Текст книги "Следующий уровень. Стратегический менеджмент новой эпохи"
Автор книги: Андрей Коляда
Жанр: Управление и подбор персонала, Бизнес-Книги
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 42 страниц) [доступный отрывок для чтения: 14 страниц]
Такая же цифровая модель используется для прогнозирования результативности любых стратегических мероприятий, в том числе изменений бизнес-модели. В этом случае получается прогноз «КДБ – Как Должно Быть», т. е. прогноз результатов работы в кластерах с учётом желаемых изменений в бизнес-модели и стратегии. Таких прогнозов КДБ может быть сколько угодно – можно рассчитать эффективность любых стратегических мероприятий или доработок бизнес-модели. Таким образом, руководитель получает возможность обоснованно сравнить несколько вариантов бизнес-моделей и стратегических решений и выбрать лучшие на основе их результативности, т. е. прогнозируемого влияния на объём продаж и доли компании в кластере в прогнозируемом году. Если горизонт планирования включает несколько лет (что рекомендуется), то описанная последовательность действий выполняется для каждого года.
Получив такие прогнозы и проверив с помощью цифровой модели возможные варианты стратегических решений, проектная команда располагает всеми данными, которые необходимы для окончательного подтверждения целевых кластеров (из предварительного списка) и выбора лучшей бизнес-модели для последующей работы. Утвердив бизнес-модель, компания может провести дальнейшее сегментирование кластеров, определить требуемый профиль корпоративной культуры, сформулировать стратегические цели и запланировать стратегические мероприятия, необходимые для достижения этих целей.
Указанная работа выполняется сценарно. Задействуются как минимум три сценария: основной, оптимистический и пессимистический.
Понятие бизнес-модели было создано автором книги в контексте обсуждаемой методики и включает набор характеристик. Чуть позже мы подробно с ним ознакомимся и научимся работать.
Отмечу, что представленная методика превосходит классическую последовательность шагов, которая кочует из одного учебника по стратегическому и маркетинговому планированию в другой и доступна в интернете любому желающему. Классический подход рекомендует сначала провести анализ макросреды (например, прибегнув к PESTEL-анализу и т. п.), затем – микросреды (с помощью пяти сил Портера и т. п.), потом – внутренней среды предприятия и, наконец, выполнить SWOT-анализ. Однако мой обширный опыт модерирования и руководства проектами по разработке корпоративных и маркетинговых стратегий для предприятий в различных отраслях показывает, что классический подход безнадёжно устарел и не применим в условиях современного рынка. Для них он слишком абстрактный, академичный и разрозненный, его нельзя назвать комплексным набором инструментов, складывающихся в единую глубокую методику. Говоря простым языком, классическая методика стратегического и маркетингового анализа настолько отстала от жизни и даёт столь поверхностные данные о рынке и компании, что руководствоваться ею в серьёзных стратегических вопросах и решениях просто страшно. Современным управленцам нужна удобная и практичная методика, настолько аналитически обоснованная и глубокая, что руководитель может смело принимать грамотное управленческое решение, основываясь на полученных данных.
Примечательно, что в большинстве бизнес-школ в программах MBA, Executive MBA и DBA в рамках курса по стратегическому менеджменту преподаётся классическая методика и связанные с ней инструменты. Я объясняю это огромным дефицитом сильных преподавателей, обладающих не только даром наставника, но и обширным практическим опытом и глубокими познаниями в управлении средними и крупными компаниями. На курсах стратегического менеджмента студентам пересказывают классические инструменты полувековой давности, не вдаваясь в рассуждения о том, насколько они полезны и применимы сейчас. В результате выпускники почти не используют эти инструменты в своей управленческой практике, на личном опыте убедившись в шаткости и необоснованности выводов, которые можно сделать на их основе. Особую пикантность этой ситуации придаёт то обстоятельство, что все инструменты классической методики детально описаны в интернете. Любой желающий может изучить их совершенно бесплатно, в любой момент и без поступления в бизнес-школу. Всего несколько бизнес-школ в мире, также специализирующихся на стратегическом менеджменте, как и EMAS, преподают стратегический менеджмент по-другому, учат действительно полезным и применимым на практике методикам управления современным бизнесом.
Тем не менее сдавать в утиль классическую методику и её инструменты не следует. Классический инструментарий нужно рассматривать как универсальный и доступный язык менеджмента, схожий с английским языком, на котором могут общаться между собой люди разных национальностей. Классическая методика позволяет представителям разных компаний общаться друг с другом, обмениваться информацией о рынке или рассказывать о стратегической позиции своего бизнеса. Однако данные, которые доносятся при помощи классического инструментария, добываются другими, более прогрессивными методами. Тем не менее «лингвистическая» роль классической методологии весьма уместна. Действительно, уважаемый читатель, вы же не станете требовать от партнёра по переговорам, чтобы он сперва прочёл эту книгу или же нашёл сведения о других продвинутых методиках стратегического менеджмента? Разумеется, нет. Классический инструментарий прекрасно подходит для ведения переговоров, но добывать информацию и принимать стратегические решения вы будете с помощью передовых методов, лучших на рынке.
§ 2.1. Инструмент MVC-1© – Моделирование, анализ и прогнозирование рынка. Выбор целевых кластеров
MVC-1 (Market Value and Complexity) представляет собой специализированный инструмент, который помогает решить несколько важнейших задач:
1. Создаёт модель рынка, определяет его структуру и положение работающих на нём компаний.
2. Создаёт систему прогнозирования динамики отдельных составляющих рынка (кластеров) и рынка в целом.
3. Прогнозирует динамику объёма и других параметров кластеров.
4. Прогнозирует динамику объёма и других параметров рынка в целом.
Прогнозирование выполняется сценарно и проводится отдельно на каждый год горизонта планирования.
5. Закладывает основу для выбора рыночной позиции (точнее, целевых кластеров), бизнес-моделирования и стратегического целеполагания.
Откровенно говоря, MVC-1 является самым трудоёмким из аналитических и прогностических инструментов, описанных в этой книге; понимание и овладение им требует некоторых усилий. Однако практика обучения работе с этим инструментом сотен руководителей компаний малого, среднего и крупного бизнеса показывает, что в итоге овладевают им все и он не является чем-то запредельно сложным. Для облегчения нашей задачи в этой главе мы рассмотрим использование инструмента на примере одного сценария. В реальности при сценарном прогнозировании алгоритм выполняется для каждого из намеченных сценариев. Каким образом определяются сценарии для стратегического прогнозирования и планирования, мы обсудим в соответствующем параграфе.
MVC-1 является многосоставным инструментом и предусматривает выполнение набора последовательных шагов. Самым простым и доступным способом работы с MVC-1 является представление его в электронных таблицах, например, Excel, таблицах Yandex, Google или аналогичной программе работы с данными. Также при желании можно разработать специализированный IT-продукт, заточенный под специфику конкретной компании. Мы разберём методику выполнения MVC-1 в Excel. Пробегитесь по алгоритму глазами. Если что-то будет непонятно, не переживайте, на данном этапе это не страшно. В дальнейшем я продемонстрирую работу с MVC-1 и поясню каждый шаг примерами. В будущем, во всём разобравшись, вы сможете опираться только на таблицу с алгоритмом, не перечитывая весь параграф книги. Это сэкономит ваше время.
2.1.1. АЛГОРИТМ моделирования и прогнозирования рынка, выполнение MVC-1 с помощью электронных таблиц[4]4Здесь и далее символом * обозначены сноски внутри ячейки таблицы.
[Закрыть]
Описанный алгоритм служит отличным подспорьем для выполнения MVC-1 и поможет сэкономить ваше время. Теперь давайте проиллюстрируем каждый шаг на примерах и дадим необходимые пояснения[5]5
Внимание! Все расчёты, приведённые в книге, выполнены в электронных таблицах Excel. В этих расчётах использовались точные числовые значения без округления. При этом для удобства восприятия числовые значения в книге указаны с учётом округления. Как следствие, при пересчёте вручную на основе округлённых чисел результаты некоторых вычислений могут незначительно отличаться от результатов расчётов, выполненных в Excel и продемонстрированных автором.
[Закрыть].
Сначала в электронной таблице создадим лист под названием «Рынок – Кластеризация – $». В рамках работы с этим листом выполняем описанные в алгоритме шаги.
ШАГ 1
Создаём лист «Рынок – Кластеризация – $» и работаем с ним.
Определяем продуктовую группу (совокупность товаров или услуг, объединённых однородными признаками) и целевой рынок (географическую территорию).
Продуктовая группа – это продукты или группа продуктов, объединённых общими родовыми признаками. Например:
– офисная мебель (столы и тумбы) разных форм, цветов и т. п.;
– шоколадные батончики с разными добавками;
– сверлильные станки с разной оснасткой;
– услуги по химчистке шуб;
– аудиторские услуги и т. п.
Далее продуктовая группа будет именоваться продуктом.
Правильное определение продуктовой группы, для которой будет выполняться инструмент, является важнейшим обстоятельством, которое предопределит его ценность для практического применения в вашем бизнесе. Как уже говорилось выше, выполнить единый анализ для компании, работающей с несколькими продуктовыми группами и/или на нескольких рынках, невозможно. Эту работу следует выполнять поэтапно, анализируя каждое сочетание «продуктовая группа – целевой рынок» по отдельности.
Следовательно, моделирование и прогнозирование рынка, бизнес-моделирование и прогнозирование эффективности бизнес-модели компании начинается с правильного определения продуктовых групп и рынков, с которыми работает предприятие. Так как некоторые компании работают с товарами, а некоторые – с услугами, общим термином, который мы будем использовать для объединения этих двух понятий, будет термин «продукт» или «продуктовая группа». Для наших целей эти понятия (продукт и продуктовая группа) идентичны. Под продуктовой группой в целях обсуждения MVC-1 мы понимаем совокупность продуктов, которые обладают схожими родовыми признаками. Иными словами, это разновидности одного и того же продукта. Например, телевизоры с разными диагоналями экранов и функциями, смартфоны, сверлильные станки, банковские кредиты для физических лиц, бутилированное молоко, аудиторские услуги для юридических лиц и т. п. Всё это примеры продуктовых групп. Каждая из них объединяет некое количество схожих продуктов, которые отличаются друг от друга лишь незначительными деталями. Последний тезис заключает в себе некоторую сложность: как понять, насколько продукты должны быть схожи, чтобы соответствовать понятию «одна продуктовая группа».
Несмотря на кажущуюся трудность, ответ на этот вопрос довольно прост. Всё, что необходимо, – это проанализировать, как клиент принимает решение о покупке. Если клиент рассматривает различные разновидности продукта как возможные альтернативы при покупке – вероятнее всего, они входят в одну продуктовую группу. Если же с точки зрения клиента продукты не могут являться альтернативой друг другу, очевидно, что они входят в разные продуктовые группы. Разумеется, при принятии решения о включении продуктов в общую продуктовую группу, помимо наблюдения за клиентами, следует придерживаться и здравого смысла. Если клиент мечется в сомнениях, решая, купить сейчас новый автомобиль или же вместо этого поехать в долгожданный отпуск, очевидно, что речь идёт о разных продуктовых группах. Нужно помнить, что некоторым людям свойственно принимать решения по принципу «или – или». Человек покупает лишь один из нескольких нужных ему продуктов. Такое поведение, например, может быть вызвано нехваткой денежных средств, когда человек вынужден выбирать лишь одну доступную ему альтернативу из множества желаемых.
Определившись с продуктовой группой, следует определиться с целевым рынком. Под рынком в стратегическом менеджменте понимается совокупность всех клиентов, приобретающих продуктовую группу на конкретной географической территории. Обратите внимание, клиент не обязан физически находиться на территории, решающим фактором является факт приобретения им продукта на этой территории. Для этого он может лично приехать туда на время или же осуществить покупку дистанционно.
ШАГ 2
Определяем характеристики кластеризации и на их основе делим рынок на кластеры.
Определение характеристик, отталкиваясь от которых мы опишем структуру рынка, – это следующая важная задача. Правильно выбранные характеристики позволяют не просто создать реальную картину рынка, но и в дальнейшем выбрать перспективную рыночную нишу для экспансии.
Прежде всего нужно определиться с количеством характеристик кластеризации. Согласно нашей методике необходимое количество – от двух до трёх. При этом в рамках каждой характеристики должно быть не менее двух переменных, иначе характеристика теряет смысл. Характеристики представляют собой ключевые правила, требования и предпочтения, которыми руководствуются клиенты при выборе и покупке продукта на этом рынке. Для лучшего понимания давайте рассмотрим пример.
На рис. 3 представлен пример MVC-1 рынка в одном из регионов России. Это часть реального проекта, который был выполнен в 2010-х гг. Так как речь идёт о коммерческом проекте, названия компаний, как и некоторые цифры, были изменены. Компания-заказчик производила широкий ассортимент мебели различного вида и назначения. В качестве продуктовой группы для MVC-1 в нашем примере была взята офисная мебель. Под офисной мебелью в данном случае понимаются офисные столы и тумбы. Объединение тумб со столами в общую продуктовую группу было вызвано тем, что обычно столы редко покупают отдельно от тумб, равно как и тумбы без столов почти не пользуются спросом. Эти виды мебели чаще всего продаются комплектом.
В соответствии с рекомендацией (о необходимости двух – трёх характеристик) были определены следующие три характеристики кластеризации.
1. Цена, за которую клиент готов приобрести продукт. Эта характеристика включает в себя следующие переменные: низкая цена ($30–50), средняя цена ($50,01–70) и высокая цена ($70,01–200). В данном случае следует обратить внимание на то, что в случае с ценой для переменных рекомендуется выбирать примерно равные ценовые диапазоны. В нашем случае они не равны (у первой и второй переменных диапазон $20, тогда как у третьей $130), так как демонстрируемый MVC-1 я сознательно упростил в учебных целях, чтобы не перегружать объяснение второстепенными деталями. Тем не менее встречаются случаи, когда ценовые шаги являются не равными в силу специфики рынка. Если вы окажетесь в подобной ситуации, сперва убедитесь в том, что такова реальность и вы не совершаете методическую ошибку. Когда речь заходит о цене, есть ещё одно любопытное обстоятельство. Существуют рынки (они редко, но всё же встречаются), на которых ценовая разбежка (от цены самого дешёвого продукта до цены наиболее дорогого) может достигать нескольких десятков и даже сотен раз. Например, рынок домов или рынок автомобилей. В таких случаях попытка рассматривать эти рынки в качестве монолитных приведёт к неудовлетворительной глубине анализа, так как ценовые диапазоны будут слишком велики. Вместо этого такие рынки следует раздробить на составляющие, фактически на отдельные рынки, и выполнять MVC-1 для каждого из них по отдельности. Например: (1) рынок дешёвых домов, (2) рынок средних по цене домов, (3) рынок дорогих домов. Если речь идёт об автомобилях, то: (1) рынок дешёвых автомобилей, (2) рынок средних по цене автомобилей, (3) рынок дорогих автомобилей. Разумеется, на каждом из этих рынков в рамках характеристики «цена» должны появиться свои переменные. Например: низкая цена, дорогие автомобили; средняя цена, дорогие автомобили; высокая цена, дорогие автомобили. Наконец, следует иметь в виду, что на любом рынке без исключения существует как минимум три ценовых диапазона: низкая цена, средняя цена и высокая цена. Соответственно, переменных в характеристике «цена» должно быть не меньше трёх (их может быть и больше, но меньше точно не будет). Если на своём рынке вы не обнаружили один из трёх обязательных ценовых диапазонов, ещё раз перечитайте предыдущее предложение. Больше бывает, меньше не бывает – вы просто плохо знаете свой рынок!
2. Тип мебели. В этой характеристике были зафиксированы две переменные: серийная мебель и мебель на заказ, т. е. индивидуального исполнения.
3. Наконец, третья характеристика – способ закупки. Таких способов на рынке было выявлено два: прямая закупка, при которой клиент определяет поставщика напрямую без заранее объявленных формальных процедур, и формально объявляемый тендер, который клиент проводит либо согласно законодательным требованиям, либо согласно требованиям собственной политики закупок.
Обратите внимание, что выбор характеристик, равно как и переменных для каждой характеристики, – это не абстрактная, не академическая задача. Наоборот! И характеристики, и, соответственно, переменные обязаны отражать реалии описываемого рынка, т. е. быть отражением ключевых правил, требований и предпочтений, которыми руководствуются клиенты на рынке при выборе продукта и совершении покупки. При этом выбранные вами характеристики и переменные должны описывать весь рынок, т. е. всех клиентов на заданной географической территории.
Как понять, какие характеристики кластеризации и переменные внутри них необходимы для MVC-1 вашего рынка? При ответе на этот вопрос есть две новости – одна хорошая, а вторая нормальная.
Хорошая новость заключается в том, что на каком бы рынке вы ни находились, одной из двух (или трёх) его характеристик всегда будет цена, которую клиент готов заплатить за продукт. Ни в коем случае не стоит путать цену с, например, среднедушевым доходом клиента. Речь идёт именно о цене. Разница принципиальна, так как на огромном количестве рынков цена и среднедушевой доход клиента не связаны между собой (дорогостоящие продукты приобретаются в кредит клиентами с низким среднедушевым доходом). Аналогичная ситуация и на промышленных рынках, где кредитование позволяет компаниям, которые формально не могут себе такое позволить, совершать дорогостоящие покупки. Таким образом, вы, уважаемый читатель, уже знаете первую характеристику для MVC-1 вашего рынка – это цена. Неважно, на каком рынке вы работаете (потребительском, промышленном или рынке государственных закупок) – у каждого из них будет характеристика «цена». В некоторых редких случаях цена может трансформироваться в иную, но в любом случае очень сходную по своей природе финансовую характеристику, отражающую количество денег, которое клиент готов потратить на покупку. Например, в банковской отрасли, когда речь идёт о кредитовании, роль цены играет ставка кредита, а в случае с предприятиями розничной торговли в отдельных случаях применяется понятие «средний чек клиента». Однако, как мы видим, во всех этих ситуациях всё равно речь идёт о деньгах, которые клиент тратит на продукт.
Нормальная новость состоит в том, что вторую и/или третью характеристику вашего рынка вам предстоит определить самостоятельно, т. е. каждая продуктовая группа и рынок подразумевают свои индивидуальные характеристики и переменные. Вместе с тем эти поиски не должны стать для вас непреодолимым препятствием, если вы будете держать в уме тот факт, что характеристики кластеризации – это ключевые правила, требования и предпочтения, которых придерживаются клиенты на рынке и которые описывают их поведение при выборе продукта и совершении покупки. Не стоит забывать, что любая характеристика требует по меньшей мере двух переменных. Т. е. каждая характеристика описывает ситуацию, при которой часть клиентов поступает одним образом (например, предпочитает серийную мебель), а другая часть – иным образом (мебель на заказ). Перечень переменных внутри каждой характеристики должен охватывать всех клиентов, т. е. не должно быть ситуации, когда часть клиентов в рамках характеристики поступает неким образом, который не охвачен зафиксированными в характеристике переменными.
После того как вы определились с перечнем характеристик и переменных в них, можно приступать к описанию имеющихся на рынке кластеров. Для этого сначала выполняется механический перебор переменных. Таким образом получаются все возможные варианты кластеров. Затем из этого набора убирают те кластеры, которых в реальности не существует.
Например, если вновь вернуться к рис. 3, то путём перебора переменных в характеристиках мы получим 12 кластеров (три переменных в первой характеристике и по две переменных во второй и третьей). Однако, посмотрев на рынок, мы видим, что некоторые из этих кластеров искусственны, т. е. в реальности не существуют. Это кластеры «Низкая цена – На заказ – Прямая закупка», «Низкая цена – На заказ – Тендеры», «Средняя цена – На заказ – Прямая закупка», «Средняя цена – На заказ – Тендеры». Не бывает дешёвой и средней по цене офисной мебели на заказ. Такая мебель предполагает высокую цену. Соответственно, такие искусственные кластеры убираются из модели, в ней остаются лишь те кластеры, которые существуют в действительности. В моём примере таких кластеров шесть (на самом деле их должно быть больше, однако для простоты объяснения я дополнительно удалил ещё два реально существующих кластера: это кластеры «Высокая цена – Серийная – Тендеры» и «Высокая цена – На заказ – Прямая закупка»).
Теперь у нас есть описание реальных кластеров рынка – описание структуры рынка.
Как понять, какое количество характеристик (две или три) будет на вашем рынке? Ответ спрятан в довольно неожиданном месте, в области умственных способностей человечества. Как уже упоминалось ранее, в далёком 1956 г. американский психолог Джордж Миллер доказал, что кратковременная память среднестатистического человека может одновременно эффективно обрабатывать ограниченное количество объектов. Это всего лишь 7 ± 2 объекта (да, кто-то из нас чуть умнее, а кто-то чуть задумчивее)[6]6
Miller G. A. The magical number seven, plus or minus two: Some limits on our capacity for processing information. The Psychological Review, 1956, vol. 63, pp. 81–97.
[Закрыть]. Как мы видим, это смехотворно малое число. Что бы мы ни думали о мощи собственного интеллекта и о заключениях Миллера, рекомендую прислушаться к выводам этого уважаемого господина, тем более что они признаны современной наукой. Правило Миллера определяет и предельное количество кластеров, которое может быть в вашей модели. В чистом виде их должно быть 7–9. Я допускаю, что их может быть чуть больше, например 10–12. Это если вы уверены в аналитических способностях своего мозга. В любом случае нужно помнить: чем больше кластеров, тем труднее будет нашему мозгу качественно их анализировать и сравнивать между собой. Соответственно, если вы видите, что с учётом переменных количество реальных (а не искусственных!) кластеров переваливает за 10–12, наверное, следует ограничиться двумя характеристиками вместо трёх. Если же три характеристики с учётом их переменных дают приемлемое количество реальных кластеров, значит, оставьте три характеристики.
При этом следует избегать простых решений. Например, «а гори оно огнём – пусть будет только две характеристики», даже если количество кластеров позволяет использовать три. Этот соблазн вас обязательно настигнет, если вам не удастся разыскать третью характеристику. Однако максимальной точности анализ в MVC-1 достигает тогда, когда кластеризация выполнена именно на основе трёх характеристик. Выбор лишь двух, хотя и допустим, тем не менее чреват снижением глубины анализа. Такой выбор разрешается лишь в случаях превышения возможного числа кластеров или тогда, когда мы не можем найти третью характеристику, несмотря на все старания.
ШАГ 3
Определяем список компаний, работающих на рынке (далее – игроки): это наша компания (если она работает на рынке), все конкуренты или группы однотипных конкурентов (например, множество однотипных мелких или средних игроков; допускается наличие нескольких групп).
Отмечаем, какой игрок в каком кластере (кластерах) работает; необходимо определить всех игроков в каждом кластере.
Описав имеющиеся на рынке кластеры, сосредоточимся на работающих в них компаниях. На третьем шаге задача заключается в том, чтобы определить перечень предприятий, которые работают на целевом рынке с заданной продуктовой группой. Эти компании указываются в левом столбце листа «Рынок – Кластеризация – $» (рис. 3). В отношении предприятий, попадающих в список, действует несколько правил:
1. В список должны быть включены абсолютно все компании, работающие на рынке.
2. Если список большой, допускается группировка похожих, однотипных компаний. Например, в одну группу могут быть объединены все мелкие игроки. В примере на рис. 3 именно так и было сделано с сотнями мелких компаний и предпринимателей. Разрешается создание нескольких групп, например «мелкие игроки» и «средние игроки». Однако все крупные игроки, а также другие игроки, которых вы рассматриваете в качестве ключевых, потенциально опасных или интересных вам с точки зрения конкурентной борьбы, должны быть выделены поимённо.
3. Запрещено смешивать в одной модели разных по своей природе игроков, если они не являются частью общего конкурентного поля, например производителей (рынок производителей) и дистрибьюторов (рынок дистрибьюторов), за исключением случаев, когда они прямо конкурируют между собой. Давайте вернёмся к автомобилям, которые мы уже обсуждали, когда говорили о цене. Мы можем выполнить MVC-1 по меньшей мере для двух разных ситуаций. Мы можем говорить о рынке производителей, и тогда в списке компаний у нас появятся автомобильные бренды (Audi, Mercedes, BMW и т. п.). Мы также можем выполнить MVC-1 для дистрибьюторов, тогда в нашем списке будут дистрибьюторы, и каждый из них может держать в своём портфеле и продавать сразу несколько автомобильных марок. Попытка смешать эти списки, объединив в один, приведёт к хаосу и задублированию продаж (ситуация, при которой в продажах сначала учитываются продажи производителя дилеру, а затем продажи дилера конечному потребителю). В случаях, аналогичных описанному, решение о том, по какому рынку выполняется MVC-1, следует принять на этапе шага 1.
ШАГ 4
Указываем совокупный объём продаж продукта (выручку по продукту) каждого игрока на рынке в базовом году* в деньгах (источник данных: экспертная оценка, первичные данные, т. е. исследования рынка, или вторичные, т. е. данные, получаемые от различных поставщиков данных, как коммерческих, так и некоммерческих, в том числе государственных).
* Под базовым годом, как правило, понимается фактически завершившийся год; отталкиваясь от него, далее мы будем выполнять прогнозирование на следующий год в границах горизонта планирования (далее – прогнозируемый год).
Разносим продажи (выручку) каждого игрока по кластерам, в которых он работает. Необходимо разнести продажи всех игроков. Продажи (выручка) указываются с учётом налогов, например НДС и налога на доход при упрощённой системе налогообложения.
Высчитываем объём каждого кластера в деньгах в базовом году (формула: сумма объёмов продаж всех присутствующих в кластере игроков).
Определившись с перечнем игроков на рынке, мы переходим к их финансовым показателям. Нам необходимо указать совокупный объём продаж каждого игрока (или группы игроков) в деньгах по выбранному нами продукту на заданном рынке. Существует несколько способов получения требуемых цифр.
Первый способ. Мы можем обратиться в статистические и прочие ведомства, а также в специализированные коммерческие информационные агентства, которые собирают экономические данные о предприятиях (это абсолютно законно). Нам в России повезло, в отличие от многих стран, ключевые экономические показатели компаний (выручка, прибыль и т. п.) законодательно выведены из понятия «коммерческая тайна» и находятся в открытом доступе. Разумеется, речь идёт об обобщённых данных. Например, если компания работает с несколькими продуктами и/или на нескольких рынках, то мы получим только общую информацию о выручке и прибыли от всех продуктов на всех рынках. Речь также идёт о бухгалтерских данных, которые, как правило, имеют весьма отдалённое отношение к реальным рыночным данным, которые нам так нужны. Тем не менее любая цифра лучше, чем её отсутствие, – давайте запомним этот менеджерский принцип, он нам ещё не раз понадобится. Если в статистических и прочих государственных ведомствах и коммерческих агентствах есть финансовые данные об игроках, включённых в MVC-1, этим нужно пользоваться. Эти данные можно получить либо бесплатно (интернет нам в помощь), либо за очень умеренную плату. Как уточняются и корректируются эти данные, мы обсудим чуть ниже. Иногда, хоть и очень редко, отраслевые ассоциации собирают и публикуют информацию об объёмах продаж организаций-участников. Все данные такого вида в менеджменте называются вторичными.
И вот ещё что скажу, просто на всякий случай. Всегда держите в уме известную пословицу: нет большей лжи, чем статистика. Далее вы поймёте, зачем я о ней напомнил.
Второй способ. Мы можем заказать у специализированного исследовательского агентства полевое исследование среди клиентов, приобретающих продукт на заданном рынке. В менеджменте данные, получаемые с помощью исследований, заказанных самой компанией, называют первичными. В данном случае речь может идти о достаточно существенных затратах – такие исследования пусть и не очень дороги, но всё же требуют определённых денег. Хорошая новость в данном случае заключается в том, что подавляющее число отраслей может быть исследовано, т. е. получить необходимые данные не составит труда. Как правило, это делается с помощью опроса клиентов, в ходе которого выясняют, продукты какой компании (торговой марки) клиенты предпочитают, в каком объёме и как часто их закупают. Данные об объёме и частоте закупки продукта клиентами у конкретной компании позволяют вычислить объём её продаж в натуральном выражении (штуки, килограммы и т. п. в зависимости от продукта).
Рассчитав таким образом объёмы продаж каждого игрока в натуральном выражении, затем нужно выяснить реальные цены, по которым каждая компания продаёт свои продукты. Речь идёт именно о реальных, а не о декларируемых ценах, они могут существенно отличаться. Как правило, цены выясняются либо путём наблюдения, т. е. нужно посмотреть на цены на полке, либо путём скрытой закупки (mystery shopping) – под видом клиента мы имитируем закупки продуктов у интересующих нас компаний. Знание цены, по которой продукт продаётся той или иной компанией, позволяет вычислить её объём продаж в финансовом выражении (формула: объём продаж в натуральном выражении × цена единицы продукта). При этом данные об объёмах закупок, совершаемых клиентами, а также знание цен на конкретные продукты позволяет в целом вычислить объёмы рынка в натуральном и стоимостном выражении (однако это предельно общие, недостаточные для нас цифры, о чём, в частности, пойдёт речь ниже).
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?