Электронная библиотека » Денис Шевчук » » онлайн чтение - страница 18


  • Текст добавлен: 26 января 2014, 02:25


Автор книги: Денис Шевчук


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 18 (всего у книги 27 страниц)

Шрифт:
- 100% +

Сумма итоговых девяти весовых коэффициентов, естественно, равна 1, поскольку так построена схема декомпозиции.

С первого взгляда может показаться рациональной оценка эти девять коэффициентов непосредственно (с помощью экспертов). В главе 3.4 критикуется такое предложение. Из сказанного выше также ясно, что пошаговый метод декомпозиции дает возможность более точно сопоставить весовые коэффициенты (отдельно внутри групп, отдельно группы между собой), чем это можно сделать при объединении всех единичных показателей вместе.

Рассмотренные выше способы усреднения значений единичных показателей – это фактически применение средних взвешенных арифметических для значений единичных показателей. Целесообразно обратить внимание на возможность применения иных видов средних величин. А также на подходы и результаты теории измерений, позволяющие выбирать наиболее адекватные виды средних величин в соответствии с используемыми шкалами измерения (см. главу 3.4).

В теории и практике принятия решений накоплено большое число различных методов подготовки и принятия решений, как относительно простых, так и основанных на изощренной математической технике. В дальнейших главах мы подробно рассмотрим методы принятия решений, основанных на оптимизационных, вероятностно—статистических и экспертных методах, а также познакомимся с подходами к моделированию процессов управления.

3.1.6. Принятие решений в условиях инфляции

Под инфляцией понимаем рост (изменение) цен (подробнее см. Шевчук Д.А., Шевчук В.А. Макроэкономика: Конспект лекций. – М.: Высшее образование, 2006). При анализе экономических процессов, протяженных во времени, необходимо переходить к сопоставимым ценам. Это невозможно сделать без расчета индекса роста цен, т. е. индекса инфляции. Проблема состоит в том, что цены на разные товары растут с различной скоростью, и необходимо эти скорости усреднять.

Рассмотрим конкретного покупателя товаров и услуг, т. е. конкретного экономического субъекта: физическое лицо, домохозяйство или фирму. Он покупает не один товар, а много. Обозначим через n количество типов товаров или услуг (далее кратко – товаров), которые он хочет и может купить. Пусть

Q i = Q i (t) , i= 1,2 ,…,n,

– объемы покупок этих товаров в момент времени t по ценам:

r i = r i (t), i= 1,2 ,…,n

(имеется в виду цена за единицу измерения соответствующего товара, например, за штуку или килограмм…).

Подход к измерению роста цен основан на выборе и фиксации потребительской корзины (Q 1 (t) , Q 2 (t) , …, Q n (t)) , не меняющейся со временем, т. е. (Q 1 (t) , Q 2 (t) , …, Q n (t)) ≡ (Q 1 , Q 2 , …, Q n) . Затем необходимо сравнить стоимости потребительской корзины (Q 1 , Q 2 , …, Q n) в старых r i (t 1), i = 1,2 ,…, n, и новых r i (t 2), i = 1,2 ,…, n, ценах.

Определение. Индексом инфляции называется

Таким образом, каждой потребительской корзине соответствует свой индекс инфляции. Однако согласно теореме сложения для индекса инфляции [6] он является средним взвешенным арифметическим роста цен на отдельные товары. Поэтому индексы инфляции, рассчитанные по разным достаточно обширным и представительным потребительским корзинам, достаточно близки между собой).

Данные о динамике индекса инфляции приведены в табл.7.

Таблица 7.

Индекс инфляции и стоимость потребительской корзины

В таблице целая часть отделяется от дробной десятичной точкой, а запятая используется для деления числа по разрядам (на западный манер). Учитывается проведенная деноминация рубля. Если ее не учитывать, то за 12 лет (1991–2003) цены (в Москве) выросли примерно в 50 тысяч раз. Поскольку экономические связи между регионами ослабли, то темпы роста цен в регионах различаются, но, видимо, не более чем на 10–20 %.

Примечание 1.

Использования индекса инфляции в экономических расчетах при принятии решений. Хорошо известно, что стоимость денежных единиц со временем меняется. Например, на один доллар США полвека назад можно было купить примерно в восемь раз больше материальных ценностей (например, продовольствия), чем сейчас, а если сравнивать с временами Тома Сойера – в 100 раз больше. Причем стоимость денежных единиц с течением времени, как правило, падает. Этому есть две основные причины – банковский процент и инфляция. В экономике есть инструменты для учета изменения стоимости денежных единиц с течением времени. Один из наиболее известных – расчет NPV (Net Present Value, [нет прэзнт в э лью]) – чистой текущей стоимости. Однако бухгалтерский учет и построенный на данных баланса предприятия экономический анализ финансово—хозяйственной деятельности предприятия пока что, как правило, игнорируют сам факт наличия инфляции. Обсудим некоторые возможности использования индекса инфляции в экономических расчетах в процессе подготовки и принятия решений.

Переход к сопоставимым ценам. Индекс инфляции даст возможность перехода к сопоставимым ценам, расходам, доходам и другим экономическим величинам (подробнее см. Шевчук Д.А., Шевчук В.А. Деньги. Кредит. Банки. Курс лекций в конспективном изложении: Учеб—метод. пособ. – М: Финансы и статистика, 2006). Например, по данным табл.7 индекс инфляции за 4 года – с 14.03.91 г. по 16.03.95 г. – составил 5936. Это означает, что покупательной способности 1 рубля марта 1991 г. соответствует примерно 6000 (а точнее 5936) рублей марта 1995 г.

Рассмотрим приведение доходов к неизменным ценам. Пусть Иван Иванович Иванов получал в 1990 г. 300 руб. в месяц, а в мае 1995 г. – 1 миллион руб. в месяц. Увеличились его доходы или уменьшились?

Номинальная заработная плата выросла в 1000000/300 = 3333 раза. Однако индекс инфляции на 18 мая 1995 г. составлял 7080. Это значит, что 1 руб. 1990 г. соответствовал по покупательной способности 7080 руб. в ценах на 18.05.95 г. Следовательно, в ценах 1990 г. доход И.И. Иванова составлял 1000000/7080 = 142 руб. 24 коп., т. е. 47,4 % от дохода в 1990 г.

Можно поступить наоборот, привести доход 1990 г. к ценам на 18 мая 1995 г. Для этого достаточно умножить его на индекс инфляции: доход 1990 г. соответствует 300 х 7080 = 2 миллиона 124 тыс. руб. в ценах мая 1995 г.

Средняя зарплата. По данным Госкомстата РФ средняя заработная плата составляла в 1990 г. 297 руб., в октябре 1993 г. – 93 тыс. руб., в январе 1995 г. – 303 тыс. руб. Поскольку зарплата тратится в основном в следующем месяце после получки, то рассмотрим индексы инфляции на 15.11.93 г. и 2.02.95 г., равные 1045 и 4811 соответственно. В ценах 1990 г. средняя зарплата составила 89 руб. и 62 руб.98 коп. соответственно, т. е. 30 % и 21,2 % от зарплаты 1990 г.

Средняя зарплата рассчитывается путем деления фонда оплаты труда на число работников. При этом объединяются доходы и низкооплачиваемых и сравнительно высокооплачиваемых. Известно, что распределение доходов резко асимметрично, большому числу низкооплачиваемых работников соответствует малое число лиц с высокими доходами. За 1991–1995–е годы дифференциация доходов резко увеличилась. Это означает, что доходы основной массы трудящихся сдвинулись влево относительно средней зарплаты. По нашей оценке 50 % получают не более 70 % от средней зарплаты, т. е. не более 212100 руб. по состоянию на январь 1995 г., а наиболее массовой является оплата в 50 % от средней, т. е. около 150 тыс. руб. в месяц.

Доходы отдельных слоев трудящихся снизились еще существеннее. Зарплата профессора Московского государственного института электроники и математики (технического университета) составляла в марте 1994 г. – 42 руб.92 коп. (в ценах 1990 г.), в июле 1995 г. – 43 руб. 01 коп., т. е. с 1990 г. (400 руб.) снизилась в 9,3 раза, дошла до уровня прежней студенческой стипендии. А студенческие стипендии снизились примерно в той же пропорции и составляли 4–5 руб. в ценах 1990 г.

Кроме того, необходимо учесть, что Госкомстат учитывает начисленную зарплату, а не выплаченную. В отдельные периоды отечественной истории выплата заработной платы откладывалась надолго.

Минимальная зарплата и прожиточный минимум. Минимальная зарплата вместе с единой тарифной сеткой во многом определяла зарплату работников бюджетной сферы.

Индексы инфляции с помощью описанной выше методики можно рассчитать для любого региона, профессиональной или социальной группы, отдельного предприятия или даже конкретной семьи. Эти значения могут быть эффективно использованы на трехсторонних переговорах между профсоюзами, работодателями и представителями государства.

Проценты по вкладам в банк, плата за кредит и инфляция. Рассмотрим банк, честно выполняющий свои обязательства. Пусть он дает 10 % в месяц по депозитным вкладам. Тогда 1 руб., положенный в банк, через месяц превращается в 1,1 руб., а через 2 – по формуле сложных процентов – в1,1 2 = 1,21 руб., …, через год – в 1,1 12 = 3,14 руб. Однако за год росли не только вклады, но и цены.

Инфляция, показатели работы предприятия и ВВП. Индексы инфляции используются для пересчета номинальных цен в неизменные (сопоставимые). Другими словами, для приведения доходов и расходов к ценам определенного момента времени. Потребительские корзины для промышленных предприятий, конечно, должны включать промышленные товары, а потому отличаться от потребительских корзин, ориентированных для изучения жизненного уровня.

Сколько стоит предприятие? Важно оценить основные фонды. Для этого нужно взять их стоимость в определенный момент времени и умножить на индекс инфляции (и учесть амортизационные отчисления).

Валовой внутренний продукт, валовой национальный продукт и другие характеристики экономического положения страны рассчитываются в текущих ценах. Для перехода к неизменным ценам, грубо говоря, надо поделить на индекс инфляции (т. е. умножить на дефлятор).

Проблема учета инфляции при экономическом анализе финансово—хозяйственной деятельности предприятия. Как известно, разработана и широко применяется развернутая система коэффициентов, используемых при экономическом анализе финансово—хозяйственной деятельности предприятия. Она основана на данных бухгалтерского баланса. Естественно, опирается на два столбца баланса – данные на «начало периода» и данные на «конец периода». Записывают в эти столбцы номинальные значения. В настоящее время инфляцию полностью игнорируют. Это приводит к искажению реального положения предприятия. Денежные средства преувеличиваются, а реальная стоимость основных фондов занижается. По официальной отчетности предприятие может считаться получившим хорошую прибыль, а по существу – не иметь средств для продолжения деятельности (подробнее см. Шевчук Д.А. Создание собственной фирмы: Профессиональный подход. – М.: ГроссМедиа: РОСБУХ, 2007).

Ясно, что учитывать инфляцию надо. Вопрос в другом – как именно. Потребительская корзина должна, видимо, состоять из тех товаров и услуг, которые предприятие покупает. Стоимость основных фондов может не убывать в соответствии с амортизацией, а возрастать согласно отраслевому темпу инфляции, и т. д. Здесь мы только обсуждаем проблему, не пытаясь ее полностью решить. Отметим, что рассматриваемая проблема может быть решена путем привлечения подходов контроллинга к принятию решений (подробнее см. Шевчук Д.А. Ценообразование. Учебное пособие. – М.: ГроссМедиа: РОСБУХ, 2008).

3.1.7. Современный этап развития теории принятия решений

Теория принятия решений – быстро развивающаяся наука. Задачи, которыми она занимается, порождены практикой управленческих решений на различных уровнях – от отдельного подразделения или малого предприятия до государств и международных организаций. Рассмотрим только несколько подходов, методов, проблем, активно обсуждающихся на современном этапе развития теории принятия решений. Это – системный подход, современные методы принятия решений, проблема горизонта планирования и контроллинг.

Системный подход при принятии решений. При обсуждении проблем принятия решений часто говорят о системном подходе, системе, системном анализе. Речь идет о том, что надо рассматривать проблему в целом, а не «выдергивать» для обсуждения какую—нибудь одну черту, хотя и важную. Так, при массовом жилищном строительстве можно «выдернуть» черту – стоимость квадратного метра в доме. Тогда наиболее дешевые дома – пятиэтажки. Если же взглянуть системно, учесть стоимость транспортных и инженерных коммуникаций (подводящих электроэнергию, воду, тепло и др.), то оптимальное решение уже другое – девятиэтажные дома.

Так, например, специалист банка, отвечающий за распространение пластиковых карт, может сосредоточиться на рекламе. Между тем ему от системы «банк – владельцы карт» лучше перейти к системе «банк – руководители организаций – владельцы карт». Договоренность с руководителем учреждения, давшим в итоге приказ выплачивать заработную плату с помощью пластиковых карт, даст нашему менеджеру гораздо больший прирост численности владельцев карт, чем постоянная дорогая реклама (подробнее см. Шевчук Д.А. Банковские операции. Принципы. Контроль. Доходность. Риски. – М.: ГроссМедиа: РОСБУХ, 2007). Его ошибка состояла в неправильном выделении системы, с которой он должен работать.

Специалист банка будет не прав, оценивая работу подразделений банка в текущих рублях. Обязательно надо учитывать инфляцию. Иначе мы сталкиваемся с парадоксальными явлениями, когда реальная ставка платы за кредит отрицательна; или же – рублевый оборот растет, банк якобы процветает, а после перехода к сопоставимым ценам путем деления на индекс инфляции становится ясно, что дела банка плохи.

Обратим внимание на постоянный конфликт между интересами промышленного предприятия и банка. Банкир стремится возможно дороже продать свои услуги по безналичному денежному обороту. Например, берет 3 % комиссионных с каждого перечисления. И десятки процентов годовых за кредиты. Менеджмент предприятия вынужден повышать цены. Результат очевиден – снижение конкурентоспособности. Научный подход к разрешению конфликта – теория игр.

Различных определений понятия «система» – десятки. Общим в них является то, что о системе говорят как о множестве, между элементами которого имеются связи. Целостность системы и ее «отделенность» от окружающего мира обеспечиваются тем, что взаимосвязи внутри системы существенно сильнее, чем связь какого—либо ее элемента с любым элементом, лежащим все системы. Системный анализ – дисциплина, занимающаяся проблемами принятия решений в условиях, когда выбор альтернативы требует анализа сложной информации различной физической природы.

Современные методы принятия решений. Кроме упомянутых или кратко рассмотренных выше методов, прежде всего экспертных, при принятии решений применяют весь арсенал методов современной прикладной математики. Они используются для оценки ситуации и прогнозирования при выборе целей, для генерирования множества возможных вариантов решений и выбора из них наилучшего.

Прежде всего надо назвать всевозможные методы оптимизации (математического программирования). Для борьбы с многокритериальностью используют различные методы свертки критериев, а также интерактивные компьютерные системы, позволяющие вырабатывать решение в процессе диалога человека и ЭВМ. Применяют имитационное моделирование, базирующееся на компьютерных системах, отвечающих на вопрос: «Что будет, если…?», метод статистических испытаний (Монте—Карло), модели надежности и массового обслуживания. Часто необходимы статистические (эконометрические) методы, в частности, методы выборочных обследований. При принятии решений применяют как вероятностно—статистические модели, так и методы анализа данных.

Особого внимания заслуживают проблемы неопределенности и риска, связанных как с природой, так и с поведением людей. Разработаны различные способы описания неопределенностей: вероятностные модели, теория нечеткости, интервальная математика. Для описания конфликтов (конкуренции) полезна теория игр. Для структуризации рисков используют деревья причин и последствий (диаграммы типа «рыбий скелет», они же – диаграммы Исикава или Ишикава, по фамилии японского исследователя, впервые их использовавшего). Менеджеру важно учитывать постоянные и аварийные экологические риски. Плата за риск и различные формы страхования также постоянно должны быть в его поле зрения.

Проблема горизонта планирования. Во многих ситуациях продолжительность проекта не определена либо горизонт планирования инвестора не охватывает всю продолжительность реализации проекта до этапа утилизации. В таких случаях необходимо изучить влияние горизонта планирования на принимаемые решения. Это особенно важно для стратегического менеджмента (глава 1.4)

Контроллинг. Как уже отмечалось, в последние годы все большую популярность получает контроллинг – современная концепция системного управления организацией, в основе которой лежит стремление обеспечить ее долгосрочное эффективное существование. Контроллинг – это информационно—аналитическая поддержка принятия решений на предприятии (в организации). Контроллинг рассматривается в главе 3.6.

В конкретных прикладных работах успех достигается при комбинированном применении различных методов. Для подготовки решений создаются аналитические центры и «ситуационные комнаты», позволяющие соединять человеческую интуицию и компьютерные расчеты. Все шире используются информационные технологии поддержки принятия решений, прежде всего в контроллинге.

3.2. МЕТОДЫ ОПТИМИЗАЦИИ

Оптимизация налогов подробно рассмотрена в работе Шевчук Д.А. Оффшоры: инструменты налоговой оптимизации. – М.: ГроссМедиа: РОСБУХ, 2007. В настоящее время менеджер может использовать при принятии решения различные компьютерные и математические средства. В памяти компьютеров держат массу информации, организованную с помощью баз данных и других программных продуктов, позволяющих оперативно ею пользоваться. Экономико—математические и эконометрические модели позволяют просчитывать последствия тех или иных решений, прогнозировать развитие событий. Методы экспертных оценок, о которых пойдет речь ниже, также весьма математизированы и используют компьютеры.

Наиболее часто используются оптимизационные модели принятия решений. Их общий вид таков:

F (X) → max

X Є A

Здесь Х – параметр, который менеджер может выбирать (управляющий параметр). Он может иметь различную природу – число, вектор, множество и т. п. Цель менеджера – максимизировать целевую функцию F (X), выбрав соответствующий Х.. При этом он должен учитывать ограничения X Є A на возможные значения управляющего параметра Х – он должен лежать в множестве А. Ряд примеров оптимизационных задач менеджмента приведен ниже.

3.2.1. Линейное программирование

Среди оптимизационных задач менеджмента наиболее известны задачи линейного программирования, в которых максимизируемая функция F (X) является линейной, а ограничения А задаются линейными неравенствами. Начнем с примера.

Производственная задача. Цех может производить стулья и столы. На производство стула идет 5 единиц материала, на производство стола – 20 единиц (футов красного дерева). Стул требует 10 человеко—часов, стол – 15. Имеется 400 единиц материала и 450 человеко—часов. Прибыль при производстве стула – 45 долларов США, при производстве стола – 80 долларов США. Сколько надо сделать стульев и столов, чтобы получить максимальную прибыль?

Обозначим: Х 1 – число изготовленных стульев, Х 2 – число сделанных столов. Задача оптимизации имеет вид:

45 Х 1 + 80 Х 2 → max,

5 Х 1 + 20 Х 2 ≤ 400,

10 Х 1 + 15 Х 2 ≤ 450,

Х 1 ≥ 0,

Х 2 ≥ 0.

В первой строке выписана целевая функция – прибыль при выпуске Х 1 стульев и Х 2 столов. Ее требуется максимизировать, выбирая оптимальные значения переменных Х 1 и Х 2 . При этом должны быть выполнены ограничения по материалу (вторая строчка) – истрачено не более 400 футов красного дерева. А также и ограничения по труду (третья строчка) – затрачено не более 450 часов. Кроме того, нельзя забывать, что число столов и число стульев неотрицательны. Если Х 1 = 0, то это значит, что стулья не выпускаются. Если же хоть один стул сделан, то Х 1 положительно. Но невозможно представить себе отрицательный выпуск – Х 1 не может быть отрицательным с экономической точки зрения, хотя с математической точки зрения такого ограничения усмотреть нельзя. В четвертой и пятой строчках задачи и констатируется, что переменные неотрицательны.

Условия производственной задачи можно изобразить на координатной плоскости. Будем по горизонтальной оси абсцисс откладывать значения Х 1, а по вертикальной оси ординат – значения Х 2. Тогда ограничения по материалу и последние две строчки оптимизационной задачи выделяют возможные значения (Х 1, Х 2) объемов выпуска в виде треугольника.

Таким образом, ограничения по материалу изображаются в виде выпуклого многоугольника, конкретно, треугольника. Этот треугольник получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей второй строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х 1, соответствующую стульям, в точке (80,0). Это означает, что если весь материал пустить на изготовление стульев, то будет изготовлено 80 стульев. Та же прямая пересекает ось Х 2, соответствующую столам, в точке (0,20). Это означает, что если весь материал пустить на изготовление столов, то будет изготовлено 20 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство – материал останется.

Аналогичным образом можно изобразить и ограничения по труду.

Таким образом, ограничения по труду, как и ограничения по материалу, изображаются в виде треугольника. Этот треугольник также получается путем отсечения от первого квадранта примыкающей к началу координат зоны. Отсечение проводится прямой, соответствующей третьей строке исходной задачи, с заменой неравенства на равенство. Прямая пересекает ось Х 1, соответствующую стульям, в точке (45,0). Это означает, что если все трудовые ресурсы пустить на изготовление стульев, то будет сделано 45 стульев. Та же прямая пересекает ось Х 2, соответствующую столам, в точке (0,30). Это означает, что если всех рабочих поставить на изготовление столов, то будет сделано 30 столов. Для всех точек внутри треугольника выполнено неравенство, а не равенство – часть рабочих будет простаивать.

Мы видим, что очевидного решения нет – для изготовления 80 стульев есть материал, но не хватает рабочих рук, а для производства 30 столов есть рабочая сила, но нет материала, Значит, надо изготавливать и то, и другое. Но в каком соотношении?

Чтобы ответить на этот вопрос, надо «совместить» графики, получив область возможных решений, а затем проследить, какие значения принимает целевая функция на этом множестве.

Таким образом, множество возможных значений объемов выпуска стульев и столов (Х 1, Х 2 ), или, в других терминах, множество А, задающее ограничения на параметр управления в общей оптимизационной задаче, представляет собой пересечение двух треугольников, т. е. выпуклый четырехугольник. Три его вершины очевидны – это (0,0), (45,0) и (0,20). Четвертая – это пересечение двух прямых – границ треугольников, т. е. решение системы уравнений

5 Х 1 + 20 Х 2 = 400,

10 Х 1 + 15 Х 2 = 450.

Из первого уравнения: 5 Х 1 = 400 – 20 Х 2, Х 1 = 80 – 4 Х 2. Подставляем во второе уравнение:

10 (80 – 4 Х 2) + 15 Х 2 = 800 – 40 Х 2 + 15 Х 2 = 800 – 25 Х 2 = 450,

следовательно, 25 Х 2 = 350, Х 2 = 14, откуда Х 1 = 80 – 4 х 14 = 80–56 =24. Итак, четвертая вершина четырехугольника – это (24, 14).

Надо найти максимум линейной функции на выпуклом многоугольнике (в общем случае линейного программирования – максимум линейной функции на выпуклом многограннике, лежащем в конечномерном линейном пространстве). Основная идея линейного программирования состоит в том, что максимум достигается в вершинах многоугольника. В общем случае – в одной вершине, и это – единственная точка максимума. В частном – в двух, и тогда отрезок, их соединяющий, тоже состоит из точек максимума.

Целевая функция 45 Х 1 + 80 Х 2 принимает минимальное значение, равное 0, в вершине (0,0). При увеличении аргументов эта функция увеличивается. В вершине (24,14) она принимает значение 2200. При этом прямая 45 Х 1 + 80 Х 2 = 2200 проходит между прямыми ограничений 5 Х 1 + 20 Х 2 = 400 и 10 Х 1 + 15 Х 2 = 450, пересекающимися в той же точке. Отсюда, как и из непосредственной проверки двух оставшихся вершин, вытекает, что максимум целевой функции, равный 2200, достигается в вершине (24,14).

Таким образом, оптимальный выпуск таков: 24 стула и 14 столов. При этом используется весь материал и все трудовые ресурсы, а прибыль равна 2200 долларам США.

Двойственная задача. Каждой задаче линейного программирования соответствует так называемая двойственная задача. В ней по сравнению с исходной задачей строки переходят в столбцы, неравенства меняют знак, вместо максимума ищется минимум (или, наоборот, вместо минимума – максимум). Задача, двойственная к двойственной – эта сама исходная задача. Сравним исходную задачу (слева) и двойственную к ней (справа):

45 Х 1 + 80 Х 2 → max, 400 W 1 + 450 W 2 → min,

5 Х 1 + 20 Х 2 ≤ 400, 5 W 1 + 10 W 2 ≥ 45,

10 Х 1 + 15 Х 2 ≤ 450, 20 W 1 + 15 W 2 ≥ 80,

Х 1 ≥ 0, W 1 ≥ 0,

Х 2 ≥ 0. W 2 ≥ 0.

Почему двойственная задача столь важна? Можно доказать, что оптимальные значения целевых функций в исходной и двойственной задачах совпадают (т. е. максимум в исходной задаче совпадает с минимумом в двойственной). При этом оптимальные значения W 1 и W 2 показывают стоимость материала и труда соответственно, если их оценивать по вкладу в целевую функцию. Чтобы не путать с рыночными ценами этих факторов производства, W 1 и W 2 называют «объективно обусловленными оценками» сырья и рабочей силы.

Линейное программирование как научно—практическая дисциплина. Из всех задач оптимизации задачи линейного программирования выделяются тем, что в них ограничения – системы линейных неравенств или равенств. Ограничения задают выпуклые линейные многогранники в конечном линейном пространстве. Целевые функции также линейны.

Впервые такие задачи решались советским математиком Л.В. Канторовичем (1912–1986) в 1930–х годах как задачи производственного менеджмента с целью оптимизации организации производства и производственных процессов, например, процессов загрузки станков и раскройки листов материалов. После второй мировой войны аналогичными задачами занялись в США. В 1975 г. Т. Купманс (1910–1985, родился в Нидерландах, работал в основном в США) и академик АН СССР Л.В. Канторович были награждены Нобелевскими премиями по экономике.

Рассмотрим несколько типовых задач линейного программирования.

Задача о диете (упрощенный вариант). Предположим для определенности, что необходимо составить самый дешевый рацион питания цыплят, содержащий необходимое количество определенных питательных веществ (для простоты, тиамина Т и ниацина Н).

Пищевая ценность рациона (в калориях) должна быть не менее заданной. Пусть для простоты смесь для цыплят изготавливается из двух продуктов – К и С. Известно содержание тиамина и ниацина в этих продуктах, а. также питательная ценность К и С (в калориях). Сколько К и С надо взять для одной порции куриного корма, чтобы цыплята получили необходимую им дозу веществ Н и Т и калорий (или больше), а стоимость порции была минимальна? Исходные данные для расчетов приведены в табл.1.

Задача линейного программирования имеет вид:

3,8 К + 4,2 С → min,

0,10 К + 0,25 С ≥ 1,00,

1,00 К + 0,25 С ≥ 5,00,

110,00 К + 120,00 С ≥ 400,00,

К ≥ 0,

С ≥ 0.

Ради облегчения восприятия четыре прямые обозначены номерами (1) – (4). Прямая (1) – это прямая 1,00 К + 0,25 С = 5,00 (ограничение по веществу Н). Она проходит, как и показано на рисунке, через точки (5,0) на оси абсцисс и (0,20) на оси ординат. Обратите внимание, что допустимые значения параметров (К, С) лежат выше прямой (1) или на ней, в отличие от ранее рассмотренных случаев в предыдущей производственной задаче линейного программирования.

Прямая (2) – это прямая 110,00 К + 120,00 С = 400,00 (ограничение по калориям). Обратим внимание, что в области неотрицательных С она расположена всюду ниже прямой (1). Действительно, это верно при К = 0, прямая (1) проходит через точку (0,20), а прямая (2) – через расположенную ниже точку (0, 400/120). Точка пересечения двух прямых находится при решении системы уравнений

1,00 К + 0,25 С = 5,00,

110,00 К + 120,00 С = 400,00.

Из первого уравнения К = 5–0,25 С. Подставим во второе: 110 (5–0,25 С) + 120 С = 400, откуда 550 – 27,5 С + 120 С = 400. Следовательно, 150 = – 92,5 С, т. е. решение достигается при отрицательном С. Это и означает, что при всех положительных С прямая (2) лежит ниже прямой (1). Значит, если выполнено ограничения по Н, то обязательно выполнено и ограничение по калориям. Мы столкнулись с новым явлением – некоторые ограничения с математической точки зрения могут оказаться лишними. С точки зрения менеджера они необходимы, отражают существенные черты постановки задачи, но в данном случае внутренняя структура задачи оказалась такова, что ограничение по калориям не участвует в формировании допустимой области параметров и нахождении решения.

Прямая (4) – это прямая 0,1 К + 0,25 С = 1 (ограничение по веществу Т). Она проходит, как и показано на рисунке, через точки (10,0) на оси абсцисс и (0,4) на оси ординат. Обратите внимание, что допустимые значения параметров (К, С) лежат выше прямой (4) или на ней, как и для прямой (1).

Следовательно, область допустимых значений параметров (К, С) является неограниченной сверху. Из всей плоскости она выделяется осями координат (лежит в первом квадранте) и прямыми (1) и (4) (лежит выше этих прямых, а также включает граничные отрезки). Область допустимых значений параметров, т. е. точек (К, С), можно назвать «неограниченным многоугольником». Минимум целевой функции 3,8 К + 4,2 С может достигаться только в вершинах этого «многоугольника». Вершин всего три. Это пересечения с осями абсцисс (10,0) и ординат (0,20) прямых (1) и (4) (в каждом случае из двух пересечений берется то, которое удовлетворяет обоим ограничениям). Третья вершина – это точка А пересечения прямых (1) и (4), координаты которой находятся при решении системы уравнений

0,10 К + 0,25 С = 1,00,

1,00 К + 0,25 С = 5,00.

Из второго уравнения К = 5–0,25 С, из первого 0,10 (5–0,25 С) + 0,25 С = 0,5–0,025 С + 0,25 С = 0,5 + 0,225 С = 1, откуда С = 0,5/0,225 = 20/9 и К = 5–5/9 = 40/9. Итак, А = (40/9; 20/9).

Прямая (3) – это прямая, соответствующая целевой функции 3,8 К + 4,2 С. Она проходит между прямыми (1) и (4), задающими ограничения, и минимум достигается в точке А, через которую и проходит прямая (3). Следовательно, минимум равен 3,8х40/9 + 4,2х20/9 = 236/9. Задача об оптимизации смеси полностью решена.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации