Электронная библиотека » Джеймс Глик » » онлайн чтение - страница 10


  • Текст добавлен: 29 августа 2018, 17:20


Автор книги: Джеймс Глик


Жанр: Биографии и Мемуары, Публицистика


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 10 (всего у книги 49 страниц) [доступный отрывок для чтения: 16 страниц]

Шрифт:
- 100% +
Чопорная деревня

Принстон славился своей аристократичностью. Университетские столовые, аллеи деревьев, каменные кладки и витражные окна, академические мантии за ужином и непременный обмен любезностями за чаем. Ни один другой колледж так не подчеркивал социальный статус своих выпускников как Принстон с его клубными традициями. Хотя XX век уже наложил свой отпечаток – количество выпускников выросло, а Нассау-стрит замостили, – Принстон в довоенные годы все же оставался таким, каким его с обожанием и поклонением описывал Скотт Фицджеральд – «неторопливым, привлекательным и аристократичным». Это был форпост между Нью-Йорком, Филадельфией и Югом. На его факультетах, очень профессиональных, все еще встречались фицджеральдовские «умеренно поэтичные джентльмены». Даже добродушный гений, прибывший в 1933 году и ставший самым знаменитым резидентом, не смог удержаться от насмешки. «Чопорная деревня тщедушных божков на ходулях», – описывал университет Эйнштейн.

Аспиранты, готовящиеся вступить на профессиональную стезю, были несколько отстранены от более праздных проявлений университетской жизни. Кафедра физики, в частности, развивалась в ногу со временем. Со стороны Фейнману казалось, что физики из Принстона составляли основную долю авторов научных журналов. Но даже несмотря на это, ему пришлось приспосабливаться к новому месту, которое, со своими внутренними дворами и множеством входящих в состав колледжей, походило на английские университеты даже больше, чем Гарвард и Йель. У здания аспирантуры, например, стоял «портье». Формальности, как обычно, пугали Фейнмана, но это продолжалось лишь до тех пор, пока он не начал понимать, что под академической мантией, которую нужно было носить обязательно, можно спрятать голые руки или пропитанную потом после игры в теннис спортивную форму. В день, когда он только приехал, осенью 1939 года, во время воскресного чаепития с деканом Эйзенхартом его несдержанные манеры стали настоящей проблемой. Он надел свой лучший костюм, вошел в дверь и увидел там худшее из того, что только мог вообразить, – молодых девушек. Он не знал, разрешалось ли ему присесть. И тут услышал голос позади:

– Вам чай со сливками или с лимоном?

Он обернулся и увидел жену декана, знаменитую светскую львицу Принстона. Поговаривали, что математик Карл Людвиг Зигель, вернувшись в Германию после года обучения в Принстоне, рассказывал друзьям: «Гитлер страшен, но миссис Эйзенхарт страшнее».

– И с тем, и с другим, – выпалил Фейнман.

– Хе-хе-хе-хе-хе, – последовал ответ, – Вы, конечно, шутите, мистер Фейнман!

Фраза, несомненно, означала, что собеседник допустил бестактность. Каждый раз, когда Ричард вспоминал этот случай, слова звенели у него в ушах: «Вы, конечно, шутите». Да, вписаться в этот мир было непросто. Фейнман переживал, что плащ, присланный родителями, был слишком короток. Он попробовал заниматься греблей – спортом, популярным в Лиге Плюща и казавшимся не таким пугающим, учитывая опыт Фар-Рокуэй. Он помнил то беззаботное время, когда они плавали по заливам южного побережья. Однако почти сразу Фейнман плюхнулся в воду, не удержавшись в слишком узкой лодке. Его беспокоил финансовый вопрос. Когда к Фейнману приходили гости, то приносили с собой рисовый пудинг, виноград, крекеры с арахисовым маслом или джемом и ананасовый сок. Фейнман, как и другие начинающие ассистенты, получал пятнадцать долларов в неделю. Обналичивая сберегательные сертификаты, чтобы оплатить счет в 265 долларов, он потратил двадцать минут, подсчитывая, какая их комбинация даст минимальные проценты. Разница составила восемь центов. Внешне Ричард оставался таким же импульсивным. Вскоре после его приезда товарищи по аспирантуре заключили, что Фейнман был на одной волне с Эйнштейном, которого к тому времени он еще не встречал. С восхищением они слушали его телефонные разговоры, полагая, что он беседует именно с этим великим человеком: «Да, я пробовал это ‹…› да, сделал ‹…› О, хорошо, проверю». Но чаще всего Ричард, конечно, говорил с Уилером.

Так как Фейнман был ассистентом Уилера, ему часто приходилось подменять преподавателя сначала на занятиях по механике, позже – по ядерной физике. И он вскоре понял, что выступать в аудитории, заполненной студентами, – часть выбранной им профессии. Фейнман и Уилер встречались каждую неделю, чтобы обсудить, как продвигаются исследования. Поначалу задачи ставил Уилер, потом они стали принимать решения вместе.

В первые четыре десятилетия XX века в физике был совершен невероятный прорыв. Теория относительности, квантовая теория, космические лучи, радиация, строение атомного ядра – те направления, к которым были обращены взгляды ведущих ученых. Такие классические разделы физики, как механика, термодинамика, гидродинамика и статическая механика, остались в стороне, и сообразительным аспирантам, открытым новым теориям, эти области представлялись наукой из учебников, уже ставшей частью истории или, в прикладном варианте, машиностроения. Физика была, как выразился ее летописец Абрахам Пайс[81]81
  Абрахам Пайс (1918–2000) – американский физик-теоретик и историк науки голландского происхождения. Автор ряда работ по истории физики, в том числе популярных биографий Эйнштейна, Бора и Оппенгеймера.


[Закрыть]
, «обращена внутрь». Теоретиков интересовало строение ядра атома. Это направление стало приоритетным. Самое дорогостоящее экспериментальное оборудование: его стоимость могла достигать тысяч, а иногда и десятков тысяч долларов. Огромное потребление энергии. Непознанный мир новых веществ и «частиц» (это слово стало приобретать особое значение). Предлагаемые идеи казались странными и непонятными. Теория относительности, существенно повлиявшая на понимание космоса астрономами, практическое применение нашла в атомной физике, где ввиду того, что скорости частиц близки к скорости света, без релятивистской математики просто нельзя было обойтись. При проведении экспериментов использовались все более высокие мощности, что позволяло получать более значимые результаты. Благодаря квантовой механике физика утвердила свое превосходство над химией, которая до этого считалась самой фундаментальной наукой, так как объясняла основные законы природы.

Но в конце 1930-х – начале 1940-х годов физика элементарных частиц еще не считалась среди ученых приоритетным направлением. Так, в качестве темы ежегодной Вашингтонской конференции по физике в 1940 году организаторы рассматривали два варианта: «Элементарные частицы» и «Недра Земли» и выбрали в итоге второй. Но ни у Фейнмана, ни у Уилера не было сомнений в том, какое направление наиболее интересно и перспективно для теоретиков. Самым слабо развитым направлением фундаментальной физики в тот период была квантовая механика. Еще во время учебы в МТИ Фейнман прочел работу Дирака, опубликованную в 1935 году, в которой тот пришел к самому невероятному выводу: «Кажется, здесь нужны принципиально новые физические идеи». Дирак и другие первооткрыватели создали квантовую электродинамику – теорию взаимодействия электричества, магнетизма, света и материи – и развили ее настолько, насколько могли. Тем не менее теория оставалась незавершенной, и Дирак это хорошо знал.

Было непонятно, каким может быть электрон – фундаментальная частица с отрицательным зарядом. В тот период современное представление об электроне еще не вполне сформировалось, хотя в наше время многие школьники могут непосредственно на своих столах проводить эксперименты, которые демонстрируют, что электрический заряд дискретен, то есть заряд любого тела кратен заряду электрона. Но все же, что представляет собой электрон? Вильгельм Рентген, обнаруживший существование высокоэнергетических лучей, названных впоследствии его именем, запретил использовать это неожиданно получившее распространение слово в своих лабораториях еще в 1920 году. В трудах по квантовой механике ученые пытались описать заряд электрона, его массу, импульс, энергию или спин почти в каждом новом уравнении, однако хранили молчание по поводу самой его природы. Особенно остро стоял вопрос: был ли он частицей, имеющей конечные размеры, или бесконечно малой точкой? В модели атома Нильса Бора, уже устаревшей к тому моменту, предполагалось, что электроны, как миниатюрные планеты, вращаются вокруг ядра. Теперь же казалось, что электроны скорее являются гармоническими колебаниями. В некоторых формулировках электрон больше походил на волны, причем волна представляла собой распределение вероятностей их возникновения в конкретном месте в конкретное время. Но возникновение чего? Объекта, элемента, частицы?

Даже до появления квантовой механики классическое представление об электроне вызывало сомнения. Из уравнения, описывающего зависимость энергии (или массы) и заряда электрона и в которое входит еще один параметр – его радиус, следует, что с уменьшением размера электрона его энергия должна возрастать, подобно тому, как давление молотка, сосредоточенное в острие гвоздя, по которому он бьет, увеличивается до тысячи килограммов на квадратный сантиметр. Кроме того, если представлять электрон в виде крошечного шарика определенного размера, то возникает вопрос: почему он не разрушается под воздействием собственного заряда, какая сила удерживает его от этого? Оказалось, что физики манипулируют величиной, называемой «классический радиус электрона». Слово «классический» в данном контексте было своего рода прикрытием. Проблема заключалась в том, что при использовании альтернативного варианта, в котором электроны считаются бесконечно малыми точками, уравнения электродинамики не решаются: при делении на ноль получается бесконечность. Бесконечно маленькие гвозди, бесконечно сильные молотки.

В некотором смысле уравнения оценивали воздействие заряда электрона на самого себя, то есть его «собственную энергию». Это самовоздействие постепенно возрастало при приближении к центру электрона, но было непонятно, что будет, если в расчетах достичь центра электрона. Когда расстояние до центра становилось равным нулю, величина воздействия становилась равной бесконечности. Это казалось невозможным. Волновое уравнение квантовой механики только все усложняло. Чтобы избежать деления на ноль, которое во время учебы в школе вызывает ужас у учеников, физики задумались о создании уравнений, которые позволили бы выйти за пределы этих ограничений, ведь они суммировали бесконечное множество длин волн, бесконечное множество колебаний поля. Но даже тогда Фейнман не до конца понимал эту формулировку задачи, связанную с бесконечностью. Иногда, при решении достаточно простых задач, физикам удавалось получать разумные ответы, если они считали целесообразным отбрасывать те части уравнения, которые расходились с результатами. Как заметил Дирак в выводах к своей работе «Принципы квантовой механики», бесконечности в уравнении означали, что теория была фатально ошибочной. Появилось ощущение, что необходимы принципиально новые физические идеи.

Фейнман склонялся к решению настолько радикальному и простому, что его мог бы принять лишь человек, совершенно незнакомый с научной литературой. Он допустил (пока только для себя), что электроны вообще не могут воздействовать на себя. Такое предположение нуждалось в доказательстве и казалось довольно глупым. Однако, как он и ожидал, если исключить воздействие электрона на себя, то устранялось и воздействие поля как такового. Именно поле, представляющее собой суммарное воздействие зарядов всех электронов, и вызывало «самовоздействие». Заряд электрона оказывал влияние на поле, а поле, в свою очередь, воздействовало на электрон. Если предположить, что поля не существует, можно не учитывать его влияние на электроны. Тогда на каждый электрон будут оказывать влияние только другие электроны. Таким образом, будут осуществляться только непосредственные взаимодействия между зарядами. В этом случае в уравнении необходимо учесть задержку во времени, потому что, в какой бы форме это взаимодействие ни происходило, оно едва ли могло осуществляться со скоростью, превышающей скорость света. Взаимодействие было легким и осуществлялось в виде радиоволн, видимого света, рентгеновских лучей или любых других видов электромагнитного излучения. «Встряхни что-то одно, через какое-то время встряхнется и что-то другое, – сказал Фейнман позже. – Атомы на Солнце приходят в движение, а восемь минут спустя[82]82
  Солнечный свет достигает Земли примерно за восемь минут. Прим. науч. ред.


[Закрыть]
начинают колебаться электроны в моих глазах. Это и есть прямое воздействие».

Никакого поля. Никакого самосогласованного действия. Следуя утверждению Фейнмана, законы природы были не столько открыты учеными, сколько умозрительно выведены. Впрочем, их смысл, переведенный на язык слов, несколько размывался. Фейнмана интересовал не столько сам факт воздействия электрона на самого себя, сколько возможность обоснованно отбросить эту концепцию. То есть не существование поля в природе, а возможность его существования в уме физика. Когда Эйнштейн провозгласил, что эфира не существует, он говорил, что отсутствует что-то реальное, или, по крайней мере, то, что должно было существовать, – представьте хирурга, который вскрыл грудную клетку и не обнаружил там пульсирующего сердца. С полем все было иначе. Оно было придумано, а не существовало в реальности. Английские ученые Майкл Фарадей и Джеймс Максвелл, которые ввели это понятие в XIX веке, полагая, что оно столь же необходимо, как хирургический скальпель, начали чуть ли не извиняться. Они не ожидали, что их слова воспримут буквально, когда писали о «силовых линиях», которые Фарадей наблюдал, разбрасывая металлические опилки вблизи магнита, или о «промежуточных шестернях»[83]83
  Зубчатое колесо (шестерня), расположенное между двумя другими для передачи крутящего момента без изменения направления вращения к коэффициенту скорости. Прим. науч. ред.


[Закрыть]
, псевдомеханических невидимых вихрях, которые, по представлениям Максвелла, заполняли пространство. Они заверяли своих читателей, что это были всего лишь аналогии, хотя и обоснованные математически.

Понятие поля было предложено не просто так. Оно давало возможность свести воедино свет и электромагнетизм и было не чем иным, как преобразованием одного в другое. Как и абстрактный приемник ныне не существующего эфира, поле идеально объясняло распространение волн, а энергия, казалось, действительно волнообразно пульсировала из его источников. Каждый экспериментатор, так же увлеченно изучающий электрические цепи и магниты, как Фарадей и Максвелл, мог почувствовать, как «вибрации» или «волновые движения» движутся циклически, подобно кручению колеса[84]84
  Синусоидальное колебание есть проекция траектории движения фиксированной точки на крутящемся колесе. Прим. науч. ред.


[Закрыть]
. Но главное, поле позволяло объяснить, почему находящиеся на расстоянии объекты взаимодействуют друг с другом. В поле силы распространялись непрерывно, от одного места к другому. Никаких скачков, никакого волшебного подчинения непонятно откуда поступающим командам. Американский физик и философ Перси Бриджмен сказал: «Гораздо проще принять рациональный взгляд на то, что гравитация Солнца действует на Землю сквозь пространство, чем верить, что воздействующая сила «перескакивает» через разделяющее их расстояние и находит цель благодаря своей телеологической проницательности». К тому времени ученые уже забыли, что поле само по себе тоже несло налет магии: волнообразное нечто, которого не было, и пустое пространство, не вполне пустое и, строго говоря, не совсем пространство. Или, как позже сказал теоретик Стивен Вайнберг, «напряжение в мембране, но без самой мембраны». Понятие поля стало настолько привычным для физиков, что даже материя порой казалась им неким придатком, «точкой» этого поля, «пятном», или, как сказал Эйнштейн, тем местом, где поле было особенно интенсивно.

Принимать гипотезу поля или отрицать ее – так или иначе, к 1930 году это был уже вопрос метода, а не реальности. События 1926–1927 годов многое прояснили. Никто уже не был так наивен, чтобы сомневаться в существовании матриц Гейзенберга или волновых уравнений Шрёдингера. Это два разных взгляда на одни и те же процессы. В поисках новой теории Фейнман обратился к классическим представлениям о взаимодействии частиц. Ему пришлось столкнуться с волнообразным распространением энергии и обманчивым действием на расстоянии. В то же время Уилера заинтересовала абсолютно четкая концепция того, что электроны могут взаимодействовать напрямую, без участия поля.

Сгибы и ритмы

Во время учебы в аспирантуре Фейнману приходилось чаще общаться с математиками, чем с физиками. Студенты, обучающиеся на двух потоках, собирались каждый полдень в общем холле на чай – опять же, дань английским традициям, – и Фейнман постоянно слышал разговоры математиков на совершенно чуждом ему профессиональном языке. Математика уже переставала развиваться как наука, непосредственно используемая в современной физике, а сами математики все больше и больше склонялись к изучению таких кажущихся непонятными разделов как, например, топология[85]85
  Широко известная гипотеза Пуанкаре, доказанная Г. Перельманом, рассматривается именно в топологии, которая нашла применение в теории струн. Прим. науч. ред.


[Закрыть]
, рассматривающая фигуры в двух-, трех– и многомерных пространствах без учета фиксированных длин или углов. Будущие математики и физики все заметнее отдалялись друг от друга. В последний год обучения их практически ничего не связывало – ни совместные курсы, ни темы для разговоров. Фейнман же во время общих чаепитий, присоединившись к одной из групп или сидя на диване, слушал, что говорили математики о доказательствах. Так или иначе, он интуитивно чувствовал, какая теорема может быть выведена из какой леммы, даже если не понимал толком предмета спора. Ему нравились эти странные беседы. Нравилось угадывать противоречащие логике ответы на не поддающиеся наглядному представлению вопросы. Нравилось, как и всем физикам, подкалывать присутствующих, утверждая, что математики все время пытаются доказать очевидное. И хотя он подшучивал над ними, его восхищало это общество людей, увлеченных непостижимой наукой. Одним из друзей Ричарда был Артур Стоун, терпеливый молодой англичанин, обучавшийся в Принстоне на стипендию. Другим – Джон Тьюки, впоследствии ставший одним из известных в мире статистиков. Эти парни очень серьезно относились к своему свободному времени. Стоун привез из Англии блокноты, в которые можно было вставлять листы, а так как стандартная американская бумага была шире его блокнотов на два с половиной сантиметра, то у него всегда имелся большой запас бумажных полосок, из которых получались разные фигурки. Он попробовал сгибать бумагу по диагонали под углом 60° и получил ряд равносторонних треугольников. А затем, по этим сгибам, он сложил полоски в идеальный шестигранник.

Согнув полоску так, что ее края соединились, он обнаружил, что придумал необычную игрушку. Он зажал противоположные углы шестигранника и получил странную фигуру, напоминающую оригами, – новый шестигранник с другим набором треугольников. При повторном сжатии открывались другие грани. Еще один «флекс»[86]86
  Flex (англ.) – изгиб.


[Закрыть]
 – и фигура принимала изначальный вид. В итоге получалась плоская фигурка, которую можно было выворачивать туда-сюда.


Как сделать гексафлексагон


Стоун занимался этим всю ночь, а утром взял длинную полоску и подтвердил возникшую у него гипотезу: более сложный шестигранник мог бы состоять не из трех, а из шести различных поверхностей. На этот раз цикл процесса изготовления оказался не таким простым. Три грани появлялись снова и снова, в то время как остальные три были скрыты. Нетривиальный вызов его топологическому воображению. Искусство оригами развивалось столетиями, но никому прежде не удавалось воспроизвести столь изящную фигуру. В течение нескольких дней такие флексагоны, в дальнейшем получившие названия гексафлексагоны (шесть сторон, шесть поверхностей), циркулировали по обеденному залу во время обедов и ужинов. А затем появилась Комиссия по изучению флексагонов, в состав которой вошли Стоун, Тьюки, математик Брайант Такерман и их друг физик Фейнман. Оттачивая свое мастерство и ловкость в обращении с листами и полосками бумаги, они сделали гексафлексагоны с двенадцатью поверхностями, скрытыми внутри, потом с двадцатью четырьмя и даже с сорока восьмью. Количество вариаций в каждом виде флексагонов стремительно увеличивалось в соответствии с далеко не очевидным законом. Теория флексагонов развивалась, занимая свое место на стыке топологии и теории сетей. Фейнман же внес в нее свой вклад, придумав диаграмму, впоследствии названную в его честь, которая показывала все возможные конфигурации гексафлексагона.

Семнадцать лет спустя, в 1956 году, в журнале Scientific American будет опубликована статья Мартина Гарднера «Флексагоны» (Flexagons), которая даст старт его карьере как человека, способствовавшего развитию занимательной математики. За двадцать пять лет ведения колонки «Математические игры» он издал более сорока книг. Первая же его статья вызвала настоящий бум у детей. В форме флексагонов изготавливали рекламные флайеры и открытки. Они вдохновили на написание нескольких книг и статей для учащихся младшей и средней школы. Среди сотен писем, пришедших в редакцию, находилось и послание из лаборатории Аллена дю Монта из Нью-Джерси. Оно начиналось так:

«Дорогая редакция, меня очень заинтересовала статья “Флексагоны”, опубликованная в вашем декабрьском номере. Нам потребовалось всего шесть или семь часов, чтобы склеить гексафлексагон для получения нужной фигуры. И с тех пор он не перестает привлекать внимание. Но у нас тут вот какая проблема. Сегодня утром, когда один из сотрудников сворачивал гексафлексагон, кончик его галстука попал между граней. И с каждым следующим сгибом галстук все больше и больше исчезал в фигуре. После шести сгибов он полностью пропал там. Нам безумно нравится изготавливать фигуры, и мы не смогли проследить, как все получилось, но мы нашли шестнадцатую конфигурацию гексафлексагона…»

Игровой настрой и жажда интеллектуальных исследований шли теперь рука об руку. Целые дни Фейнман проводил, сидя на подоконнике в своей комнате, и с помощью бумажных полосок переправлял муравьев к упаковке сахара, подвешенной на веревках. Ему хотелось выяснить, как муравьи общаются между собой и способны ли они воспринимать геометрические образы. Однажды зимой, когда он, как обычно, сидел у окна, один из соседей ворвался к нему в комнату, держа в руках горшочек с «Джелло»[87]87
  «Джелло» – фирменное название концентрата желе.


[Закрыть]
, распахнул окно, продолжая рьяно помешивать желе в банке, и закричал: «Не мешай мне!» Он пытался установить, как будет застывать желе, когда его перемешивают. Другой студент затеял спор о способностях передвижения человеческих сперматозоидов. Фейнман исчез и вернулся вскоре с готовым образцом. Вместе с Джоном Тьюки Ричард долгое время изучал способность людей контролировать время с помощью счета. Он бегал вверх и вниз по лестнице, чтобы увеличить частоту сердцебиений, и одновременно считал удары сердца и вел отсчет секундам. Они обнаружили, что Фейнман мог одновременно считать про себя и следить за временем, но если начинал говорить, то терял счет минутам. Тьюки же мог вести отсчет времени, декламируя вслух стихи. Они предположили, что, когда дело касалось счета, их мозг задействовал различные функции. Фейнман использовал акустический ритм, слушая числа, а Тьюки представлял что-то вроде ленты с написанными на ней цифрами, проносящимися перед глазами. Годы спустя Тьюки говорил: «Нас интересовал собственный опыт. Мы получали удовольствие от того, что испытывали, и сводили всё к простым вещам, которые могли наблюдать».

Порой что-то, лежащее за пределами научных знаний, привлекало внимание Фейнмана и буквально приставало к нему, как колючка от каштана. Один из студентов увлекся поэзией Эдит Ситуэлл, в то время считавшейся довольно эксцентричной из-за используемых ею вычурных сочетаний звуков и какофонии стихов, напоминавшей джазовые ритмы. Молодой человек продекламировал несколько стихотворений вслух, и внезапно Фейнман что-то уловил. Он взял книгу и принялся восторженно читать.

«Ритм – один из основных проводников между сном и реальностью, – говорила автор о собственных стихах. – В мире звуков ритм – то же самое, что свет в мире визуальных образов». Для Фейнмана ритм был и наркотиком, и инструментом. Его мысли иногда плавно перетекали и двигались, словно под удары барабана. Друзья замечали это, когда он начинал выбивать пальцами такт по столу или тетрадям. Ситуэлл писала:

 
Вселенная расцветает в моей голове,
Я живу наяву, но словно во сне.
Мысли о мире и мысли о дне,
О том, что все возможно, приходят ко мне.
 

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации