Электронная библиотека » Джеймс Глик » » онлайн чтение - страница 9


  • Текст добавлен: 29 августа 2018, 17:20


Автор книги: Джеймс Глик


Жанр: Биографии и Мемуары, Публицистика


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 9 (всего у книги 49 страниц) [доступный отрывок для чтения: 13 страниц]

Шрифт:
- 100% +
Внутримолекулярные силы

Тринадцать студентов-физиков МТИ выполняли в 1939 году свои дипломные работы. Накопленных знаний все еще было весьма мало, и трудно было ожидать, что работы выпускников будут нетривиальны и достойны публикации. Эти проекты, анализирующие спектры однократно ионизированного гадолиния или гидратированных кристаллов хлорида марганца, должны были стать стартом их научной карьеры и заполнить пробелы в стене мировых знаний. (Идентификация характерной комбинации длин волн, излучаемых подобными веществами, требовала терпения и точности проведения экспериментов, а новые вещества создавались настолько часто, что ученые в области спектроскопии только успевали их анализировать.) Выпускники могли разрабатывать новые лабораторные методы исследования или изучать кристаллы, в которых при сжатии образуется электрический ток. Дипломная работа Фейнмана начиналась с изучения локальной проблемы, а закончилась фундаментальным открытием сил, действующих внутри молекул любых веществ. Даже несмотря на то что она никак не была связана с его будущей, более значимой работой, она тем не менее стала незаменимым инструментом в физике твердых тел. Сам же Фейнман в дальнейшем просто упускал ее из виду как нечто очевидное, что можно описать буквально в двух словах.

Ричард не знал, что, когда он еще учился на младших курсах, профессор Морс, преподававший курс квантовой механики, рекомендовал факультету выпустить его на год раньше. Предложение было отклонено, а Слейтер стал научным руководителем дипломной работы Фейнмана. Он предложил ему тему, которая на первый взгляд выглядела не сложнее остальных. Вопрос словно был из справочника по химии и физике: почему кварц так незначительно расширяется под воздействием тепла? Почему его коэффициент расширения так мал по сравнению с коэффициентами расширения металлов, например?

Любое вещество расширяется – увеличивает свой объем – под воздействием высоких температур, так как его молекулы переходят в возбужденное состояние. Но в твердых телах расширение зависит от того, как в нем расположены молекулы, и может быть разным по величине в разных направлениях. Молекулярное строение кристаллов можно представить в виде стандартной объемной геометрической решетки. Обычно ученые наглядно представляли кристаллическую структуру в виде геометрической модели, в которой шары, изображающие атомы, скреплены проволочными стержнями, но в действительности строение вещества не настолько простое. Атомы могут быть в большей или меньшей степени закреплены в решетке, но могут также вращаться или сдвигаться. Электроны в металлах хаотично перемещаются вблизи атомов. Цвет, текстура, твердость, хрупкость, электропроводимость, мягкость и вкус вещества – все зависит от особенностей расположения атомов. Эти особенности, в свою очередь, зависят от сил, действующих внутри вещества, как классических, так и квантово-механических. И в тот период, когда Фейнман приступил к выполнению своей дипломной работы, природа этих сил еще не была достаточно понятна, даже в кварце, самом распространенном минерале на земле.

В старых конструкциях парового двигателя использовался механический регулятор – пара железных шаров, отклоняющихся от вращающегося стержня. Чем быстрее он крутился, тем дальше отклонялись шары и тем тяжелее было вращаться стержню. Фейнман представил, что нечто аналогичное наблюдается в кристаллической решетке кварца (молекула кварца, или диоксида кремния, состоит из двух атомов кислорода, соединенных с атомом кремния – SiO2). Но атомы кремния не вращаются, они вибрируют. По мере нагревания кварца, как полагал Ричард, атомы кислорода могли обеспечить появление сил, направленных таким образом, чтобы компенсировать расширение. Но как можно было рассчитать силы, действующие внутри каждой молекулы, силы, величина которых изменялась в зависимости от направления? Казалось, что простого способа не существует.

Ричард никогда раньше так глубоко не задумывался о структуре молекул. Он выучил все что возможно о кристаллах, их стандартной классификации, геометрии и симметрии, расстоянии между атомами. И все это сводилось к тому, что ничего не известно о природе сил, действующих на молекулы таким образом, что формируются определенные структуры. В поисках основополагающих законов, все больше углубляясь внутрь вещества, физика оказалась на том этапе, когда возникла необходимость разобраться в том, как действуют силы в молекулах. Ученые могли оценить силу, с которой требуется надавить на кварц, чтобы сжать его на определенную величину в заданном направлении. Новый метод, основанный на рентгеновской дифракции[77]77
  В этом методе используется дифракция Вульфа – Брэггов, когда вещество облучается рентгеновскими лучами под разными углами. Найдя угол с максимальной интенсивностью дифрагировавших лучей, можно легко определить расстояние между узлами решетки. Прим. науч. ред.


[Закрыть]
, позволял получить изображения узлов кристаллической решетки и определить структуру кристаллов. В то время как одни теоретики продолжали все глубже проникать в строение ядра атома, другие ученые пытались применить квантовые методы к решению вопросов структуры кристаллов и химии. «Наконец-то материаловедение получило возможность четко определять структуру вещества», – сказал тогда Сирил Стенли Смит, специалист по структуре материалов, встретившийся с Фейнманом в Лос-Аламосе несколько лет спустя, где он занимал должность главного металлурга секретного проекта. От атомных сил к тому, что заставляет нас чувствовать – вот какую связь предстояло открыть. От абстрактной энергии к трехмерным формам. Как точно заметил Смит: «Материя – это голограмма самой себя в собственном бесконечном излучении».

Силы или энергия – таков был выбор у тех, кто искал применение квантовым представлениям об атоме в работе с реальными материалами. И дело касалось не только терминологии. Необходимо было принять ключевое решение о том, как сформулировать задачу и как приступать к расчетам.

Представление о силах, действующих в природе, вернулось к ньютоновскому. Это был прямой взгляд на мир, предполагающий прежде всего, что объекты непосредственно взаимодействуют друг с другом, причем один из них всегда действует силой на другого. Различие в понимании силы и энергии не ощущалось вплоть до XIX века, когда постепенно понятие «энергия» только-только стало выходить на первый план. Сила в современном понимании – это векторная величина, характеризующаяся численным значением (модулем) и направлением Энергия же величина скалярная, то есть имеет только численное выражение (модуль). С расцветом термодинамики энергии как физической характеристике стали придавать все более важное, более фундаментальное значение. Химические реакции можно было точно рассчитать как действия, в результате которых происходит уменьшение энергии. Даже мяч, скатывающийся сверху вниз, стремился к тому, чтобы его потенциальная энергия стала меньше. В методе Лагранжа, которому Фейнман так сопротивлялся на втором курсе, тоже использовался принцип минимизации энергии (действия), чтобы обойти утомительные вычисления прямого воздействия. А закон сохранения энергии обеспечивал возможность проведения различных расчетов. Похожего закона для сил не существовало.

Тем не менее Фейнман продолжил искать способ решить проблему, поставленную Слейтером, используя в своих расчетах силы, так что его дипломная работа выходила за рамки сформулированной задачи. Для Фейнмана наличие сил в молекулах не вызывало сомнения. Он представлял в своем воображении силы притяжения и отталкивания атомов как пружинообразные связи различной жесткости. Использование для их расчета стандартных методов, учитывающих энергию, казалось устаревшим и эвфемистическим. Ричард дал своей работе грандиозное название – «Силы и напряжение в молекулах» – и начал с того, что решил разобраться в структуре молекул напрямую, используя для описания межатомных взаимодействий силу. Этот подход представлялся, безусловно, более сложным, чем предложенный ранее.

Фейнман полагал, что на начальном этапе развития квантовой механики использование в расчетах энергии было связано с двумя причинами. Во-первых, сначала в теоретических работах по привычке проверка формул осуществлялась только одним способом – расчетом видимого спектра света, излучаемого атомами, где силы не играли очевидной роли. Во-вторых, уравнение Шрёдингера просто не позволяло вычислять векторные величины, в его естественном контексте предполагалось, что рассчитываемая энергия не имеет направления.

Когда Фейнман учился на четвертом курсе, всего через десять лет после трехлетней революции Гейзенберга, Шрёдингера и Дирака, прикладные области физики и химии были востребованы как никогда. Для многих квантовая механика могла показаться абсолютной головоломкой с ее философскими изъяснениями и вычислительными кошмарами. В руках же тех, кто исследовал структуру металлов или химические реакции, новая физика была скальпелем, позволяющим проникнуть внутрь загадки, которую классическая физика считала неразрешимой. Успех квантовой механики обеспечили не несколько теоретиков, считавших ее математически убедительной, а сотни специалистов в области материаловедения, которые обнаружили, что она реально работает. Это позволяло решать новые задачи и открывало новое поле деятельности. Стоило только научиться использовать несколько уравнений, и можно было наконец вычислить размер атома или точно измерить толщину серой пленки на оловянной поверхности.

Основное, чем руководствовался Фейнман, было волновое уравнение Шрёдингера. В соответствии с квантово-механической теорией частица не являлась частицей как таковой, а представляла собой некое размытое пятно, облако вероятностей, аналогичное распространяющейся волне. Волновое уравнение позволяло вычислить вероятность нахождения этих пятен в любом месте в определенном диапазоне. Это было важно. Никакие другие классические методы расчета не могли показать, в каком месте находятся электроны в конкретном атоме: исходя из классических представлений, отрицательно заряженные электроны должны стремиться занять позицию, в которой они обладали бы наименьшей энергией, то есть по спирали двигаться в направлении положительно заряженных ядер. В этом случае вещество не могло бы существовать. Материя разрушала бы себя. Только с помощью квантовой механики появилась возможность объяснить, почему этого не происходит: потому что у электронов нет определенного местоположения в пространстве. Квантово-механическая неопределенность не дала пузырю лопнуть. Волновое уравнение Шрёдингера позволяло выяснить, где энергия электронных облаков будет минимальна, и от этих облаков зависят свойства всех твердых тел в мире.

Достаточно часто удавалось получить конкретное представление о распределении заряда электронов в трехмерном пространстве кристаллических молекулярных решеток твердых тел. Это распределение заряда, в свою очередь, удерживало тяжелые ядра на определенном месте, опять при соблюдении условия, что общая энергия минимальна. Существовал и способ рассчитать силы, действующие на определенное ядро, если это было необходимо. Но расчет был очень трудоемким. Нужно было рассчитать энергию, потом рассчитывать ее снова и снова, уже с учетом слегка изменившегося положения ядра. Результаты расчетов можно было представить графически в виде кривой, отражающей изменение энергии. Наклон этой кривой и определял скорость изменения энергии, то есть силу. Для каждой конфигурации вычисление требовалось проводить отдельно. Фейнману это казалось расточительством – пустой тратой времени.

Ему потребовалось несколько страниц, чтобы описать новый метод. Он показал, что силу можно было рассчитать напрямую для данной конфигурации атомов, не учитывая близлежащие конфигурации. Его метод позволял сразу определять наклон кривой изменения энергии, то есть силу, избавляя от необходимости строить кривую полностью и потом уже определять угол наклона. Метод вызвал сенсацию среди специалистов физического факультета МТИ, ведь многие из них потратили уйму времени на решение прикладных проблем молекулярной физики. Как верно заметил сам Фейнман: «Следует подчеркнуть, что это позволяло значительно сократить трудоемкость вычисления».

Слейтер заставил Ричарда переписать первую версию работы. Ему не нравилось, что Фейнман писал так же, как говорил. Подобный стиль изложения был неприемлем для научных работ. Затем он посоветовал сделать урезанную версию для публикации. В Physical Review приняли статью и напечатали ее под коротким заголовком «Силы в молекулах» (Forces in Molecules).

Не для всех вычислений можно было подобрать образные выражения, которые использовали ученые для описания реальности, но для фейнмановского это было возможно. Оно перекликалось с теоремой, которую легко было сформулировать и так же легко изобразить визуально. Сила, действующая на ядро атома, не что иное как электрическая сила окружающего его поля заряженных электронов – электростатическая сила. Как только удавалось вычислить распределение зарядов, прибегнув к методам квантовой механики, сама квантовая механика переставала быть необходимой. Задача переходила в область классической физики. Ядра можно было рассматривать как статические точки, обладающие массой и зарядом. Метод Фейнмана можно было применять к любым химическим связям. Если два ядра так же сильно притягиваются друг к другу, как ядра водорода при образовании молекулы воды, то это происходит потому, что каждое ядро притягивается к электрическому заряду, сосредоточенному, с точки зрения квантовой механики, между ними.

Вот и всё. Тема его дипломной работы находилась в стороне от основных разработок Фейнмана в области квантовой механики, и он редко потом возвращался к ней снова. Но даже когда делал это, всегда чувствовал неловкость, что потратил столько времени на вычисления, которые теперь казались очевидными. В его понимании все это было бессмысленно. Он никогда не видел, чтобы кто-то из ученых ссылался на нее. Поэтому был удивлен, когда в 1948 году услышал о спорах, разгоревшихся в среде физиков по поводу открытия, известного теперь как теорема Фейнмана или теорема Фейнмана – Гельмана. Некоторым химикам она казалась слишком простой, чтобы быть верной.

Достаточно ли он хорош?

За несколько месяцев до выпускного многие из тридцати двух членов братства Phi Beta Delta позировали для общей фотографии. Фейнман, сидевший слева в первом ряду, все еще выглядел меньше и моложе своих однокашников. Он, скрипя зубами, подчинялся командам фотографа: положить руки на колени и сильно наклониться к центру. После окончания учебы он отправился домой и вернулся на выпускной в июне 1939 года. Он только что научился водить автомобиль и привез Арлин и родителей в Кембридж. По дороге у него страшно разболелся живот – как он думал, от напряжения за рулем. Его госпитализировали на несколько дней, но он поправился и успел на церемонию. Много лет спустя он вспоминал эту поездку. Он помнил, как друзья дразнили его, когда он влез в профессорскую мантию, – Принстон не знал еще, какой непростой парень ему достанется. Он помнил Арлин. «Это всё, что я помню из того дня, – говорил он историку. – Я помню мою милую девочку».

Слейтер ушел из МТИ через несколько лет после Фейнмана. К тому времени необходимость проведения военных исследований привела сюда Исидора Раби, который возглавил новую лабораторию по изучению проблем радиации, созданной для разработки аппаратуры, позволившей бы с помощью радиоволн со все более и более высокими частотами засекать самолеты и корабли даже в условиях высокой облачности и ночью, – радара. Некоторым казалось, что Слейтеру, не привыкшему быть в тени более знаменитых коллег, присутствие Раби было невыносимо. Морс также покинул институт, чтобы внести свой вклад в развитие новой государственной структуры. Как и многие ученые средней руки, эти двое чувствовали, как их репутация меркнет с течением жизни. Оба опубликовали короткие автобиографии. Морс писал о трудностях, которые вставали на его пути, когда он старался направить студентов в нужное русло в области столь непонятной массам науки, как физика. Он вспоминал, как к нему подошел отец одного из выпускников – Ричарда. Мужчина удивил Морса своей необразованностью. Уже одно то, что он пришел в университет, заставляло его нервничать. Он не очень хорошо выражал свои мысли. Морс припоминает, как тот попросил «не обращать внимания на его неуверенность и извинения»: «Мой сын Ричард оканчивает институт весной. Он говорит, что хочет продолжить обучение и получить еще одну степень. Я думаю, что могу себе позволить оплатить дополнительные три-четыре года образования. Но я хочу знать, действительно ли это того стоит? Вы работали с ним. Скажите, достаточно ли он хорош для дальнейшего обучения?»

Морс пытался сдержать смех. В 1939 году физикам было нелегко найти работу, но отцу Фейнмана он сказал, что у Ричарда, несомненно, все будет хорошо.

Принстон

* * *

Убежденный сторонник теории Нильса Бора, невысокий сероглазый двадцативосьмилетний доцент по имени Джон Арчибальд Уилер приехал в Принстонский университет в 1938 году, на год раньше Фейнмана. У него были такие же, как у Бора, закругленные брови, мягкие черты лица и та же манера, разговаривая о физике, вкладывать в свои слова загадочный скрытый смысл. В последующие годы ни одному физику не удалось превзойти Уилера ни в его отношении к непознанному, ни в умении двусмысленно высказываться.

Черные дыры не имеют волос. Это сказал именно он. Фактически ему принадлежит и сам термин «черная дыра».

Нет никакого закона, кроме закона, утверждающего, что нет никакого закона.

Я хожу на двух ногах, и одна из них всегда догоняет другую.

В любой области ищите самое странное и исследуйте это.

Отдельные события. События, не подчиняющиеся законам. События столь многочисленные и столь нарочито разрозненные, с подчеркнутой спонтанностью, при этом все же приобретающие устойчивый облик.

Он одевался как бизнесмен. Галстук всегда туго завязан, манжеты накрахмалены. У него была привычка во время беседы со студентами непринужденно доставать карманные часы, доходчиво намекая, что потратит на них только отведенное им время. Его коллега по Принстону Роберт Уилсон полагал, что за фасадом джентльмена Уилер скрывает еще более безупречного джентльмена, за которым прячется еще более безупречный, и так далее. «Однако, – добавлял Уилсон, – где-то между этими джентльменами затаился тигр, дерзкий разбойник ‹…› у которого хватает смелости браться за любую, самую сумасшедшую задачу». Лекции Уилер читал очень уверенно, производя впечатление на аудиторию простым изложением и провокационными схемами. В детстве он тщательно изучил книгу под названием Ingenious Mechanisms and Mechanical Devices («Хитрые механизмы и механические устройства»). Он сам конструировал арифмометры и автоматические пистолеты, в которых все детали и рычаги были вырезаны из дерева. Его иллюстрации к самым непонятным квантовым парадоксам, которые он набрасывал на грифельной доске, были столь остроумны и отточены, что казалось, будто весь мир представляет собой не что иное, как удивительный ясный механизм. Сын библиотекарей и племянник горняков, Уилер вырос в Огайо, окончил колледж в Балтиморе, получил степень в Университете Джона Хопкинса. А потом он выиграл стипендию Национального научно-исследовательского совета, что в результате и привело его в 1934 году в Копенгаген. Он отправился туда на грузовом судне, чтобы учиться у Нильса Бора, заплатив за билет пятьдесят пять долларов.

В начале 1939 года Уилер и Бор снова будут работать вместе, на этот раз уже как коллеги. Принстон, чтобы развивать новое направление – ядерную физику, пригласил не только Уилера, но и известного венгерского ученого Юджина Вигнера. МТИ же оставался довольно консервативным учреждением и не спешил бежать впереди паровоза. Слейтер и Комптон придерживались сложившихся представлений о физике и тяготели к развитию на факультете практичных направлений. В Принстоне все было иначе. Уилер все еще помнил то непередаваемое чувство, которое испытал, впервые наблюдая за процессом радиоактивного излучения. Он помнил, как сидел в темной комнате, уставившись в черный экран из сульфата цинка, и подсчитывал периодические вспышки альфа-частиц, испускаемых радоновым источником. Бор к тому времени уже покинул неспокойную Европу, чтобы посетить институт Эйнштейна в Принстоне. Уилер, встречавший Бора, прибывшего в Нью-Йорк на корабле, узнал от него о том, какое пристальное внимание уделяют изучению атомов урана в Европе.

По сравнению с атомом водорода, с изучения ядра которого Бор начал свою квантовую революцию, атом урана был просто монстром. Самый тяжелый, состоящий из 92 протонов и более чем 140 нейтронов атом[78]78
  140 нейтронов содержит изотоп урана-232. Всего существует несколько десятков изотопов урана. Прим. науч. ред.


[Закрыть]
, редко встречающийся в природе (всего один на семнадцать триллионов атомов водорода), нестабильный, предрасположенный к внезапному распаду на более легкие элементы или – а это были экстраординарные новости, и именно над этим вопросом Бор работал во время своего путешествия через Атлантику, – расщеплению при столкновении с нейтроном на свободные пары более легких атомов бария и криптона или теллура и циркония с высвобождением новых нейтронов и энергии. Как можно было представить эти ядра? Как скопления твердых частиц, скользящих друг на друге? Как гроздья винограда, перемотанные плотной резинкой? Или как «жидкие капли», представлявшие собой мерцающие, отталкивающиеся, постоянно колеблющиеся шаровидные частицы, сжимающиеся в форму песочных часов и растрескивающиеся в их тонкой части? Формулировка «жидкие капли» распространилась, словно вирус, в среде физиков в 1939 году. Именно эта «жидкокапельная» модель позволила Уилеру и Бору сделать одно из самых невероятных и величайших упрощений в науке – выстроить теорию феномена, который позже назовут расщеплением ядра. Сам термин не принадлежал Уилеру и Бору. Они весь вечер пытались придумать вариант получше, что-то вроде раскола или деления, но в конце концов сдались, так и не найдя нужного слова.

Разумно было предположить, что модель жидких капель лишь весьма приближенно описывает скопления частиц в ядре атома, состоящего из более чем двухсот частиц, удерживаемых вместе ядерными силами, действующими на близких расстояниях и отличающимися по своей природе от действующих в молекулах электрических сил, которые изучал Фейнман. Для атомов меньшего размера метафору «жидкие капли» использовать было нельзя, но для описания крупных, таких как атомы урана, она работала. Форма ядра атома, как и форма жидкой капли, зависела от тонкого баланса между двумя противоположными силами. Силы ядерного притяжения (так называемое сильное взаимодействие) в атоме подчиняются тому же принципу, благодаря которому за счет поверхностного натяжения удерживается компактная геометрическая форма капли. Этому притяжению противостоит электрическая сила отталкивания (согласно закону Кулона), действующая между положительно заряженными протонами. Бор и Уилер поняли, насколько важно облучать именно медленными нейтронами, которые Ферми счел совершенно бесполезными, когда работал в своей лаборатории в Риме[79]79
  Для распада изотопа урана-238 (наиболее распространенного) необходимо облучать его «быстрыми» (высокоэнергетичными) нейтронами, следовательно, замедляя нейтроны, можно контролировать ход реакции расщепления ядра. Для замедления нейтронов в ядерных реакторах используются, как правило, графитовые стержни, а раньше применялась тяжелая вода (оксид дейтерия). Прим. науч. ред.


[Закрыть]
, и сделали два громких заявления. Во-первых, к взрыву приведет ядерный распад только редкого изотопа[80]80
  Изотоп – разновидность химического элемента, отличающаяся от исходного элемента количеством нейтронов в ядре (то есть массой), но имеющая то же количество протонов. Поскольку физико-химические свойства элемента определяются количеством протонов, изотоп ведет себя в целом так же, как и исходный элемент. Прим. науч. ред.


[Закрыть]
урана – урана-235. Во-вторых, бомбардировка нейтронами также приведет и к ядерному распаду и образованию нового вещества с атомным номером (зарядом) 94 и массой 239, не существующего в природе и пока не полученного в лаборатории. На основе этих двух теоретических утверждений вскоре начал развиваться огромный, невиданный ранее технологический проект.

Одна за другой открывались лаборатории ядерной физики. Американский дух изобретательства был теперь направлен на то, чтобы разработать аппарат, позволяющий ускорять пучки заряженных частиц, сталкивать их с атомами металлов или газов и отслеживать частицы, образующиеся в результате их столкновений, используя камеры с ионизированным газом. Один из первых в стране «циклотронов» – такое название этот аппарат получит в будущем – появился именно в Принстоне в 1936 году. Его стоимость была такой же, как и стоимость нескольких автомобилей. В университете имелись и ускорители меньшего размера, которые работали каждый день, что позволяло получать редкие элементы и изотопы и накапливать новые знания. Когда так мало известно, результаты почти каждого эксперимента приобретают особую значимость.

Полученные на новом мощном оборудовании данные становилось все труднее оценивать и интерпретировать. Ранней осенью 1939 года студент по имени Хайнц Баршалл обратился к Уилеру с типичной проблемой. Как и большинство новоиспеченных практиков, Баршалл использовал ускоритель заряженных частиц, чтобы измерить их энергию. Внутри ионизированной камеры происходило рассеяние частиц, и ему надо было оценить зависимость энергии частиц от угла столкновения. Баршалл понял, что эксперимент не будет чистым, так как сама камера будет вносить искажения. Проблема заключалась в том, что некоторые частицы могли начать ускоряться вне камеры, другие – уже в ее цилиндрических стенках, и, следовательно, зафиксированная энергия не будет соответствовать ее истинному значению. Необходимо было найти способ, позволяющий полученное с помощью расчетов значение энергии привести в соответствие энергии реальной. Это была задача, для решения которой требовалось выполнять громоздкие вычисления вероятностей в сложной геометрии. Баршалл понятия не имел, с чего начать. Уилер же ответил, что он сам слишком занят, чтобы вникать, и посоветовал обратиться к новому очень сообразительному аспиранту.

Баршалл послушно разыскал Дика Фейнмана в здании колледжа. Фейнман выслушал его, но ничего не ответил. Баршалл решил, что пришел конец его научной работе. Ричард же только начинал привыкать к этому новому миру, который ему как физику казался гораздо меньше, чем тот научный центр, который он недавно покинул. Он покупал все необходимое в магазине на Нассау-стрит в западной части студенческого городка. Там его и заметил студент магистратуры Леонард Эйзенбад. «Похоже, ты намереваешься стать неплохим физиком-теоретиком, – сказал Эйзенбад, указывая на купленную Фейнманом корзину для мусора и тряпку для стирания мела с доски. – Все, что нужно, у тебя уже есть». В следующий раз, когда Баршалл встретился с Фейнманом, его удивила охапка исписанных листов, которую тот держал в руках. Ричард успел написать решение его задачи, пока был в дороге. Баршалл был впечатлен и стал еще одним молодым физиком в разрастающейся группе единомышленников, способных в полной мере по достоинству оценить способности Фейнмана.

Уилер тоже обратил внимание на Фейнмана, назначенного по непонятным им обоим причинам его ассистентом, так как изначально предполагалось, что Фейнман будет работать с Вигнером. При первой встрече Ричард был удивлен молодостью профессора: тот был чуть старше его самого. Потом он был ничуть не меньше удивлен манерой Уилера сверяться со своими карманными часами. Он понял намек и во время следующей встречи тоже достал из кармана часы, купленные за доллар, и показал их Уилеру. Повисла пауза, после чего оба рассмеялись.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации