Электронная библиотека » Чарльз Сейфе » » онлайн чтение - страница 12


  • Текст добавлен: 6 июля 2014, 11:27


Автор книги: Чарльз Сейфе


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 12 (всего у книги 13 страниц)

Шрифт:
- 100% +

Глава 8
Час зеро на Граунд-зиро

Ноль на границе пространства-времени

Друг другу они чуждыми казались.

Взор смертного не мог бы различить,

Что в будущем своем они сливались.

Томас Харди, «Слияние двоих»

В современной физике происходит борьба двух титанов. Общая теория относительности властвует над очень-очень большими объектами: большинством массивных тел во Вселенной, таких как звезды, солнечные системы, галактики. Квантовая механика управляет областью очень-очень малого: атомов, электронов, субатомных частиц. Казалось бы, эти две теории могли бы мирно уживаться: каждая диктовала бы свои правила для разных аспектов Вселенной.

К несчастью, существуют объекты, принадлежащие к обеим областям. Черные дыры очень-очень массивны, так что подчиняются законам относительности. В то же время они очень-очень малы и находятся под властью квантовой механики. Два набора законов не приходят к согласию и сталкиваются в центре черной дыры.

На пересечении квантовой механики и теории относительности, где две теории встречаются, обитает ноль и заставляет их ссориться. Черная дыра – это ноль в уравнениях общей теории относительности. Энергия вакуума – ноль в математических выкладках квантовой механики. Большой взрыв, самое загадочное явление в истории Вселенной, является нолем в обеих теориях. Вселенная возникла из ничего, и обе теории ломаются, когда дело доходит до объяснения возникновения космоса.

Чтобы понять Большой взрыв, физикам нужно поженить квантовую теорию с относительностью. За последние несколько лет у них наметился успех: они создали странную теорию, объясняющую квантово-механическую природу гравитации, что позволяет им бросить взгляд на само создание нашей Вселенной. Все, что было нужно, – это изгнать ноль.

Теория всего есть, по сути, Теория ничего.

Ноль изгнанный: теория струн

Проблема заключается в том, что когда мы пытаемся рассчитать путь к нулевому расстоянию, уравнение взрывается и дает нам бессмысленные ответы – такие, как бесконечность. Это причинило множество неприятностей, когда теория квантовой электродинамики еще только разрабатывалась. Ученые получали бесконечность при попытке разрешения любой проблемы!

Ричард Фейнман

Общей теории относительности и квантовой механике было суждено оказаться несовместимыми. Вселенная общей относительности – это гладкое резиновое полотно. Она непрерывна и текуча, никогда не имеет острия. Квантовая механика, с другой стороны, описывает дергающуюся и прерывистую Вселенную. То, что у обеих теорий есть общего (и на чем они сталкиваются), – это ноль.

Бесконечный ноль черной дыры – масса, сжатая в нулевой объем, бесконечно искривляющая пространство, – прорывает дырку в гладком резиновом полотне. Уравнения общей теории относительности не могут справиться с остротой ноля. В черной дыре пространство и время не имеют смысла. У квантовой механики имеется сходная проблема, связанная с энергией нулевых колебаний. В соответствии с квантовыми законами такая частица, как электрон, должна быть точкой. Другими словами, она совсем не занимает пространства. Электрон – это объект нулевых измерений, и эта его сходная с нолем природа означает, что ученые не знают его массы или заряда.

Подобное утверждение представляется глупым. Уже почти столетие назад физики измерили массу и заряд электрона. Как можно не знать того, что было измерено? Ответ связан с нолем.

Электрон, который ученые видят в лаборатории, тот электрон, который физики, химики, инженеры знают и любят уже десятилетия, – самозванец. Это не настоящий электрон. Настоящий электрон прячется за завесой частиц, созданных флуктуациями нулевых колебаний, тех частиц, которые постоянно возникают и исчезают. Поскольку электрон существует в вакууме, он периодически поглощает или испускает одну из таких частиц, такую как протон. Рой частиц делает трудным измерение массы и заряда электрона, потому что измерению мешают частицы, маскирующие истинные свойства электрона. «Настоящий» электрон несколько тяжелее и имеет больший заряд, чем тот, который наблюдали физики.

Ученые смогли бы получить лучшее представление об истинных массе и заряде электрона, если бы смогли подобраться к нему поближе, если бы смогли изобрести крошечное приспособление, способное проникнуть в облако частиц и дать возможность разглядеть электрон более отчетливо. Согласно квантовой теории, как только измерительный прибор проник бы за слой виртуальных частиц на границе облака, ученые обнаружили бы, что масса и заряд электрона увеличиваются. По мере того как зонд приближался бы к электрону, он миновал бы все больше виртуальных частиц, так что наблюдаемые масса и заряд все увеличивались бы и увеличивались. Когда расстояние до электрона делалось бы все ближе к нолю, число частиц, которые зонд миновал, стремилось бы к бесконечности, так что измеренные зондом масса и заряд электрона также стремились бы к бесконечности. Согласно правилам квантовой теории, нульмерный электрон обладает бесконечными массой и зарядом.

Как и с энергией нулевых колебаний, ученые научились игнорировать бесконечные массу и заряд электрона. Они не стремятся приблизиться к электрону на нулевое расстояние, вычисляя массу и заряд электрона; они останавливаются на произвольно выбранном расстоянии от ноля. Как только ученый выбирает подходящее близкое расстояние, все вычисления, использующие «истинные» значения массы и заряда, совпадают друг с другом. Этот процесс называется перенормировкой. «Это то, что я назвал бы безумным процессом», – писал физик Ричард Фейнман, хотя он и получил Нобелевскую премию за то, что его придумал.

Точно так же, как ноль проделывает дыру в гладком полотне общей теории относительности, он сглаживает и разравнивает острие заряда электрона, затуманивая его. Однако поскольку квантовая теория имеет дело с имеющими нулевые размеры частицами-точками, технически все взаимодействия между частицами имеют бесконечный характер: это сингулярности. Например, когда две частицы сливаются, они встречаются в точке – в имеющей нулевые размеры сингулярности. Эта сингулярность не имеет смысла ни в квантовой теории, ни в общей теории относительности. Ноль – помеха в работе обеих великих теорий. Поэтому физики попросту от него избавились.

Вовсе не очевидно, как избавляться от ноля, поскольку ноль снова и снова возникает в пространстве и времени. Сингулярности в центре черных дыр имеют нулевые размеры, как и элементарные частицы вроде электронов. Электроны и черные дыры – реальные объекты, физики не могут просто усилием воли заставить их исчезнуть. Однако ученые могут дать черным дырам и электронам дополнительное измерение.

Это и есть причина возникновения теории струн. Она была создана в 1970-х годах, когда физики начали видеть преимущества рассмотрения каждой частицы в виде вибрирующей струны, а не точки. Если обращаться с электронами (и с черными дырами) как с одномерными объектами, как с петлей струны, вместо того чтобы рассматривать их как не имеющие размеров точки, бесконечности в общей теории относительности и в квантовой теории чудесным образом исчезают. Например, трудности с перенормировкой – бесконечные масса и заряд электрона – устраняются. Имеющий нулевые размеры электрон обладает бесконечными массой и зарядом потому, что это сингулярность. По мере приближения к нему измерения взмывают в бесконечность. Однако если электрон – это петля струны, частица больше сингулярностью не является. Это значит, что масса и заряд не устремляются к бесконечности, поскольку вы больше не минуете бесконечное облако частиц, приближаясь к электрону. Более того, когда две частицы сливаются, они больше не встречаются в подобной точке сингулярности; они образуют прекрасную, гладкую, непрерывную поверхность в пространстве-времени (рис. 54, 55).


