Автор книги: Евгений Кунин
Жанр: Биология, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 31 (всего у книги 41 страниц) [доступный отрывок для чтения: 13 страниц]
Краткий обзор и перспектива
Все существующие формы жизни размножаются как клетки или внутри клеток. Хотя в главе 10 мы рассмотрели сильные аргументы сравнительной геномики в пользу того, что мир вирусов развивался постепенно и квазиавтономно от клеточных форм жизни на всем протяжении эволюции жизни на Земле, факт остается фактом: вирусы не могут размножаться вне клеток. Мы не знаем всех промежуточных стадий эволюции; даже самые простые клетки обладают сложной трансформирующей энергию мембраной, включающей разнообразные транспортные системы, а также обширными ДНК-геномами и сложной системой генной репликации и клеточного деления. Не существует униформистского объяснения эволюции клеток – доклеточная биота, безусловно, разительно отличалась от всей известной нам жизни. В настоящей главе мы обсуждали в основном мир вирусов в качестве сценария эволюции как вирусов, так и клеток. Согласно этой гипотезе, доклеточная стадия эволюции жизни происходила в сети неорганических ячеек, содержащих разнообразную смесь вирусоподобных генетических элементов, которые постепенно превратились в ансамбли «эгоистичных кооператоров» и истинных паразитов. Предполагается, что эти ансамбли генетических элементов были предковой стадией, из которой появились клетки; возможно, речь идет о множестве независимых «попыток», но только две из них (предки бактерий и архей соответственно) дали стабильные клеточные линии, успешные в долговременной эволюционной перспективе.
Исходя из этого гипотетического статуса первобытных форм жизни, давших начало клеткам, предлагается заменить понятие всеобщего предка (LUCA) на всеобщее предковое состояние (LUCAS). LUCA(S) мог довольно сильно отличаться от современных клеток, как нам подсказывает отсутствие гомологии ключевых компонентов репликации ДНК и биогенеза мембран (а также различий в химических структурах липидов) у архей и бактерий. Эти фундаментальные различия между двумя основными доменами клеточной жизни подразумевают неклеточную природу LUCAS. Однако не следует принимать эту модель безоговорочно: несмотря на всю правдоподобность, сценарий неклеточного LUCAS тоже сталкивается с существенными трудностями. Например, в рамках этого сценария сложно объяснить универсальное сохранение частицы узнавания сигнала, рибонуклеопротеиновой машины, которая еще до окончания трансляции встраивает образующиеся белки в мембраны[122]122
Выше мы уже отмечали новые данные, указывающие на возможность существования примитивных мембран на стадии LUCAS, это может частично снять отмеченный парадокс (Koonin EV, Mulkidjanian AY. Evolution of cell division: from shear mechanics to complex molecular machineries. Cell. 2013 Feb 28;152(5):942-4).
[Закрыть].
Какой бы интригующей ни была возможность существования неклеточного LUCAS и как бы ни было важным реконструировать детали этого ключевого предкового состояния, это все же второстепенно для модели мира вирусов. Даже если модель неклеточного LUCAS будет убедительно опровергнута и появятся веские доводы в пользу клеточного LUCA, это не отменит модели доклеточной эволюции, которую мы обсуждаем, – только отбросит ее назад и будет свидетельствовать в пользу единственности успешного возникновения клетки. То же самое справедливо для модели сети неорганических ячеек (подробно рассматриваемых в гл. 12). Даже если эта модель окажется неправдоподобной, в то время как, скажем, модель клеточной эволюции из липидных везикул получит достоверное экспериментальное подтверждение, – и это вряд ли отменит необходимость существования первобытного резервуара генетических элементов. Кратко говоря, вирусоподобный характер генетического резервуара на доклеточной стадии эволюции жизни является логической необходимостью.
Рекомендуемая дополнительная литература
Doolittle W. F., and J. R. Brown. (1994) Tempo, Mode, the Progenote, and the Universal Root. Proceedings of the National Academy of Sciences USA 91: 6,721—6,728.
Обсуждение природы LUCA, в частности, был ли он прогенотой, на заре эры геномики.
Glansdorff N., Y. Xu, and B. Labedan. (2008) The Last Universal Common Ancestor: Emergence, Constitution, and Genetic Legacy of an Elusive Forerunner. Biology Direct 3: 29.
Подробный обзор гипотез и идей касательно LUCA. Согласно модели, предпочитаемой Глансдорфом с коллегами, LUCA был сообществом разнообразных РНК-клеток.
Koonin E. V. (2009) On the Origin of Cells and Viruses: Primordial Virus World Scenario. Annals of the New York Academy of Sciences 1,178: 47–64.
Концептуальный анализ, совмещающий модели доклеточной эволюции в сетях неорганических ячеек и вирусного мира, приводящий к предположению, что LUCAS был сообществом вирусоподобных агентов.
Koonin E. V. (2003) Comparative Genomics, Minimal Gene-Sets, and the Last Universal Common Ancestor. Nature Reviews Microbiology 1: 127–136.
Обзор и критический анализ реконструкций минимального и предкового генных наборов.
Koonin E. V., and W. Martin. (2005) On the Origin of Genomes and Cells Within Inorganic Compartments. Trends in Genetics 21: 647–654.
Модель ранней эволюции жизни, от образования первых полимеров до возникновения клеток. LUCA(S) рассматривается как неклеточное сообщество разнообразных репликаторов. Постулируется множество событий возникновения клеток, из которых, однако, только два привели к формам, выжившим в течение длительного времени и давшим начало археям и бактериям.
Morange M. (2010) Some Considerations on the Nature of LUCA, and the Nature of Life. Research in Microbiology 162: 5–9.
Обсуждение эпистемологических аспектов исследования ранних стадий эволюции жизни, включая LUCA.
Mulkidjanian A. Y., K. S. Makarova, M. Y. Galperin, and E. V. Koonin. (2007) Inventing the Dynamo Machine: The Evolution of the F-type and V-type ATPases. Nature Reviews Microbiology 5: 892–899.
Сценарий происхождения мембранных АТФаз (АТФ-синтаз), использующих трансмембранный ионный градиент для синтеза АТФ, из геликазы и белкового комплекса мембранной поры. Такой сценарий предполагает, что значительное разнообразие белков и, в частности, возникновение геликаз, содержащих фосфат-связывающую петлю, предшествует по времени возникновению мембранной биоэнергетики современного типа, так что на ранних стадиях жизни должен был действовать иной энергетический механизм.
Mushegian A. (2008) Gene Content of LUCA, the Last Universal Common Ancestor. Frontiers in Bioscience 13: 4,657—4,666.
Современные методы и результаты реконструкции генного репертуара LUCA.
Woese C. R. (2000) Interpreting the Universal Phylogenetic Tree. Proceedings of the National Academy of Sciences USA 97: 8,392—8,396.
Влиятельнейшая статья, в которой Вёзе помещает LUCA в корень универсального древа жизни, начальную стадию эволюции, когда интеграция генетических элементов стала достаточно тесной, чтобы поддерживать эволюцию клеточной линии.
Woese C. R. (2002) On the Evolution of Cells. Proceedings of the National Academy of Sciences USA 99: 8,742—8,747.
Дальнейшая разработка концепций предыдущей статьи. Вёзе утверждает, что первые клеточные формы были «коммунальными», на стадии эволюции, когда безудержный ГПГ был необходим для появления эволюционных новшеств, а клеточных линий не существовало. Вводится понятие «дарвиновского порога» как стадии эволюции, когда стабильность генома стала достаточной, чтобы началось вертикальное наследование.
Глава 12. Происхождение жизни. Возникновение трансляции, репликации, метаболизма и мембран: биологический, геохимический и космологический подходы
В предыдущей главе мы обсудили возможные сценарии возникновения клеток и (будем надеяться) достигли определенной степени убедительности, рассмотрев сценарий клеточной эволюции из первичного вирусного мира. Однако эта модель имеет дело с относительно поздними стадиями эволюции, на которых репликация генетического материала и трансляция уже сформировали белковое разнообразие. Ценность этих моделей останется сомнительной, пока мы не разработаем возможного объяснения происхождения фундаментальных процессов передачи информации.
Происхождение жизни – наиболее сложная проблема, стоящая перед эволюционной биологией и, можно утверждать, перед биологией в целом. Несомненно, проблема эта столь сложна, а текущее положение вещей столь трудно, что некоторые исследователи предпочитают отказывать этой проблеме в научности на том основании, что единичные события не подлежат научному исследованию. Такая позиция, однако, является глубоко неудовлетворительной, в особенности из-за того, что, хоть мы и знаем с уверенностью, что жизнь на этой планете возникла лишь однажды (см. гл. 11), у нас нет ни малейшего представления, уникальна ли (или, напротив, обычна) жизнь во Вселенной в целом. Если принимать вопрос происхождения жизни как научный, то нельзя отрицать, что это вопрос огромной значимости, в сравнении с которым прочие биологические проблемы, пожалуй, малосущественны.
Естественно потребовать, чтобы, коли мы начинаем рассуждать о происхождении некоего явления, само явление было определено. В научной и философской истории давалось множество определений жизни[123]123
Те, кто вынужден был в свое время изучать «диалектический материализм», странный коктейль, который якобы должен был формировать философские основы марксизма в Советском Союзе и других странах социалистического лагеря, никогда не забудут определения Фридриха Энгельса: «Жизнь есть способ существования белковых тел». Если мы отодвинем в сторону отвращение от безжалостного заколачивания этой формулы, вместе с другими драгоценностями марксистской мудрости, в наши бедные мозги, то заметим, что она не так уж плохо звучит и в наше время, хоть и тривиальна и в значительной степени не относится к делу.
[Закрыть], и сам этот вопрос отдает эссенциализмом (см. доп. А)[124]124
Недавно опубликован интересный сравнительный обзор определений жизни (Trifonov EN. Vocabulary of definitions of life suggests a definition. J Biomol Struct Dyn. 2011 Oct;29(2):259-66), с многочисленными комментариями, в основном весьма критическими, написанными в том числе Джеком Шостаком (напомним, одним из лауреатов Нобелевской премии за открытие теломеразы) (Szostak JW. Attempts to define life do not help to understand the origin of life. J Biomol Struct Dyn. 2012;29(4):599–600) и автором этой книги (Koonin EV. Defining life: an exercise in semantics or a route to biological insights? J Biomol Struct Dyn. 2012;29(4):603-5).
[Закрыть]. Однако в контексте обсуждения в предыдущих главах прийти к определению того, что следует считать живым, удивительно просто: любой стабильный во времени репликатор является формой жизни. Любая репликаторная система может – и непременно будет – эволюционировать благодаря комбинации дрейфа и естественного отбора (принцип подверженной ошибкам репликации, гл. 2). Не отмеченный явно, но важный аспект такого определения – наличие обратной связи генотип – фенотип, когда некоторые мутации, то есть ошибки репликации, влияют на ее эффективность (см. гл. 2). Такого рода обратная связь вполне вообразима в гипотетическом мире РНК. Во всех известных формах жизни, однако, разделение генотипа и фенотипа более явное: в то время как генотип выражается в молекулах нуклеиновых кислот, фенотип заключается в белковых молекулах, обладающих исключительно исполнительной функцией, но не несущих информационной (матричной)[125]125
Примечательным исключением являются самовоспроизводящиеся прионы, которые мы кратко упоминали в гл. 9. Несмотря на то что прионы формально представляют собой высшую форму сильной эпигенетической наследственности (вплоть до того, что они могут выступать как инфекционные агенты), основанную исключительно на белках, синтез прионных белков по-прежнему полностью зависит от обычной, основанной на нуклеиновых кислотах клеточной системы передачи информации.
[Закрыть] функции.
Следовательно, хотя происхождение трансляции в принципе и не является неотъемлемой частью вопроса о происхождении жизни (поскольку обитатели мира РНК должны считаться полноценными формами жизни), на практике два этих вопроса связаны прочной и, вероятно, неразразрывной связью. В этой главе мы обсудим загадку происхождения репликации и трансляции. Поскольку механизмы трансляции универсально сохраняются, этот вопрос следует считать ключевым в проблеме происхождения жизни.
Вопрос о происхождении жизни по природе своей не может быть только биологическим, поскольку до того, как возникла жизнь (даже в простейшем ее воплощении), существовала «предбиологическая» химия, которая должна рассматриваться с точек зрения химии, геохимии и геофизики. Данные этих областей обширны и сложны и в основном лежат за пределами моей профессиональной компетенции. Поэтому здесь мы приведем лишь краткий обзор, подчеркивающий наиболее важные результаты.
Наконец, не без понятной робости, мы коснемся чрезвычайно общих аспектов вероятности «уникальных событий» в рамках современных космологических теорий. Это рассуждение позволит нам, по крайней мере, выработать определенные идеи касательно распространенности жизни в космосе.
Происхождение репликации и трансляции и мир РНК
Цикл Дарвина – ЭйгенаГлавной целью разработанной Манфредом Эйгеном теории самореплицирующихся систем было построение простой модели, объясняющей происхождение биологической информации и, следовательно, самой жизни. Теория Эйгена вскрыла существование фундаментального предела, ограничивающего достоверность репликации (порог Эйгена): если произведение частоты ошибок (мутаций) и информационной емкости системы (размер генома) ниже порога Эйгена, происходит стабильное наследование и, следовательно, эволюция; если же эта величина выше порога, то мутационная катастрофа и вымирание неизбежны (Eigen, 1971). Порог Эйгена лежит где-то в интервале от 1 до 10 мутаций на цикл репликации (Tejero et. al., 2011), но, каков бы он ни был, для стабильного поддержания репликации, что является необходимым условием начала биологической эволюции, система должна непрерывно оставаться над этим порогом (см. рис. 12-1а). Само происхождение первых организмов создает по меньшей мере видимость парадокса, поскольку для репликации необходима некоторая минимальная сложность, а репликация с высокой точностью требует кодирования еще большего объема информации (Penny, 2005). В то же время уровень точности репликации в данной точке эволюционной траектории ограничивает объем информации, которая может быть закодирована в геноме. Таким образом, на первый взгляд рост сложности генома представляется невозможным. Однако комбинация естественного отбора и генетического дрейфа превращает этот, казалось бы, порочный круг в (казалось бы) бесконечную спираль возрастающей сложности (цикл Дарвина – Эйгена в терминологии Д. Пенни; Penny, 2005). Даже малые приобретения в точности репликации идут системе на пользу, хотя бы потому, что они увеличивают число жизнеспособных копий генома и тем понижают репродукционные издержки. Сам по себе большой геном является скорее обузой для системы из-за высоких репродукционных издержек. Однако умеренное увеличение генома, такое как дупликация частей генома или рост вследствие рекомбинации, способно закрепляться в малых популяциях. Репликаторы, обладающие достаточно высокой точностью, могут использовать этот случайно закрепленный и изначально бесполезный генетический материал для эволюции новых функций, не срываясь при этом с «обрыва Эйгена» (рис. 12-1б). Среди этих новых, улучшающих приспособленность функций будут и повышающие точность репликации, что позволяет затем увеличить объем кодируемой информации. Таким образом, цикл Дарвина – Эйгена повторяет себя в спиральной прогрессии, приводя к непрерывному увеличению размера генома (рис. 12-1а).
Рис. 12-1. Точность репликации и эволюция: а — цикл Дарвина – Эйгена; б — эволюция и край обрыва Эйгена.
Решающим в изучении происхождения жизни является вопрос о том, как начался цикл Дарвина – Эйгена, то есть как именно была достигнута наименьшая сложность, необходимая для приемлемой репликации. Даже в простейших современных системах, таких как РНК-вирусы, точность репликации в которых составляет всего 10-3 (то есть в среднем одна ошибка на 1000 нуклеотидов), и вироидах, реплицирующихся с наименьшей известной на сего дня среди всех репликонов точностью (около 10-2; Gago et al., 2009), репликация катализируется сложными белковыми полимеразами. Сами эти полимеразы (репликазы) синтезируются в результате трансляции соответствующих мРНК при посредстве чрезвычайно сложного рибосомного аппарата. Отсюда следует драматический парадокс происхождения жизни: для достижения минимальной начальной сложности, необходимой для того, чтобы биологическая система начала движение по Дарвину – Эйгену, эта система должна обладать гораздо большей начальной сложностью. В рамках обычного эволюционного мышления невозможно даже представить решения этой головоломки, поскольку это мышление относится исключительно к системам, уже находящимся на спирали. Таким образом, решение непременно окажется неординарным. В следующих разделах этой главы мы сначала рассмотрим потенциал подхода сверху вниз, то есть основанного на анализе современных генов, для получения указаний на возможное происхождение систем репликаторов. Затем мы обсудим подход снизу вверх.
Изучение эволюции белковых доменов дает аргументы в пользу сложного мира РНК: взгляд сверху внизКак уже упоминалось выше, система трансляции – единственный сложный ансамбль генов, сохранившийся во всех современных клеточных формах жизни. Современная трансляционная система, содержащая около 60 универсальных белок-кодирующих генов и 40 генов структурной РНК, представляет собой наилучшим образом сохранившийся остаток LUCA(S) и лучшее свидетельство того, что в какой-то форме LUCA(S) действительно существовал (см. гл. 11). В силу исключительной консервативности системы трансляции анализ ортологических последовательностей дает крайне мало для понимания ее происхождения, которое находится за горизонтом сравнения современных форм. Реконструкция генного состава LUCA(S) указывает на сложную трансляционную систему, включающую по меньшей мере 18 из 20 аминоацил-тРНК-синтетаз (АРСаз), несколько факторов трансляции, не менее 40 рибосомных белков и некоторое число ферментов, модифицирующих рРНК и тРНК. По-видимому, у LUCA(S) ядро системы трансляции было уже полностью сформировано (Anantharaman et al., 2002).
Однако сравнение последовательностей и структур белковых компонентов и РНК внутри самой системы трансляции оказывается информативным благодаря большому числу паралогов среди соответствующих генов. Когда в реконструированном генном наборе LUCA(S) обнаруживается пара паралогичных генов, давшая ей начало дупликация, естественно, относится к более ранней стадии эволюции, и, таким образом, реконструкция последовательности древнейших дупликаций позволяет взглянуть на очень ранние этапы эволюции. История паралогичных АРСаз особенно показательна. АРСазы образуют два класса по 10 специфичностей каждый (то есть каждый класс отвечает за распознавание и активацию 10 аминокислот), с неродственными каталитическими доменами и различными наборами вспомогательных доменов. Каталитические домены АРСаз классов I и II принадлежат, соответственно, к укладкам Россмана и биотин-синтазы[126]126
Это два класса неродственных, широко распространенных нуклеотид-связывающих доменов.
[Закрыть]. Анализ эволюционной истории этих белковых укладок приводит к существенным выводам o ранней эволюции трансляционных систем, и не только об этом (Aravind et al., 2002). Каталитические домены АРСаз класса I образуют лишь небольшую ветвь эволюционного древа доменов укладки Россмана. Таким образом, появлению общего предка АРСаз предшествовало множество ветвлений эволюционного пути от примитивного древнего домена к состоянию с высоким разнообразием, соответствующему LUCA(S). Существенное разнообразие доменов укладки Россмана возникло еще до серии дупликаций, приведших к возникновению, еще до эпохи LUCA(S), АРСаз различных специфичностей (см. рис. 12-2а). Подобная эволюционная картина обнаруживается и при анализе домена биотин-синтазы, давшего начало АРСазам класса II. Даже при рассмотрении только этих двух укладок становится очевидно, что огромное структурное и функциональное разнообразие белковых доменов возникло еще до того, как появилась полноценная, состоящая из РНК и белков система трансляции современного типа.
Рис. 12-2а. Разнообразие белковых доменов, кристаллизация системы трансляции и LUCA(S): эволюция нуклеотид-связывающих доменов укладки Россмана. Указаны только достаточно хорошо изученные белки. USPA – универсальный фактор стресса А; ETFP – электронтранспортный флавопротеин; vWA – фактор фон Виллебранда А; Toprim – каталитический домен топоизомераз, праймаз и некоторых нуклеаз; ДГК – дегалогеназа галоидных кислот; Receiver – компонент двухкомпонентной сигнальной системы прокариот; TIR – широко распространенный домен белок-белкового взаимодействия в сигнальных системах прокариот и эукариот; Sir2—деацетилаза белков (в частности, гистонов). Подробное описание см. Aravind et al., 2002 и ссылки в этой статье.
Рис. 12-2б. Эволюция нуклеотид-связывающих доменов ГТФаз и родственных им АТФаз, по данным из Leipe et al., 2002. Указаны только хорошо изученные белки. Динеин, динамин, кинезин и миозин – моторные ГТФазы и АТФазы, ассоциированные с цитоскелетом; Ras/Rho – сигнальные ГТФа-зы, ассоциированные, в частности, с эндомембранной системой эукариот; G-белки – ассоциированные с мембраной ГТФазы, функционирующие совместно с G-белок-сопряженными рецепторами; PurA и PyrG – ферменты метаболизма нуклеотидов; ArgK, аргинин-киназа, – фермент метаболизма аминокислот; Mrp и MinD – АТФазы, участвующие в клеточном делении прокариот; SRP – частица узнавания сигналов.
Эволюционный анализ обширнейшего класса фосфат-связывающих доменов (известных также как P-петли) ГТФаз, в котором множество трансляционных факторов образует компактные семейства, приводит, в сущности, к тому же результату: в последовательности эволюционных бифуркаций (ветвлений эволюционного древа), представляющей историю ГТФазного домена, трансляционные факторы также возникли сравнительно поздно (см. рис. 12-2а; Leipe et al., 2002). ГТФазы образуют лишь одну из многих больших ветвей эволюционного древа укладки, содержащей Р-петлю, которая включает огромное разнообразие белковых доменов, связывающих НТФ (нуклеозидтрифосфаты – чаще всего субстратом является АТФ, гораздо реже ГТФ и изредка – другие НТФ) и расщепляющих β-γ-фосфодиэфирную связь (см. рис. 12-2б). Эта укладка является самым распространенным доменом во всех прокариотах (Wolf et al., 1999b), и во всех реконструкциях генетического разнообразия LUCA(S) выявляется несколько десятков содержащих Р-петлю белков. Таким образом, интенсивная эволюция домена, содержащего Р-петлю, предшествовала не только LUCA(S), но и, что еще более удивительно, современной системе трансляции. Сама Р-петля (известная также под названием мотива Уолкера A[127]127
Джон Уолкер (будущий лауреат Нобелевской премии за структуру мембраны АТФазы) и его коллеги впервые описали фосфат-связывающую петлю в 1982 г. (J. E. Walker, M. Saraste, M. J. Runswick, and N. J. Gay. Distantly Related Sequences in the Alpha– and Beta-Subunits of ATP Synthase, Myosin, Kinases, and other ATP-Requiring Enzymes and a Common Nucleotide Binding Fold. EMBO Journal 1 [1982]: 945–951) как мотив, присутствующий в двух субъединицах H+-АТФазы и ряде других АТФ-связывающих белков, имеющих мало иного структурного сходства между собой или вовсе несходных. Неожиданная консервация этого мотива в самых разнообразных вирусных белках была предметом моей самой первой работы в вычислительной биологии (Горбаленя А. Е., Блинов В. М., Донченко А. П., Кунин Е. В. Молекулярная генетика, микробиология и вирусология 11 [1985]: 30–36). Я полагаю, что точное попадание в наиболее консервативный белковый мотив в столь ранней работе было сочетанием счастливого случая и «предпочтительного присоединения».
[Закрыть], рис. 12-3), богатая глицином петля, оборачивающая фосфатный конец НТФ-субстрата, является наиболее консервативным мотивом среди всех белковых последовательностей, несомненно зафиксированным на самых ранних стадиях белковой эволюции (Gorbalenya and Koonin, 1989; Trifonov et al., 2006).
Рис. 12-3. Р-петля, древнейший и самый распространенный в белковых последовательностях мотив. На рисунке изображено выравнивание Р-петель восьми древних НТФаз, каждая из которых, по данным эволюционных реконструкций, была представлена в LUCA(S) (Mirkin et al., 2003). Для каждой линии представлены три последовательности: бактерии (Escherichia coli, Ecoli), археи (Pyrococcus abyssi, Pabys) и эукариота (дрожжи Saccharomyces cerevisiae, Scere). Белыми буквами на черном фоне обозначены аминокислотные остатки, напрямую взаимодействующие с фосфатным концом НТФ, а серым фоном – характерная гидрофобная β-последовательность, предшествующая ФСП. SRP – частица узнавания сигналов.
Таким образом, из сравнительного анализа древних паралогических отношений между белковыми компонентами системы трансляции следует бесспорный, хоть и парадоксальный, вывод: за интересным исключением основных рибосомных белков, все белки, играющие главную роль в современной трансляции, возникли в результате долгой и сложной эволюции различных белковых доменов. Возникает замкнутый круг: для возникновения этих белков требуется точная и эффективная система трансляции. Древняя система трансляции могла быть и не столь совершенной, как современная, но несомненно, что она отличалась от нее не более чем на порядок по точности и скорости, иначе белковая эволюция не стала бы возможной. Однако из всего, что нам известно о современной системе трансляции, такой уровень точности невообразим без сложного и специализированного белкового аппарата.
Итак, система трансляции ярко высвечивает парадокс Дарвина – Эйгена, присущий любому анализу возникновения сложных биологических систем: для работы эффективной и точной системы трансляции современного типа требуется множество различных белков, но для того, чтобы эти белки могли возникнуть, нужна система трансляции почти столь же совершенная, как современная. По-видимому, существует только одно возможное разрешение этого парадокса, а именно через отказ от первой части противопоставления: следует заключить, что трансляционная система, сравнимая с современной по точности и скорости, работала в отсутствие значительного разнообразия белков и, возможно, вообще без белков. Таким образом, основываясь на сравнительном анализе составных частей системы трансляции, мы должны сделать предположение о существовании сложного и разнообразного мира РНК, в котором уже действовала некая разновидность цикла Дарвина – Эйгена.
Это не все, что может нам дать сравнительный анализ: сравнение самих РНК также вскрывает важные явления и загадывает поразительные загадки. Так, анализ большой рибосомной субъединицы РНК 23S выявил иерархический сценарий последовательности дупликаций, способной привести от простой древней шпильки РНК к современной, сложной, универсально консервативной структуре рРНК (Bokov and Steinberg, 2009).
Консерватизм структуры определенных элементов последовательностей (таких как псевдоуридиновая петля) и даже сайтов модификации тРНК всех специфичностей (и, разумеется, всех видов) не оставляет сомнений в том, что все они эволюционировали от общего предка (Eigen et al., 1989). Отсюда, при сравнении современных последовательностей и структур, возникает второй парадокс эволюции трансляции. Если на некоторой стадии эволюции существовал единственный предок тРНК всех специфичностей, то как могла подобная трансляционная система действовать, точнее, как она могла обеспечивать специфичность кодирования аминокислотных последовательностей нуклеотидными? Если же на этом этапе трансляционной системы еще не существовало, то что привело к эволюции специфичной к аминокислотам тРНК?
Мы обратимся к этим и смежным вопросам ниже, но сначала следует хотя бы кратко рассмотреть центральное понятие в области исследования происхождения жизни: мир РНК.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?