Текст книги "Гений. Жизнь и наука Ричарда Фейнмана"
Автор книги: Джеймс Глик
Жанр: Биографии и Мемуары, Публицистика
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 49 страниц) [доступный отрывок для чтения: 16 страниц]
Все тела состоят из атомов
Первое квантовое понятие – предположение о том, что все вокруг состоит из неделимых структурных частиц – пришло в голову человеку около двух с половиной тысяч лет назад[32]32
Самым первым атомистом считается древний философ Демокрит, который и ввел понятие атом – «неделимый» – как мельчайшую частицу материи. Прим. науч. ред.
[Закрыть]. На основе такого представления и начала медленно зарождаться физика, потому что иначе вообще нельзя было что-либо понять о земле или воде, огне или воздухе. Поначалу идея казалась весьма сомнительной. Ничего во внешнем виде земли, мрамора, листьев, воды, плоти или костей не подтверждало эту теорию. Но некоторые греческие философы в V веке до н. э. страстно жаждали найти ей подтверждение. Все изменяется – разрушается, исчезает, увядает, чахнет или растет, – но все же остается неизменным. А само понятие неизменности предполагает существование неделимых частиц, движение и рекомбинация которых способны приводить к изменению внешнего вида вещей. Размышления об этом привели к тому, что отношение к основным элементам материи как к неизменным и неделимым перестало казаться таким уж странным: атом – (от греч.) «неделимый». Но единообразны ли атомы? Это был спорный вопрос. Платон представлял атомы как строгие объемные геометрические блоки: кубы, октаэдры, тетраэдры и икосаэдры, из которых состоят основные элементы: земля, воздух, огонь и вода, – то есть строительными блоками стихий были платоновы тела. Остальные же частицы представлялись маленькими крючками, соединяющими атомы. (Но тогда из чего могли бы состоять эти крючки?)
Экспериментирование не тот метод, которого придерживались греки, но некоторые наблюдения поддерживали теорию атомного строения вещества. Вода испаряется, пар оседает конденсатом. Животные способны по оставленным следам почувствовать запахи, которые разносит ветер. В кувшин, заполненный золой, можно еще налить воды, то есть суммарный объем воды и золы не совпадал, а это предполагало, что в веществе есть пустоты. Принцип подобного взаимодействия долгое время оставался непонятным. Как двигаются эти частицы? Как они соединяются между собой? «Непонятно, непонятно, из чего же сделан камень», – писал поэт Ричард Уилбер. Но даже в атомную эпоху все еще трудно было понять, как клубящиеся и собирающиеся в облака физические частицы могут породить предметы с четкими очертаниями, которые мы видим и трогаем каждый день.
Каждый, кто полагается на научные описания обычных вещей, должен постоянно сверять то, что написано в учебниках, с тем, что существует на самом деле, должен сравнивать знания, которые получает, с теми реальными знаниями, которые у него уже есть. Еще в детстве нам говорят, что Земля круглая, что она вращается вокруг Солнца и вокруг собственной наклонной оси. Мы можем либо принять это на веру как хрупкое учение современной светской религии, либо собрать из кусочков общую картину мира, которую не так просто будет отрицать. Мы видим, как снижается траектория Солнца с приближением зимы. Мы можем определить время по тени, отбрасываемой фонарным столбом. Мы катаемся на карусели и отклоняемся в сторону, противоположную направлению силы Кориолиса. Мы пытаемся оправдать свое самочувствие знаниями о циклонах и погоде: Северное полушарие, низкое давление, движение против часовой стрелки. Мы можем рассчитать время, когда мачтовый корабль скроется за горизонтом. Солнце, ветра, волны – все вокруг не позволяет нам вернуться к представлениям о том, что Земля плоская, где мы могли бы наблюдать, как Луна вызывает приливы, и не понимать, почему так происходит.
Все тела состоят из атомов. Непросто соотнести этот факт с нашим повседневным опытом. Глядя на небольшие углубления, образовавшиеся на каменных ступеньках офисного здания, мы редко осознаём, сколько невидимых мельчайших частиц были стерты под воздействием десятков миллионов шагов. Мы не можем воспринять геометрически выверенную огранку драгоценного камня как нагромождение атомов друг на друга, словно пушечные ядра. Мы скорее предпочтем вообразить, что они образуют определенную кристаллическую структуру. Но даже если мы считаем, что и мы сами, и все, что нас окружает, состоит из атомов, «живучесть» камня остается для нас загадкой. Ричард Фейнман как-то спросил учителя, как предметам удается сохранять четкие формы, если атомы постоянно беспорядочно движутся. Он так и не получил удовлетворившего его ответа.
Когда Фейнман повзрослел, его заинтересовали другие вопросы. Если бы все научные данные были утеряны во время мирового катаклизма, то в каком одном утверждении можно было бы наиболее полно передать наше представление о мире? Ричард предложил следующее: «Все тела состоят из атомов – крошечных частиц, пребывающих в постоянном движении; эти частицы притягиваются друг к другу, когда они находятся на небольшом расстоянии, и отталкиваются друг от друга при сжатии тела». И затем он добавил: «Из одного этого предложения можно бесконечно много узнать о мире, если поразмыслить и включить воображение». И хотя со времен первых философов, предложивших атомную модель строения вещества, прошли тысячелетия, Фейнман принадлежал к первому поколению ученых, по-настоящему и всецело верящих в эту теорию не как в некое убеждение, а как в неоспоримый факт. В 1922 году, произнося речь после получения Нобелевской премии, Нильс Бор посчитал своим долгом напомнить присутствующим, что ученые «рассматривают существование атомов как истину, не подвергающуюся сомнениям». Ричард же, тем не менее, вновь и вновь читал в «Британской энциклопедии», что «даже сегодня теоретическая химия не располагает достаточными доказательствами, подтверждающими эту теорию». Более убедительные доказательства предоставляла новая наука, физика. Явление, называемое радиоактивностью, казалось непосредственно связанным с реальным распадом вещества, поскольку можно было регистрировать звуковые сигналы или видимые вспышки. Однако вплоть до восьмидесятых никто не мог сказать, что видел атомы. Даже тогда это было всего лишь косвенное изображение, но, по крайней мере, оно позволило увидеть теневые пятна на фотографиях, полученных при помощи электронного микроскопа, или мерцающие точки оранжевого света в пересечении лазерных лучей «атомных ловушек».
В фундаментальности представления о том, что вещество имеет зернистую структуру, ученых XVII–XVIII веков убеждало изучение газов, а не твердых тел. После совершенной Ньютоном научной революции они активно начали производить измерения, искать значения постоянных величин и выводить математические формулы, полагая, что только философский подход к изучению природы без конкретных цифровых данных мало что даст. Исследователи получали и разлагали воду, аммиак, углекислый газ, карбонат калия и десятки других веществ. Когда они научились точно определять вес исходных составляющих и конечных продуктов, то обнаружили закономерности. Например, соотношение содержания водорода и кислорода, необходимого для получения воды, всегда поддерживалось на уровне два к одному. Англичанин Роберт Бойль обнаружил, что, хотя при определенной температуре в клапане можно менять давление и объем воздуха, масса его остается неизменной. И при постоянной температуре и массе газа произведение давления газа на его объем – величина постоянная. Результаты этих измерений вызывали множество «почему». При нагревании газа увеличивается или его объем, или давление. Почему?
Тепло, казалось, способно перетекать, как жидкость – «флогистон»[33]33
Флогистон – термин, предложенный в 1667 году Иоганном Бехером и в 1703 году Георгом Шталем для объяснения процессов горения. Флогистон представляли как невесомый флюид, улетучивавшийся из вещества при сжигании.
[Закрыть] или теплород[34]34
Теплород – термин, введенный в 1783 году Лавуазье; невесомая материя, присутствующая в каждом теле и являющаяся причиной тепловых явлений.
[Закрыть]. Но последователям-натурфилософам пришла в голову куда менее интуитивно понятная идея о том, что тепло – это движение. Это было смелое заявление, так как никто не видел, чтобы предметы двигались. Ученым пришлось вообразить бесчисленное множество мельчайших невидимых частиц-корпускул, сталкивающихся друг с другом и оказывающих давление на лицо при малейшем дуновении ветра. Расчеты подтвердили эту догадку. Швейцарец Даниил Бернулли[35]35
Даниил Бернулли (1700–1782) – швейцарский физик-универсал, механик и математик, один из создателей кинетической теории газов, гидродинамики и математической физики.
[Закрыть] развил закон Бойля, предположив, что давление газов возникает в результате столкновения с поверхностью именно таких шарообразных корпускул. А его заключение о том, что при нагревании происходит увеличение скорости беспорядочно движущихся частиц, связало понятия температуры и плотности. Корпускулярная теория получила новый виток развития, когда Антуан Лоран Лавуазье[36]36
Антуан Лоран Лавуазье (1743–1794) – французский естествоиспытатель, основатель современной химии.
[Закрыть], очень тщательно и осторожно проводя опыты, продемонстрировал, что молекулы могут вступать в реакции, а могут образовываться в результате химических реакций, даже в тех случаях, когда газы взаимодействуют с твердыми телами, что и происходит, когда на поверхности железа образуется ржавчина.
«Материя неизменна и состоит из простейших частиц, неделимых при любых условиях, но соединенных между собой». Это значило, что атом сам по себе содержал целую вселенную, которая оставалась загадкой для будущих поколений. Математик XVIII века Руджер Бошкович, директор по оптике военно-морского министерства Франции, был своего рода провидцем в теории атома, и его взгляды эхом отразились в одном-единственном предложении Фейнмана. Представление Бошковича об атоме строилось не столько на том, из чего состоит вещество, сколько на том, что происходит с веществом при воздействии на него, и вызывало множество вопросов. Почему одни вещества способны упруго сжиматься, как каучук, а другие, как, например, воск, – нет. Почему твердые тела так и остаются твердыми, в то время как жидкости могут замерзать или испаряться? За счет чего происходят процессы кипения и брожения, когда частицы хаотично движутся с разной скоростью, сближаясь и сталкиваясь?
Стремление разобраться в природе частиц привело к необходимости изучить, какие невидимые силы притягивают и отталкивают их друг от друга, что определяет внешние свойства материи. Притягиваются друг к другу, когда они находятся на небольшом расстоянии, и отталкиваются друг от друга при сжатии – так описал это Фейнман. Такую картину уже вполне мог мысленно представить сообразительный старшеклассник в 1933 году. За два века представление о химических свойствах веществ значительно расширилось. Количество открытых элементов заметно увеличилось. Даже в школьной лаборатории можно было пропускать ток через колбу с водой, чтобы выделить легковоспламеняющийся водород и кислород. Химия, упакованная в образовательные наборы для опытов, казалось, ограничивала себя до собрания строгих правил и рецептов. Но основные вопросы все так же волновали пытливые умы. Почему целое остается целым, если атомы постоянно двигаются? Какие силы отвечают за плавное движение воздуха и воды и какие взаимодействия атомов провоцируют возгорание?
Век прогресса
Попытки определить, какие силы действуют на атомы, вылились в десятилетие споров. Наука, называемая химической физикой, стремительно уступала место другим наукам, которые вскоре станут известны как ядерная физика и физика высоких энергий. Те, кто изучал химические свойства различных веществ, теперь пытались осознать первые поразительные результаты квантовой механики. Тем летом в Чикаго собралось на очередную встречу Американское физическое общество. Химик Лайнус Полинг говорил о роли квантовой механики в понимании природы сложных органических молекул, элементарных составляющих всего живого. Джон Слейтер, физик из Массачусетского технологического института, отчаянно пытался установить взаимосвязь квантово-механического представления об электроне с теми энергиями, которые могли бы оценить химики. Эта встреча плавно перетекла в выставочный комплекс Всемирной выставки 1933 года «Век прогресса», которая проходила в Чикаго. Сам Нильс Бор говорил на ней о том, какое беспокойство вызывает проблема измерения чего-либо в новой физике. В толпе посетителей, стоявших и сидевших вокруг него, утонченный датский акцент Бора часто заглушался детским плачем или шипением микрофонов. Он предложил вниманию собравшихся принцип, который назвал «комплементарностью», в котором ввел понятие о неизбежной двойственности, свойственной природе всех вещей. Бор заявил о революционном значении этой идеи, потому что она касалась не только атомов, но и всего на свете. «Мы были вынуждены признать, что должны пересмотреть не только наше понимание классической физики, – говорил он, – но и те понятия, что мы используем в повседневной жизни». Позднее он встретится с профессором Эйнштейном (разногласия между ними были куда более значительными, чем Бор потом рассказывал)[37]37
Речь идет о противостоянии копенгагенской (вероятностной) интерпретации волновой функции, сторонником которой был Бор, и теории о скрытых переменных, которую отстаивал Эйнштейн. Время показало, что Эйнштейн был неправ. Прим. науч. ред.
[Закрыть], однако они так и не пришли к единому мнению. «Нам нужно пересмотреть представление, основанное на концепции причин и следствий», – говорил он.
Тем же удушающе жарким летом на выставке побывали Мелвилл, Люсиль, Ричард и Джоан Фейнманы. По такому случаю Джоан даже научилась есть бекон вилкой и ножом. А затем Фейнманы загрузили вещи в багажник машины и отправились в кажущееся бесконечным путешествие через полстраны. Их путь пролегал по небольшим дорогам, так как эра скоростных шоссе еще не наступила. На ночлег останавливались на фермах. Выставка располагалась на территории площадью более полутора квадратных километров вдоль берега озера Мичиган, и повсюду здесь была представлена наука. Прогресс в чистом виде: на выставке провозглашалась невероятная польза науки для общества. «Знания – сила», – такой лозунг украшал книгу, которую Ричард взял с собой. Она называлась «Мальчик-ученый» (The Boy Scientist). Наука изобретала и модернизировала, она изменяла сам уклад жизни человека. Фирмы, названные в честь Эдисона, Белла и Форда, связывали страну сетями проводов и мостовых, и это было прекрасно. Так же как и демонстрации фотонов и электронов, зажигающие свет и несущие голоса через сотни километров.
Даже в период Великой депрессии чудо науки вселяло веру в будущее. Быстрые воздушные корабли, способные перевозить грузы по воздуху, высокие небоскребы и способы лечения различных болезней тела и общества уже маячили на горизонте. Кто мог знать, куда тогдашний сообразительный молодой ученик заведет этот мир? Один нью-йоркский литератор описал, как будет, по его мнению, выглядеть город пятьдесят лет спустя. Нью-Йорк 1982 года, по его представлениям, – город, в котором проживает пятьдесят миллионов человек. Ист-Ривер и большая часть Гудзона застроены. Машины движутся по многоуровневым развязкам и бесшумным рельсам. Ряды встроенных балконов обрамляют бесчисленные небоскребы. Питание доставляется в спрессованных брикетах. Дамские платья невероятно облегающие, как купальники из 1930-х. Герой этой фантазии – гений-старшеклассник, знающий куда больше всех остальных. Надежды, возлагаемые на молодое поколение, были как никогда высоки.
Ученые тоже работали над тем, чтобы внедрить в жизнь новые знания, перенося их из лабораторий в реальный мир. «Даже человеческий мозг подпитывается электричеством», – сообщил тем летом исследователь из Университета Чикаго. Мозговой центр использует огромное количество связей для клеток, каждая из которых может рассматриваться как крошечный химический завод или электронная батарея. Представители бизнеса Чикаго также вовсю использовали знания. В день открытия выставки астрономы, используя телескопы четырех обсерваторий, для включения освещения всей экспозиции уловили слабые лучи света от звезды Арктур, находящейся на расстоянии сорока световых лет, и применили электричество для их усиления. «Здесь собраны плоды человеческих достижений в области физики, доказывающие нашу способность преодолевать любые трудности», – заявил президент корпорации по проведению ярмарок Руфус Дауэс, когда пушки с грохотом выпустили в воздух сотни американских флагов. Динозавр в натуральную величину внушал страх посетителям. Робот читал лекции. Те, кто не очень интересовался наукой, могли за определенную плату посмотреть, как безработная актриса Салли Рэнд танцует с веером из страусиных перьев. Фейнманы прокатились на аттракционе Скай-Райд, который представлял собой кабинку, подвешенную на двух тросах между башнями на высоте 183 метра, и посетили Зал науки, где на стене были записаны имена всех ученых от Пифагора и Эвклида и далее до Ньютона и Эйнштейна.
Фейнманы никогда не слышали о Боре или о других физиках, которые собрались в то лето в Чикаго, но, как и большинство американцев, из газет они отлично знали имя Эйнштейна. Тем летом он путешествовал по Европе, нигде не задерживаясь надолго. Он навсегда покинул Германию в поисках лучшей жизни и собирался прибыть в Нью-Йорк в октябре. На протяжении четырнадцати лет Америка переживала настоящую волну помешательства, восторгаясь этим «математиком». The New York Times, постоянными читателями которой были Фейнманы, превозносила Эйнштейна с не меньшим рвением, чем предыдущее поколение обожествляло Эдисона. Ни один ученый-теоретик ни до, ни после не разжигал в умах такое рвение к знаниям. Часть легенды, самая правдивая ее часть, заключала в себе революционную суть теории относительности, которая должна была перевернуть представления человека XX века об устройстве Вселенной. Другая часть была связана с высказыванием Эйнштейна о том, что лишь двенадцать человек во всем мире способны понять его работу. «Любой свет искажается на небесах», – сообщал в 1919 году заголовок в Times. «Успех теории Эйнштейна». «Звезды не там, где нам кажется, и не там, где должны находиться по расчетам, но беспокоиться не стоит». «Книга для двенадцати умных мужчин». «“Никто в мире не поймет”, – сказал Эйнштейн». Такими были заголовки газет. Один из них гласил: «Абсолют под угрозой». Другой весело заявлял: «Даже надежность таблицы умножения под сомнением».
Предполагаемая сложность теории относительности во многом способствовала ее популярности. Тем не менее, если бы доводы Эйнштейна были настолько непонятны, вряд ли она получила бы столь широкое распространение. Более сотни книг издали, чтобы объяснить таинственную загадку. Тон газетных публикаций, посвященных таинственной теории относительности, варьировался от почтительного до шутливого. В действительности же и авторы статей, и читатели совершенно правильно поняли элементы этой новой физики. Там, где гравитация разрывает невидимое полотно пространства, оно искривляется. С эфиром покончено, так же как и с представлениями об абсолютном определении времени и пространства. Скорость света – величина постоянная, равная примерно 300 000 км/с, и световой луч отклоняется под воздействием гравитационного поля.
Совсем немного времени потребовалось, чтобы общая теория относительности по подводным кабелям долетела до нью-йоркских газет, а школьники, которые с трудом могли вычислить, чему равна гипотенуза прямоугольного треугольника, наизусть твердили формулу Эйнштейна: Е равно произведению М на С в квадрате. А некоторые могли даже объяснить, что из этого следует, что теоретически вещество и энергия взаимозаменяемы, а в атоме заключен новый, не изученный пока источник энергии. Возникало ощущение, что Вселенная сжимается. Она перестала быть просто необъятной, она стала представлять собой невообразимую совокупность всего. Теперь из-за того, что четырехмерное пространство-время искривляется, все стало казаться ненастоящим. Английский физик Джозеф Томсон с прискорбием заметил: «У нас есть пространство Эйнштейна, пространство де Ситтера[38]38
Виллем де Ситтер (1872–1934) – нидерландский астроном. Создал одну из первых релятивистских космологических моделей, названную его именем (модель де Ситтера).
[Закрыть], расширяющиеся Вселенные, сжимающиеся Вселенные, раскачивающиеся Вселенные, загадочные Вселенные. Фактически математик может создать Вселенную, лишь написав ее формулу… У него может быть своя собственная Вселенная».
Никогда не будет второго Эйнштейна. Как не будет и второго Эдисона, второго Хейфеца[39]39
Яша Хейфец (1901–1987) – американский скрипач еврейского происхождения. Считается одним из величайших скрипачей XX века.
[Закрыть] или Бейба Рута[40]40
Джордж Херман «Бейб» Рут младший (1895–1948) – профессиональный американский бейсболист, выступавший 22 сезона в Главной лиге бейсбола с 1914 по 1935 год.
[Закрыть] – личностей, столь сильно выделявшихся среди своих современников, при жизни ставших легендами, героями, полубогами в представлении общества. Еще будут (и определенно уже были) ученые, изобретатели, скрипачи и бейсболисты подобного уровня. Но мир слишком велик для таких исключительных героев. Если есть десяток Бейбов Рутов, считайте, нет ни одного. В начале XX века миллионы американцев не задумываясь могли назвать имя одного современного ученого. В конце XX века каждый, кто знает имя хотя бы одного ученого, легко может припомнить еще десяток. Издатели Эйнштейна тоже были весьма наивны. В эпоху развенчания мифов и деконструктивизма труднее создать кумиров. Те, кто оценивал Эйнштейна по достоинству, жаждали и могли изменить распространенное представление о научном гении. Казалось, формулировка Эдисона, ставившая тяжелый труд выше вдохновения, не удовлетворила этого возвышенного непостижимого мыслителя. Гений Эйнштейна в его творческом вдохновении представляется почти божественным даром. Он вообразил свою Вселенную и создал ее. Возникало впечатление, что этот гений оторван от всего мирского, и именно это, казалось, наделяло его мудростью. Эйнштейна, как и практически всех спортивных звезд в дотелевизионную эпоху, видели исключительно на расстоянии. Ничего из того, что присуще реальному человеку, не привносилось в разрастающийся миф. К этому времени Эйнштейн изменился, это уже не тот искренний, аскетичного вида молодой конторский служащий, достигший пика своей работоспособности в первое двадцатилетие XX века. Публика вообще едва ли видела его таким, каков он был на самом деле, и практически ничего о нем не знала. В ее представлении он был колоритным и рассеянным: взъерошенные волосы, одежда не по размеру и легендарное отсутствие носков.
Мифологизация Эйнштейна иногда распространялась и на других ученых. Когда Поль Дирак приехал с визитом в Висконсинский университет в 1929 году, Wisconsin State Journal[41]41
Ежедневная газета, выпускаемая в Мэдисоне, одно из крупнейших периодических изданий Висконсина. Прим. перев.
[Закрыть] опубликовала насмешливую статью о «парне, который прибыл в Висконсинский университет этой весной… который вытесняет с авансцены науки Ньютона и Эйнштейна». «Американские ученые, – как заметил репортер, – обычно заняты и активны, но Дирак совершенно иной. У него, кажется, уйма времени в запасе, и основная его работа – смотреть в окно». Окончание диалога с Дираком было односложным с его стороны. (Читателю могло показаться, что перед ним древний старик, но на самом деле ему было всего двадцать семь.)
– Доктор, не могли бы вы в нескольких словах объяснить суть ваших исследований?
– Нет.
– Хорошо. Тогда правильно ли будет сказать, что «профессор Дирак решает любые задачи математической физики, но не способен оценить среднюю силу удара Бейба Рута»?
– Да.
– Вы ходите в кино?
– Да.
– Когда были последний раз?
– В 1920 году. Может, еще в 1930-м.
Гений производил впечатление человека не от мира сего. Именно европейцы, такие как Эйнштейн и Дирак, воплощали для американцев чудаковатый образ ученого в значительно большей степени, чем их практичные соотечественники, занятые исследованиями совершенно непонятных устройств и машин.
– Это тот высокий странный парень?.. – спрашивала героиня Барбары Стэнвик в фильме «Леди Ева» (The Lady Eve). Ее интересовал ученый, изучающий змей, которого играл Генри Фонда и который был примерно ровесником Фейнмана.
– Он не странный. Он ученый.
– Ох, так вот в чем дело! Я подозревала, что он не такой, как все.
«Не такой, как все» в данном контексте означало «безобидный»: у одаренных людей в качестве компенсации за их талант всегда обнаруживается какая-либо человеческая странность. В таком распространенном представлении присутствовал элемент самозащиты. И отчасти это соответствовало правде. Действительно, многие ученые казались отрешенными, пребывавшими как будто в других мирах. Они небрежно одевались и порой не могли поддержать светскую беседу.
Если бы репортер из Journal более активно поинтересовался мнением Дирака об уровне американской науки, он добился бы от него более развернутого ответа. «В Америке нет физиков», – горько заметил Дирак в узком кругу. Такая оценка слишком резка, но он ошибся всего на несколько лет. Ведь, говоря о физике, Дирак тогда имел в виду нечто новое. Физика, о которой шла речь, не имела ничего общего с пылесосами, новыми видами тканей или техническими чудесами, произошедшими за последние десять лет. Не имела она ничего общего и с выключателями света, и с радиовещанием. Не имела она ничего общего даже с измерением заряда электрона или определением частотного спектра раскаленного газа в лабораторных опытах. Физика, о которой говорил Дирак, была связана с видением реальности, таким разрозненным, неожиданным и неопределенным, что оно пугало представителей старой школы американских ученых, которые наблюдали за тем, что происходит в науке.
«Я полагаю, что существует вполне реальный мир, который мы способны ощутить с помощью наших чувств, – говорил главный физик Йельского университета Джон Зелени, словно оправдываясь, во время своего выступления в Миннеаполисе. – И я верю в это так же, как в то, что Миннеаполис существует в реальности, а не в моем воображении». То, что Эйнштейн говорил (или не говорил) об относительности, надежно работало в квантовой механике. Но людей, настолько владеющих математическими методами, чтобы это понять, можно было перечесть по пальцам.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?