Рис. 54. Частицы-точки создают сингулярность


Рис. 55. Частицы-струны – нет


Согласно теории струн, различные частицы представляют собой один и тот же тип струны, просто они колеблются по-разному. Все во Вселенной состоит из струн, имеющих размер примерно 10–33 см. Сравнивать размер струны с размером нейтрона – все равно что сравнивать размер нейтрона с размером нашей Солнечной системы.

С точки зрения существ столь крупных, как мы, петли выглядят подобными точкам, потому что они такие крошечные. Расстояния (и времена) меньшие, чем размер петель, больше значения не имеют, они не несут никакого физического смысла. Благодаря теории струн ноль изгнан из Вселенной. Таких вещей, как нулевое расстояние или нулевое время, не существует. Это разрешает все проблемы бесконечности в квантовой механике.

Изгнание ноля также решает проблемы бесконечности в общей теории относительности. Если вы представляете себе черную дыру как струну, тела больше не проваливаются сквозь разрыв в ткани пространства-времени. Вместо этого петля-частица, приближаясь к петле – черной дыре, растягивается и касается черной дыры. Две петли вибрируют, разрываются и образуют одну петлю – несколько более массивную черную дыру. (Некоторые теоретики полагают, что акт слияния частицы с черной дырой порождает странные частицы, такие как тахионы: частицы с воображаемой массой, перемещающиеся обратно во времени со скоростью большей, чем скорость света. Такие частицы могут быть приемлемыми в некоторых версиях теории струн.)

Устранение ноля из Вселенной может казаться жестким шагом, однако со струнами гораздо легче иметь дело, чем с точками. Устранив ноль, теория струн сглаживает прерывистую, связанную с частицами природу квантовой теории и чинит прорехи, созданные черными дырами в общей теории относительности. Когда эти проблемы разрешаются, две теории перестают быть несовместимыми. Физики начали думать, что теория струн сможет объединить квантовую теорию и теорию относительности и приведет к возникновению квантовой теории гравитации – теории всего, которая объясняла бы каждый феномен во Вселенной. Впрочем, у теории струн существуют некоторые проблемы. Во-первых, чтобы работать, ей нужно десять измерений.

Для большинства людей при четырех измерениях – одно лишнее. Видеть три из них легко: влево-вправо, вперед-назад и вверх-вниз – это три измерения, в которых мы можем двигаться. Четвертое измерение появилось, когда Эйнштейн показал, что время сходно с этими тремя: мы постоянно движемся во времени, как автомобиль, разгоняющийся на шоссе. Согласно теории относительности, так же, как мы можем менять скорость перемещения вдоль шоссе, мы можем менять скорость, с которой перемещаемся сквозь время, – чем быстрее мы движемся в пространстве, тем больше внешние часы обгоняют наши собственные. Чтобы понять Вселенную Эйнштейна, мы должны принять идею о том, что время – четвертое измерение.

Четыре – это разумно, но десять? Мы можем учитывать показания в четырех измерениях, но что делать с остальными шестью? В соответствии с теорией струн они свернуты, как маленькие шарики, слишком миниатюрные, чтобы их увидеть. Когда вы берете лист бумаги, он представляется двумерным. Он имеет длину и ширину, но, по-видимому, не имеет никакой глубины. Тем не менее если вы возьмете лупу и посмотрите на край листа бумаги, вы начнете замечать, что капельку глубины он имеет. Вам нужен инструмент, чтобы это обнаружить, однако третье измерение присутствует, хотя и является слишком маленьким, чтобы его видеть при обычных условиях. То же самое верно и с теми шестью измерениями. В повседневной жизни они слишком малы, чтобы их видеть. Они слишком малы, чтобы мы могли их отследить даже с помощью самого мощного оборудования, которое смогли бы создать в ближайшем будущем.

Что означают эти шесть добавочных измерений? На самом деле ничего. Они не измеряют ничего, к чему мы привычны: длину, ширину, толщину, время. Они просто математические конструкции, заставляющие математические операции в пределах теории струн проходить так, как они должны. Как и воображаемые числа, мы не можем их видеть и ощущать, хотя они необходимы для вычислений. Несмотря на то, что физически концепция представляется странной, ученых интересует предсказательная сила уравнений, а не их понятность, и шесть дополнительных измерений не представляют собой неразрешимой проблемы математически, хотя их выявление таковой оказаться могло бы. (Сегодня кажется, что десять – это мало. За последние несколько лет физики поняли, что многие соперничающие варианты теории струн в определенном смысле – одно и то же. Теперь ученые обнаруживают, что теории двойственны, как Понселе обнаружил взаимную двойственность прямых и точек. Физики полагают, что существует теория-чудовище, лежащая в основе всех конкурирующих теорий: так называемая М-теория, требующая одиннадцать измерений, а не десять.)

Струны (или их более обобщенные аналоги, браны – мембраны, поверхности в пространстве многих измерений) настолько малы, что рассмотреть их невозможно с помощью любого инструмента – по крайней мере, до тех пор, пока наша цивилизация не уйдет намного вперед. На субатомном уровне физики рассматривают частицы с помощью ускорителей, используя магнитные поля или другие средства, чтобы заставить частицы разгоняться до очень больших скоростей. Когда частицы сталкиваются друг с другом, они выбрасывают фрагменты. Коллайдеры (ускорители частиц) – это микроскопы, которыми можно пользоваться в субатомном мире, и чем больше энергии вкладывается в частицы, чем мощнее микроскоп, тем более мелкие объекты можно увидеть.

Большой адронный коллайдер, многомиллиардный проект, планировавшийся с начала 1990-х годов, – самый мощный когда-либо существовавший ускоритель частиц. Он состоит более чем из 10 000 магнитов, образующих петлю 54 мили в окружности – примерно той же величины, что кольцевая дорога вокруг Вашингтона. Однако даже его мощности недостаточно для того, чтобы увидеть струны или свернутые измерения – для этого понадобился бы ускоритель частиц примерно в 6 000 000 000 000 000 миль в окружности. Даже на скорости света частице потребовалось бы 1000 лет, чтобы завершить его облет.

В настоящее время невозможно представить себе инструмент, который дал бы ученым возможность напрямую наблюдать струны. Никто не смог придумать эксперимент, который дал бы физикам доказательство того, что черные дыры и частицы на самом деле струны. Это основное возражение против теории струн. Поскольку наука базируется на наблюдениях и экспериментах, некоторые критики утверждают, что теория струн – не наука, а философия. (Существует набор теорий, утверждающий, что некоторые из свернутых измерений могут быть размером в 10–19 сантиметров или даже больше. Это ввело бы их в область возможных экспериментов. Однако в настоящее время такие теории рассматриваются как не заслуживающие экспериментальной проверки – интересные идеи, но в лучшем случае очень спекулятивные.)

Ньютоновские законы движения и тяготения дали физикам объяснение того, как планеты и другие тела движутся во Вселенной. Когда бы ни бывала открыта новая комета, она давала дополнительную возможность проверки теории Ньютона. Однако некоторые проблемы оставались. Например, орбита Меркурия поворачивалась вокруг Солнца не совсем так, как предсказывал Ньютон, но в целом теории Ньютона при новых и новых проверках оправдывались.

Теории Эйнштейна исправили ошибки Ньютона. Например, они объяснили смещение орбиты Меркурия. На основании этих теорий были также сделаны проверяемые предсказания того, как действует гравитация. Эддингтон наблюдал искривление света звезд во время солнечного затмения, что подтвердило одно из таких предсказаний. Теория струн, с другой стороны, очень успешно связывает несколько существующих теорий и предсказывает, как себя ведут черные дыры и частицы, однако ни одно из этих предсказаний нельзя проверить или наблюдать. Хотя теория струн математически последовательна и даже красива, она еще не наука[32]32
  Да, математика может быть красива или уродлива. Как трудно объяснить, что делает музыкальное произведение или картину эстетически привлекательным, в равной мере трудно объяснить, что делает математическую теорему или физическую теорию красивой. Красивая теория должна быть простой, компактной, краткой. Она должна вызывать ощущение полноты и часто странной симметрии. Теории Эйнштейна особенно красивы, как и уравнения Максвелла. Для многих математиков уравнение Эйлера eϖi + 1 = 0 является образцом математической красоты, потому что это чрезвычайно простая компактная формула, связывающая все важные числа в математике совершенно неожиданным образом (прим. авт.).


[Закрыть]
.

Час зеро. Большой взрыв

Наблюдения Хаббла говорят о том, что было время – так называемый Большой взрыв, когда Вселенная была бесконечно малой и бесконечно плотной. При таких условиях все законы науки теряют смысл и не позволяют прогнозировать будущее.

Стивен Хокинг. «Краткая история времени: от Большого взрыва до черных дыр»

Вселенная родилась в ноле. Из пустоты, из ничего возник катаклизм – взрыв, который создал всю материю и энергию, из которых состоит Вселенная. Это событие – Большой взрыв – представлялось многим ученым и философам чудовищным. Прошло много времени, прежде чем астрофизики стали соглашаться с тем, что Вселенная конечна во времени, что она, в конце концов, имела начало.

Предрассудок насчет бесконечности Вселенной очень древен. Аристотель отвергал возникновение Вселенной из пустоты, потому что считал, что пустоты никогда не существовало. Однако это порождало парадокс. Если Вселенная не могла родиться из пустоты, тогда что-то должно было существовать до ее появления: Вселенная должна была существовать до того, как Вселенная родилась. Для Аристотеля единственный выход из этого тупика виделся в заключении о том, что Вселенная вечна. Она всегда существовала в прошлом и всегда будет существовать в будущем.

Западная цивилизация со временем должна была сделать выбор между Аристотелем и Библией, которая учит, что конечная Вселенная возникла из ничего, и содержит пророчества ее уничтожения. Хотя космос семитской Библии был поколеблен аристотелевским, идея вечной и неизменной Вселенной не была изгнана полностью, дожив даже до XX века. Она привела Эйнштейна к тому, что он называл величайшей ошибкой в своей карьере.

Для Эйнштейна общая теория относительности имела решающий недостаток. Она предсказывала конец Вселенной. Если верить уравнениям общей теории относительности, Вселенная нестабильна. Существовало всего два варианта, и оба неприятные.

Согласно одному, Вселенную ждет коллапс под действием ее собственной гравитации. По мере того как Вселенная будет становиться все меньше и меньше, она будет все более разогреваться. Она разгорится радиацией, которая истребит всякую жизнь и в конце концов уничтожит атомы, из которых состоит материя. Это была бы огненная смерть. Со временем Вселенная сожмется в имеющую нулевые измерения точку, подобную черной дыре, и исчезнет навсегда.

Другая возможность, если уж на то пошло, еще более мрачна. Вселенная будет расширяться до бесконечности. Галактики разойдутся все дальше друг от друга, и звездная материя, порождающая все энергетические реакции во Вселенной, будет делаться все более разреженной. Звезды выгорят, израсходовав все свое горючее, галактики сделаются все более темными, а потом холодными и безмолвными. Холодная мертвая материя звезд распадется, оставив после себя лишь слабую радиацию, которая равномерно распространится по Вселенной. Космос станет холодным супом гаснущего света.

Для Эйнштейна такие идеи были отвратительны. Как и Аристотель, он в душе считал Вселенную статичной, постоянной и вечной. Единственный выход он видел в том, чтобы «подкорректировать» свои уравнения общей теории относительности ради устранения неизбежного уничтожения. Он сделал это, добавив космогоническую константу – не открытую до сих пор силу, противостоящую гравитации. Давление этой космогонической константы уравновесило бы силу притяжения. Вместо коллапса Вселенную ожидало бы постоянное равновесие: она не сжималась бы и не расширялась. Постулирование такой загадочной силы было жестом отчаяния. «Я снова проделал кое-что с теорией гравитации, что грозит мне заключением в сумасшедший дом», – писал Эйнштейн, однако его так беспокоило неизбежное уничтожение Вселенной, что он был вынужден пойти на столь отчаянный шаг.

Эйнштейна не отправили в сумасшедший дом. Он предлагал и более странные вещи и оказывался прав. Впрочем, на этот раз удача ему изменила. Сами звезды разрушили представление Эйнштейна о статичном вечном космосе.

В 1900 году всей известной Вселенной был Млечный Путь. Астрономы не представляли себе, что есть что-то помимо нашего маленького пыльного звездного диска. Хотя они обнаружили светящиеся вращающиеся облака, не было особых оснований считать их чем-то иным, чем светящийся газ внутри нашей Галактики. В 1920-е годы все изменилось благодаря американскому астроному Эдвину Хабблу.

Особая разновидность звезд, названных переменными цефеидами, обладала свойством, позволившим Хабблу измерить расстояние до очень удаленных объектов.

Цефеиды пульсируют, делаясь то ярче, то тусклее. Эта пульсация вполне предсказуема, она строго зависит от того, сколько света они испускают. Цефеиды играют роль стандартных источников света, объектов, яркость которых известна. Они и стали ключевым инструментом для Хаббла. Они вели себя как прожектор на локомотиве.

Если вы смотрите на поезд, приближающийся к вам, вы заметите, что его прожектор делается ярче по мере приближения. Если вам известно, сколько света испускает прожектор (если он стандартный источник света), вы сможете сказать, насколько ярким он будет на каждом заданном расстоянии. Чем ближе поезд, тем ярче кажется его прожектор. Та же логика приложима и в обратном направлении: если вам известно, сколько света испускает прожектор, вы можете измерить его яркость в данный момент и вычислить, на каком расстоянии от вас находится поезд.

Хаббл именно это и проделал с цефеидами. Большинство звезд, которые он видел, удалены на десятки, сотни и тысячи световых лет от Земли. Однако когда он нашел цефеиду, мигающую сквозь одно из вращающихся облаков – туманность Андромеды, как его тогда называли, – он измерил световой поток и вычислил, что туманность удалена на миллион световых лет, далеко за пределы нашей Галактики. Туманность Андромеды оказалась не облаком светящегося газа, это было облако звезд настолько удаленных, что они выглядели как туман, а не отдельные источники света. Другие вращающиеся галактики были еще более далекими. Сегодня астрономы подозревают, что Вселенная имеет в поперечнике 15 миллиардов световых лет и вся усеяна сгустками галактик.

Это было потрясающее открытие. Вселенная оказалась в миллионы раз больше, чем полагали раньше. Однако сколь бы потрясающим ни было это открытие, Хаббл в наибольшей мере знаменит не этим. Второе открытие Хаббла вдребезги разбило вечную Вселенную Эйнштейна.

Хаббл благодаря своим цефеидам измерял расстояния до разных галактик и скоро начал замечать пугающую зависимость: все галактики с огромной скоростью (в сотни миль в секунду) разлетаются прочь от нашего Млечного Пути. Галактики настолько далеки, что даже эти огромные скорости не так легко измерить.

Единственный способ определить скорость убегания Галактики – использовать доплеровский эффект, тот же принцип, который действует в лазерных винтовках. Вы могли заметить, что когда мимо вас мчится поезд, высота его гудка меняется. Когда поезд приближается, звук гудка бывает высоким, но когда поезд вас миновал, высота резко падает. Это происходит потому, что движение поезда сжимает звуковые волны впереди (делая их высокочастотными) и растягивает позади (в результате чего тон звука понижается) (рис. 56). Это и есть доплеровский эффект.


Рис. 56. Доплеровский эффект


Рис. 57. Расширяющаяся Вселенная


В отношении света он действует тоже. Если звезда движется в направлении Земли, световые волны сжимаются, приобретают бо́льшую частоту, чем обычно, и смещаются к голубой части спектра – происходит так называемое голубое смещение. Если звезда удаляется, происходит нечто противоположное – красное смещение.

Полиция может определить, как быстро едет автомобиль, измерив изменение отраженного от автомобиля света – в виде радиоволн – при перемещении машины. Аналогичным способом – рассмотрев изменение спектра звезды – астроном вычисляет скорость движения звезды: к нам или от нас.

Хаббл объединил данные о расстоянии с данными допплеровского эффекта и получил нечто шокирующее. Не только галактики разбегаются от нас во всех направлениях, но и чем более удалена галактика, тем с большей скоростью она удаляется.

Как это может быть? Представьте себе надувной шар в горошек. Каждая горошинка – это галактика, а сам шар – материя пространства-времени. По мере надувания шара горошинки будут удаляться друг от друга. С точки зрения каждой горошинки, все остальные разбегаются от нее, и более дальние разбегаются быстрее, чем близкие (рис. 57). Вселенная, похоже, расширяется, как надуваемый шар. (Аналогия с шаром имеет один недостаток: в отличие от горошинок, которые увеличиваются в размерах по мере увеличения шара, галактики сохраняют свои размеры, удерживаемые собственной гравитацией.)

Время течет вперед, и Вселенная расширяется и расширяется. Если посмотреть на это с другой точки зрения, имея запись истории Вселенной и прокрутив эту запись обратно, мы увидели бы, как Вселенная сжимается и сжимается. В какой-то точке шар совсем сожмется, делаясь все меньше и меньше, и в конце концов исчезнет в точке – сингулярности начала времени и пространства. Это и есть первичный ноль, место рождения Вселенной, он и породил Большой взрыв, чудовищный взрыв, создавший космос. Именно из этой сингулярности возникли вся материя и энергия Вселенной, откуда произошли все галактики, звезды и планеты, которые когда-либо существовали или будут существовать. Вселенная имела начало примерно 15 миллиардов лет назад. С тех пор пространство расширялось. Надежда Эйнштейна на устойчивую вечную Вселенную практически умерла.

Оставался единственный проблеск надежды, одна альтернатива Большому взрыву – теория стационарной Вселенной[33]33
  Речь идет о стационарной Вселенной без сохранения материи: не просто о «выбросах материи», а о том, что она постоянно рождается из ничего.


[Закрыть]
. Некоторые астрономы предположили, что существуют выбросы материи, а галактики движутся от них прочь, старея и умирая. Хотя отдельные галактики разбегаются и умирают, вся Вселенная как целое никогда не меняется. Она всегда сохраняет равновесие, постоянно себя восполняя. Вечная Вселенная Аристотеля все же выжила.

Некоторое время теории Большого взрыва и стационарной Вселенной существовали бок о бок. Это были альтернативы, которые астрономы выбирали в зависимости от своей философии. В середине 1960-х годов все изменилось. Теория стационарной Вселенной была убита тем, что ученые ошибочно приняли за голубиный помет.

В 1905 году несколько астрофизиков из Принстонского университета занимались расчетами того, что могло произойти сразу после Большого взрыва. Вся Вселенная должна была быть невероятно горячей и плотной, она должна была сиять ярким светом. Свет не должен был исчезнуть при расширении надувного шара – Вселенной, он должен был растянуться, как растягивалось пространство-время. Проделав еще несколько расчетов, астрофизики из Принстона поняли, что этот свет должен занимать микроволновую часть спектра и исходить со всех направлений. Это космическое реликтовое излучение было бы следами Большого взрыва. Оно дало бы физикам первое прямое свидетельство того, что теория Большого взрыва верна, а теория стационарной Вселенной ошибочна.

Ученым из Принстона не пришлось долго ждать подтверждения своих предсказаний. Двое инженеров из расположенных неподалеку лабораторий Белла в Марри Хилл, Нью Джерси, испытывали чувствительное оборудование для выявления микроволнового излучения. Несмотря на все старания, им не удавалось заставить оборудование работать как следует. Им мешало шипение, похожее на статические помехи в радиопрограммах. От него никак не удавалось избавиться. Сначала инженеры подумали, что виноваты голуби, гадящие на антенну, но после изгнания птиц и очистки антенны от помета шипение сохранилось. Они перепробовали все, что только могли придумать, чтобы избавиться от шума, но ничего не помогало. Когда же инженеры услышали о работах группы из Принстона, они поняли, что обнаружили остаточное космическое излучение. Голубиный помет был не виноват. Они слышали голос Большого взрыва, рассеявшийся и искаженный до шепота. (За свое открытие инженеры Арно Пензиас и Роберт Вильсон получили Нобелевскую премию. Физики из Принстона, Боб Дикке и П. Дж. Э. «Джим» Пибблс, не получили ничего, что несправедливо с точки зрения многих ученых. Нобелевский комитет склонен награждать трудоемкие тщательные эксперименты, а не важные теории.)

Большой взрыв удалось выследить, миф о стационарной Вселенной умер. Как ни непривлекательна была идея конечности Вселенной, физики постепенно признали Большой взрыв и согласились с тем, что Вселенная имела начало. Впрочем, проблемы с теорией оставались. Во-первых, Вселенная несколько комковата. Плотные скопления галактик разделены огромной пустотой. В то же время Вселенная выглядит более или менее одинаковой во всех направлениях, так что материя не образует одного огромного шара. Если Вселенная возникла из сингулярности, по всей вероятности, энергия от Большого взрыва должна была бы заполнить весь надувной шар довольно равномерно или сконцентрироваться в одном большом комке. Шарик окрасился бы равномерно или имел одно большое пятно, а не приобрел окраски в горошек. Что-то должно было быть причиной такой как раз правильной комковатости. Еще более тревожил вопрос о том, откуда возникла сингулярность, из которой возник Большой взрыв. Ноль хранит этот секрет.

Нулевой характер вакуума может объяснять комковатость Вселенной. Поскольку повсюду во Вселенной вакуум кипит квантовой пеной виртуальных частиц, ткань Вселенной заполнена бесконечной энергией нулевых колебаний. При правильных условиях эта энергия способна управлять поведением объектов, на начальных этапах существования Вселенной она могла отталкивать их друг от друга.

В 1980-е годы физики предположили, что энергия нулевых колебаний при раннем существовании Вселенной могла быть большей, чем она есть сейчас. Эта дополнительная энергия должна распространяться во всех направлениях, с огромной скоростью растягивая ткань пространства-времени. Она раздувала бы шар чудовищным рывком, с силой выравнивая комковатость Вселенной, как поток воздуха разравнивает морщинки на воздушном шаре. Это объясняло бы, почему Вселенная относительно равномерна. Однако вакуум нескольких первых моментов существования Вселенной – ложный вакуум, в нем энергия нулевых колебаний неестественно велика. Этот высокий уровень делает энергию нулевых колебаний внутренне нестабильной, и делает очень быстро – меньше чем за миллионную долю миллионной доли секунды: ложный вакуум коллапсирует, превращаясь в истинный вакуум с его повседневным уровнем энергии нулевых колебаний, который мы наблюдаем в нашей Вселенной. Это похоже на чайник с водой, который мгновенно нагрет до огромной температуры. Маленькие пузырьки «истинного» вакуума сформировались бы и расширились со скоростью света. Наша наблюдаемая Вселенная находится в одном из таких пузырьков или в нескольких соединившихся между собой. Асимметрия Вселенной может объясняться асимметричной природой этих слипшихся расширяющихся пузырьков. В соответствии с теорией расширения именно энергия ненулевых колебаний создала звезды и галактики.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации