-м ее издании Уилсон предположил существование СК, обеспечивающих поддержание сперматогенеза.
Книга Э. Б. Уилсона стала настольной книгой целого поколения эмбриологов и генетиков начала века; учитывая широкую читательскую аудиторию и влияние книги Уилсона, ему обычно приписывают изобретение термина «стволовая клетка» (Майеншайн, 2003; Шостак, 2006). Но Э. Б. Уилсон использовал термин «стволовая клетка» только в отношении специализированной материнской клетки зародышевой линии, подобно Т. Бовери и В. Хакеру.
В то же время исследователи кроветворной системы все время задавались вопросом, существует ли общий предшественник различных типов клеток крови. Применение методов окрашивания Пола Эрлиха (Ehrlich, 1879) позволило выявить и описать различные линии лейкоцитов. Изучая строение клеток крови, исследователи разделились на два лагеря. Дуалисты не верили в существование стволовой клетки, общей для всех кроветворных линий, считая, что миелоидные и лимфоидные клетки получены из клеток-предшественников, находящихся в различных кроветворных тканях, костном мозге и лимфатических железах или селезенке соответственно. Напротив, согласно унитарной модели кроветворения, существовала клетка, которая представляла собой общего предка эритроцитов, гранулоцитов и лимфоцитов. Последователи унитарной теории были готовы ввести термин, отражающий потенциал развития такой клетки.
Для описания общего предшественника кроветворной системы использовались различные термины. В 1868 г. было высказано предположение (Нейман, 1868), что большая часть кроветворения происходит в костном мозге. Однако лимфатическая система исторически была первой тканью, которой предписывали кроветворную активность (Мюллер, 1844). Поскольку именно лимфоциты, отличаясь от эритроцитов и гранулоцитов размером, цветом и зернистостью, напоминали незрелые клетки с активностью предшественников, то клетки, предложенные в качестве общих предшественников, описывались как поливалентные большие лимфоциты (Паппенгейм, 1908b), настоящие большие лимфоциты (Максимов, 1908), негранулярные недифференцированные лимфоциты (Шаков, 1908) или лимфоидоциты (Паппенгейм, 1908a). Другие используемые термины включали первичные блуждающие клетки (Саксер, 1896), гемато– или гемогоны (Моллиер, 1909; Паппенгейм, 1907), гемобласты (Паппенгейм, Феррата, 1910) и гемоцитобласты (Zoja, 1910). Среди первых, кто начал использовать термин «стволовая клетка» для общего предшественника клеток крови, были Александр Максимов (Maximow, 1908), Вера Данчаков (Dantschakoff, 1908), Эрнст Нейман (Neumann, 1912).
Однако именно ученому русского происхождения Александру Максимову приписывают (Fliedner, 1998; Лихтман, Уильямс, 2006) изобретение термина в 1909 г. (Максимов, 1909). Справедливости ради необходимо отметить, что термин «стволовая клетка» можно найти в более ранних публикациях в области кроветворения. При этом о роли русского ученого Александра Александровича Максимова в появлении терминологии «гемопоэтической СК» следует остановиться особо.
В 1903 г. был объявлен конкурс на замещение должности профессора кафедры гистологии и эмбриологии Императорской военно-медицинской академии. Конференция академии (ученый совет) избрала его руководителем кафедры. С этого момента на кафедре начинаются активные научные исследования в области гистогенеза крови и соединительной ткани. Доведя гистологическую технику до искусства, используя лишь метод изучения переходных форм, ему удалось проследить основные этапы гистогенеза соединительных тканей и крови у различных животных как в эмбриональном, так и в постнатальном периоде. Выводы, сделанные им, свидетельствовали в пользу того, что все клетки крови развиваются из одного предшественника, который имел вид лимфоцита. Впервые он сформулировал это положение в статье, опубликованной на немецком языке в 1909 г.: «Лимфоцит как общая стволовая клетка разнообразных элементов крови в эмбриональном развитии и постфетальной жизни млекопитающих». В этой работе проф. А. А. Максимов впервые в отечественной науке использовал термин «стволовая клетка». Следует заметить, что автор использовал термин Stammzelle в своей пионерской работе на немецком языке (от der Stamm – ствол). Соответствующий глагол со значениями «порождать», «происходить», «иметь начало» хорошо известен в немецком и английском языках. Абсолютной заслугой А. А. Максимова является то, что он выдвинул положение о стволовых клетках во взрослом организме, в частности о стволовой клетке крови.
Еще в 1896 г. Паппенгейм использовал стволовую клетку для описания клетки-предшественника, способной давать начало как красным, так и белым кровяным клеткам (Паппенгейм, 1896). Из-за ограничений экспериментальных методов, доступных в то время, дебаты о существовании общей гемопоэтической СК продолжались в течение нескольких десятилетий, пока окончательные доказательства не были представлены работой Джеймса Тилля, Эрнеста Маккалоха в 1960-х гг. (Беккер и др., 1963; Тилль, Маккалох, 1961; Тилль и др., 1964).
Таким образом, вначале термин «стволовая клетка» был использован в конце XIX в. в контексте фундаментальных вопросов эмбриологии – непрерывности зародышевой плазмы и происхождения системы крови. Демонстрация существования гемопоэтических стволовых клеток (Там же) показала, что эти клетки являются стволовыми клетками-прототипами – клетками, способными к почти неограниченной пролиферации (самообновлению) и к образованию специализированных клеток (дифференцировке). Так зародилось учение о стволовой клетке.
Интерес к столовым клеткам неслучаен. Их уникальные способности к самообновлению, самоподдержанию и дифференцировке (данные свойства в литературе иногда объединяют единым термином «стволовость») делают их притягательным объектом для многих отраслей и в первую очередь для недавно сформировавшегося направления – регенеративной медицины.
Кроме прикладного аспекта применения стволовых клеток, реализуемого лишь частично, несомненно значимо изучение биологии стволовых клеток для фундаментальной науки. Знания о механизмах самоподдержания и дифференцировки стволовых клеток важны для понимания основополагающих процессов как при норме (от эмбриогенеза до старения), так и в случае патологии (канцерогенез, ряд неопухолевых, но фатальных болезней).
Многообразие стволовых клеток
Тканевые СК взрослых – малочисленная популяция, до недавнего времени труднодоступная для изучения, но благодаря вектору, заданному Александром Яковлевичем Фриденштейном, было начато исследование данной неоднозначной популяции стволовых клеток (Фриденштейн и др., 1970). Именно советский ученый-медик, гистолог, гематолог, иммунолог, чл.-корр. АМН СССР и РАМН А. Я. Фриденштейн впервые описал и экспериментально подтвердил существование в костном мозге и лимфоидных органах стволовых стромальных клеток, получивших впоследствии международное название мезенхимальные стромальные (стволовые) клетки (МСК).
Мезенхимальные стволовые клетки являются пристальным объектом изучения в течение последних десятилетий. МССК присутствуют во всех органах и тканях. Как в экспериментальных, так и в клинических исследованиях установлен потенциальный терапевтический эффект МССК или их производных продуктов. Относительная простота их выделения, способность к клоногенному росту, дифференцировке в культуре и мультипотентность определяют их как один из ключевых объектов регенеративной медицины при различных клинических состояниях.
Количество исследований, посвященных им, в последнее десятилетие растет в геометрической прогрессии (Samsonraj et al., 2017). МССК участвуют в многих принципиально значимых процессах, таких как дифференцировка и пролиферация клеток, ангиогенез (васкулогенез), регуляция воспалительных процессов или контроль окислительного стресса (Vizoso et al., 2019). Многочисленные доклинические исследования МССК или их секретомных продуктов показали терапевтическое воздействие на ключевые патологические процессы, связанные с изменениями внутреннего гомеостаза (Lalu et al., 2016; McIntyre et al., 2016; He, 2018; Riecke et al., 2015; Galipeau, Sensebe, 2018). МССК обладают независимой от реципиента иммунной функцией и могут оказывать антимикробный эффект (Alcayaga-Miranda et al., 2017). Клинические исследования применения МССК I и II фаз подтвердили положительный профиль безопасности при различных показаниях, включая иммунологические, костные, сердечные или нейродегенеративные расстройства (Nery et al., 2013). Проведены даже клинические испытания III фазы в отношении купирования реакции «трансплантат против хозяина», лечения болезни Крона, инфаркта миокарда и цирроза печени (Samsonraj et al., 2017). Примечательным фактом в этом контексте является то, что никем не сообщалось о каких-либо серьезных осложнениях или о неблагоприятных эффектах после трансплантации МССК (Zhang, He, 2019).
Важным для клинического применения МССК стал 2018 г., когда Европейское медицинское агентство (EMA) впервые одобрило использование клеточного продукта на основании MСК. Клиническое исследование фазы III NCT01541579 показало статистически значимое улучшение при лечении сложных перианальных фистул у пациентов с болезнью Крона с применением МСК, полученных из жировой ткани (darvadstrocel, ранее Cx601) (Panes et al., 2016). В сентябре 2018 г. компания Mesoblast объявила о положительных результатах своего исследования III фазы (NCT02336230) применения аллогенных костномозговых МССК (remes-temcel-l) у детей с острой РТПХ, рефрактерной к стероидам.
Не исключено, что 2019 г. может стать началом терапевтической эры MССК (Hoogduijn, Lombardo, 2019): впервые была проведена МССК-терапия острого респираторного дистресс-синдрома (ОРДС), связанного с COVID-19 (Golchin et al., 2020). Однако в контексте МССК и инфекций более обоснованным будет их применение для лечения последствий (легочные фиброзы, ишемии), и многие вопросы еще требуют решения, а именно отбор доноров, источник МСК, сбор клеток, условия культивирования, количество пассажей и количество вводимых МСК, а также хранение.
Также необходимо четко определить биомаркеры стратификации прогностической эффективности, дозировки и способ введения для каждого конкретного показания.
Серьезный барьер для клинического применения МССК – их функциональная неоднородность, которая зависит от происхождения МССК (первичной биологической ниши), от состояния доноров (возраст, заболевания или неизвестные факторы). Возможно, что на свойствах МСК, их окончательном фенотипе, а соответственно, на направлении дифференцировки отражаются и условия их культивирования (сигналы субстрата, внеклеточного матрикса, количество кислорода).
Пионерскими в этом направлении можно считать работы российских исследователей еще в 2000-х гг. (Цыб и др., 2004), продемонстрировавших возможность получения культуры МССК с высокой клоногенной активностью, способных к дифференцировке в кардиомиобласты. Был показан их регенеративный потенциал в отношении восстановления миокарда, поврежденного химиотерапевтическим воздействием у лабораторных животных. При этом репаративные процессы в наибольшей степени усиливались через 4 нед. от момента введения культуры МСК. Через 1 мес. от трансплантации полученных кардиобластов у реципиентов отмечалось снижение проявлений оксидативного стресса. Эти данные абсолютно однозначно показали, что терапевтический эффект введения несингенных МССК проявляется стимуляцией пролиферации как клеток сердечной мышцы, так и клеток стромы и приводит к восстановлению нормальной гистологической структуры миокарда. Пусковыми в каскаде последовательных регенеративных событий являются изменения, происходящие в периваскулярной зоне миокарда, что, возможно, обусловлено «трофическим воздействием» введенных МССК на резидентные стромальные клетки-предшественники реципиента; это приводит к улучшению микроциркуляции и усилению ангиогенеза. Данные подтверждают существование «трофического эффекта» МСК, т.е. влияние факторов, секретируемых МССК в процессе культивирования (секретом). Эти экспериментальные исследования были подтверждены в клинической практике и повторены в зарубежных многоцентровых исследованиях при ишемической кардиомиопатии (Hare et al., 2012).
Достижение существенных клинических эффектов возможно только в случае создания «управляемых» (не изменяющих направление дифференцировки) гомогенных клеточных культур МСК. Принципиально важными фактами в выработке стратегии получения культуры МССК являются источник их выделения и выбор в пользу аутологичных или аллогенных клеток.
Наиболее изученными и охарактеризованными, по литературным данным, на настоящий момент являются МСК, полученные из костного мозга. В качестве известных источников МССК описаны жировая ткань (Aust et al., 2004), периферическая кровь (He et al., 2007; Smiler et al., 2008), легких, синовиальных жидкостей, периоданальных лигаментов, мышечной ткани (Griffiths et al., 2005; Tuli et al., 2003; Fan et al., 2009; Gay et al., 2007; Jackson et al., 2010).
Изучается потенциал МСК, полученных из плаценты, клеток пуповинной (плацентарной) крови и клеток пупочного канатика и дентальной пульпы (In’t Anker et al., 2004; Miao et al., 2006; Corrao et al., 2013; Erices et al., 2000; Mareschi et al., 2001; Seo et al., 2004; Shi, Gronthos, 2003).
Изучение различных источников получения МССК продемонстрировало целый ряд отличий в их биологических свойствах, протеомном и транскриптомном профилях (Elahi et al., 2016; Kwon et al., 2016; Davies et al., 2017; Chen et al., 2015). Установлены различия в способности формирования клеточных колоний, отличия в мембранном иммунофенотипе (т.н. сурфактоме), в мультилинейной дифференцировке и в паракринных функциях (Billing et al., 2016; Sakaguchi et al., 2005; Rider et al., 2007; Hass et al., 2011; Maleki et al., 2014).
Выявлены некоторые преимущества использования аллогенных МССК перед аутологичными, однако клинический эффект тех и других сопоставим (Trounson, McDonald, 2015; Monsarrat et al., 2016; Atoui, Chiu, 2012; Steinert et al., 2012; Hare et al., 2012).
Важно, что благодаря иммунологической толерантности аллогенные МССК рассматриваются как «универсальные донорские клетки», что определяет существенные преимущества их использования в клинической практике, в т.ч. у онкологических больных.
Экспериментальное изучение влияния МССК в модели сочетанной трансплантации МССК и гемопоэтических стволовых клеток показало эффективность восстановления кроветворения при использовании сублетальных доз циклофосфана (Pavlov et al., 2018; Павлов и др., 2018). На экспериментальных моделях показаны эффективность и безопасность применения МССК в отношении миодистрофий различного генеза (Agrba et al., 2018; Агрба и др., 2018; Гривцова и др., 2020).
В настоящее время продолжается углубленная работа по изучению возможности применения МССК при кардиотоксичности у онкологических больных, серьезного побочного эффекта применения препаратов антрациклинового ряда, обуславливающего повышенный риск заболеваемости и смертности от сердечно-сосудистой патологии у онкологических больных. Современные фармакологические методы лечения кардиомиопатий различного генеза хотя и позволяют замедлять развитие дисфункций миокарда, но имеют ограниченную эффективность у пациентов с терминальной стадией болезни. Многие исследователи полагают, что единственным радикальным способом лечения этой патологии является трансплантация сердца (Dergilev et al., 2020; Дергилев и др., 2020). Достаточно серьезными препятствиями к трансплантации являются нехватка доноров и высокая стоимость операции. Наиболее изученным и привлекательным является применение МСК.
В экспериментальных исследованиях (Grivtsova et al., 2020) было показано, что у животных, получивших МССК до начала введения антрациклинов (доксорубицин 5 мг + МССК до начала введения доксорубицина), зафиксирована нормализация гистоархитектуры мышечной ткани и активация пролиферативной активности стромальных клеток, что свидетельствует о положительном влиянии превентивной трансплантации МССК человека на активацию репаративных процессов в миокарде при антрациклиновой кардиомиопатии. Для этого необходим собственный клеточный биобанк как необходимая инфраструктура для разработки и внедрения клеточной терапии на основе мезенхимальных стволовых клеток в комплексном лечении антрациклиновой кардиотоксичности. (Обзор литературы и данные: Там же.)
По данным многих исследователей, именно сочетание кардиомиобластов и недифференцированных МССК дает наибольший регенеративный эффект (Shudo et al., 2014; Zuppinger et al., 2000; Yoshida et al., 2018).
Получены положительные результаты системных трансплантаций кардиомиобластов и недифференцированных аутологичных и аллогенных МССК костномозговых МССК при проведении комплексной терапии поздних лучевых поражений сердца, развившихся у 16 пациенток после дистанционной лучевой терапии по поводу лимфомы Ходжкина (ЛХ) или рака молочной железы (РМЖ). В результате установлено, что клеточная терапия значительно улучшала эффективность лекарственного лечения, которое ранее было единственным способом терапии лучевых поражений жизненно важных органов. Клинический эффект такой комплексной терапии уже в первый год наблюдения за пациентками проявлялся в уменьшении степени выраженности сердечной недостаточности и улучшении качества жизни больных при отсутствии прогрессирования основного заболевания (лимфома Ходжкина и рак молочной железы) (Kursova et al., 2017; Курсова и др., 2017).
Продемонстрированы возможность, безопасность и эффективность применения костномозговых МССК при язвенном колите и болезни Крона. Установлено, что комбинированная клеточная и антицитокиновая терапия болезни Крона с перианальными поражениями достоверно способствует более частому и длительному закрытию простых свищей по сравнению с антибиотиками (иммуносупрессорами) (Knyazev et al., 2016; Князев и др., 2016; Knyazev et al., 2017; Князев и др., 2017). Также показано, что трансплантация МССК способствует поддержанию более длительной клинической ремиссии у больных с люминальной формой болезни Крона по сравнению с группой больных, страдающих язвенным колитом (Knyazev et al., 2017; Князев и др., 2017; Knyazev et al., 2016; Князев и др., 2016).
Идентификация инициальных МССК чрезвычайно затруднена в силу их малочисленности в тканях, один из возможных путей решения проблемы – применение различных видов клеточной селекции на основании мембранного иммунофенотипа клеток. Использование мембранных антигенов в качестве таргета отбора определяет возможность получения достаточно гомогенной клеточной культуры.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?