Электронная библиотека » Евгений Панцхава » » онлайн чтение - страница 4


  • Текст добавлен: 15 апреля 2017, 19:20


Автор книги: Евгений Панцхава


Жанр: Прочая образовательная литература, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 68 страниц) [доступный отрывок для чтения: 22 страниц]

Шрифт:
- 100% +
2.2.Источники биомассы

Древесина является типичным источником биомассы.

Объем производства биомассы в мире составляет 146 млрд. тонн в год, состоящий в основном из диких растений. Энергию биомассы получают из шести различных источников биоэнергии: бытовых отходов, древесины, энергетических растений, отходов агропромышленных комплексов, свалочного газа, и алкогольного топлива.

Биомасса может быть преобразован в другие полезные формы энергии: газ метан или транспортные топлива – этанол, бутанол, биодизель и биоуглеводороды.

Широкие перспективы для рентабельного производства различных видов энергии и топлива открывает использование для этих целей пресных и морских водорослей.

Энергия созданная путем сжигания биомассы (дров), также известна как dendrothermal.


ХИМИЧЕСКИЙ СОСТАВ БИОМАССЫ.

Химический состав биомассы может различаться в зависимости от ее вида. Обычно растения состоят из 25 % лигнина и 75 % углеводов. К наиболее важным категориям углеводов можно отнести целлюлозу. Лигниновая фракция состоит из молекул не углеводного (производные фенолов) типа.


Рис. 2–1. ТЭЦ в городе Мец, Франция.45MW котел использует биомассу отходов древесины в качестве источника энергии. [2-14].


ПРОЦЕСС ОБРАЗОВАНИЯ БИОМАССЫ [2–2].

Двуокись углерода из атмосферы и вода посредством фотосинтеза (квантов световой энергии) образуют "строительные блоки" биомассы. Таким образом, солнечная энергия, сохраняется в химической форме в безмассовой структуре. При окислении биомассы (сжигание) кислородом атмосферы вновь образуется двуокись углерода и вода. Процесс циклический, потому что двуокись углерода может вновь участвовать в производстве новой биомассы.


Рис. 2–2. Упрощенный углеродный цикл.[2–2]


В течение тысячелетий люди добывали энергию Солнца, сохраненную в вы-де энергии химических связей, сжигая биомассу в качестве топлива или употребляя ее в пищу и для технических изделий. Ископаемые виды топлива также являются продуктом длительной биологической и термохимической конверсии древнейшей биомассы. В течение миллионов лет на Земле остатки фауны и флоры превращаются в топливо.

Биомасса считается одним из ключевых возобновляемых энергетических ресурсов будущего. Сегодня она обеспечивает 14 % потребления первичной энергии. Для трех четвертей населения человечества, живущих в развивающихся странах, биомасса является самым важным источником энергии. Увеличение населения и потребления энергии на одного жителя, а также истощение ресурсов ископаемого топлива приведут к быстрому увеличению спроса на биомассу в развивающихся странах. В среднем, в развивающихся странах биомасса обеспечивает 38 % первичной энергии (а в некоторых странах 90 %). Весьма вероятно, что биомасса останется важным глобальным источником энергии в развивающихся странах в течение всего 21 века.[2–2].

Ежегодный прирост биомассы на земле составляет 220 млрд. тонн (по св.), что позволяет запасать в виде энергии химических связей до 4 х 10 21 Дж энергии.

Мировое годовое коммерческое использование всей энергии составляет 3.9 х 10 20 Дж, что в 10 раз меньше запасаемой энергии.

Например, энергетическое содержание производимых в мире сельскохозяйственных отходов составляет 93 х 1018 Дж./год. Допуская, что только 25 % их реально использовать, отходы могут обеспечить около 7 % мировой энергии.

Городские твердые отходы – ТБО также могут быть важным источником энергии. Только в США их ежегодно образуется около 320 млн. тонн, или по 1 т/год на человека. В развивающихся и слаборазвитых странах эти величины соответственно меньше, но можно полагать, что ежегодно в мире в городах накапливается несколько млрд. тонн ТБО [2-16]. Если считать, что, в среднем, ТБО содержат 60–65 % органических веществ растительного и животного происхождения, то по аналогии с фотосинтетической биомассой ежегодное содержание энергии в ТБО может составлять 4–6 х 1018дж.


Рис. 2–3. Производство и потребление биомассы в мире в сравнении с общим потреблением энергии. [2–2].


Потребление биомассы растет быстрыми темпами и в развитых странах. В развитых странах биомасса используется весьма интенсивно: Швеция и Австрия обеспечивают 15 % потребности в первичных энергоносителях за счет биомассы.

В ряде развитых и развивающихся стран биомасса используется для получения энергии и топлива. В мире около I млрд. чел. используют древесину как топливо. 1/7 часть используемой энергии обеспечивается за счет биомассы. В таких развивающихся странах, как Эфиопия, Непал, Танзания энергетика на 95 % зависит от использования биомассы, в Нигерена 85, Сомали-, Судане – 85, Бангладеш, Кении -75, Таиланде – 65, Индии.– 55, Боливии – 45, Китае – 35, Бразилии -25, в среднем – на 45 % [2-15].

Приведенные выше цифры весьма оптимистичны, и даже наблюдавшееся в 1985 – 1986 гг. снижение цен на нефть на международном рынке, по мнению крупной фирмы "Аррlied роwer – technology", штат Калифорния, не может оказать влияния на изменение объемов использования биомассы в целях энергетики.


Рис. 2–4. Использование биомассы в качестве источника энергии в мире


Рис. 2–5. Распределение биомассы в мире (Зеленый цвет – биомасса) [2–2].


Интерес к использованию биомассы как источника энергии вызван следующими положительными обстоятельствами: I) биомасса постоянно возобновляется; 2) энергия, запасенная в биомассе, может храниться и использоваться в течение длительного времени; 3) она конвертируется в различные виды топлива; 4) к настоящему времени разработано и создано значительное число биоэнергетических технологий, пригодных к использованию; 5) имеются реальные перспективы в развитии этой отрасли; 6) широкое вовлечение в энергетику различных видов органических отходов; 7) в ряде регионов биотопливо является более экономически выгодным или основным видом энергии; 8) биоэнергетика является источником экологически чистой энергии, не образуются вредные газообразные оксиды серы, не меняется баланс углекислого газа в биосфере. [2-16].

Однако эта новая отрасль энергетики имеет и свои негативные стороны: I) для производства энергетической биомассы нужны земельные площади; 2) производство биомассы требует воды, удобрений и т. д.; 3) стоимость биоэнергии, колеблется в широких пределах и в ряде случаев намного превышает стоимость традиционных источников энергии; 4) биомассу экономически выгодно использовать только локально; 5} значительная часть биомассы содержит более 50 % воды, что удорожает технологии ее переработки в топливо и энергию; 6) продуктивность биомассы зависит от климата и агроусловий; 7) некоторые виды биомассы сезонны; 8) фотосинтез имеет малый КПД; 9) некоторые технологии конверсии биомассы в топливо пока неэффективны; 10) производство биомассы требует изменения сельскохозяйственной и лесоводческой практики; II) биомассу сложнее хранить, чем нефть или природный газ.[2-16].

Количество и виды топлива, получаемого из биомассы, зависят не только от общих объемов воспроизводимой биомассы, но и от качества биомассы: влажности, состава органических веществ, физических особенностей и т. д.

В ближайшие годы основным сырьем для производства энергии и топлива методами биоэнергетической технологии будут служить разнообразные органические отходы. В развитых странах в год на одного человека накапливается до 5 т органических отходов по сухому веществу.

С дальнейшей интенсификацией производства и урбанизацией происходит концентрация отходов. Это, с одной стороны, требует принятия неотложных мер для их утилизации с целью обезвреживания и охраны окружающей среды, с другой – применения прогрессивных, высокоэкономичных технологий их переработки с возможным вторичным использованием, в частности, для получения энергии, органоминеральных удобрений и др.

Как отмечалось выше, биомасса будет трансформироваться в топливо или энергию методами биологической и термохимической конверсии.

Целесообразность использования биомассы в качестве источника энергии определяется ее энергоемкостью и содержанием в ней питательных веществ и золы. В органическом веществе тканей большинства растений содержится 46–48 % углерода, а у водорослей с высоким содержанием жира и, следовательно, с повышенной энергоемкостью оно достигает 54 %.


Рис. 2–6. Целесообразность использования биомассы [2–2].


Вместе с тем наземные растения, как правило, содержат около 5 % золы, в то время как в водных растениях известковых почв количество золы составляет 25 %, 50 % для некоторых видов водорослей (Chard) и 90 % для коралловых полипов (Corallinaceae).

Хотя энергоемкость некоторых водорослей значительно выше энергоемкости наземных растений, однако вследствие относительно высокого содержания золы количество энергии в макрофитах на сухую массу приблизительно такое же, как у наземных растений. При исследовании 11 видов сосудистых водных растений было установлено, что их теплота сгорания составляет 16 353-19058 кДж/г сухой массы. Результаты изучения тканей пяти видов растений из заболоченных земель показали, что содержание золы колеблется от 5,9 % в тростнике обычном (Phragmites communis) до 15,6 % в хвоще речном (Equisetum fluviatibe) при среднем содержании 8,5 % на сухую массу. При этом концентрация азота находилась в пределах 1,2–2,1 % на сухую массу, а соотношение углерода и азота от 20:1 до 30:1.[2–2].

Водорослевые культуры могут быть эффективным источником энергетического сырья только при таком методе сбора урожая, который исключает использование больших площадей и расходование больших количеств воды и питательных веществ. В некоторых случаях питательные вещества могут быть получены из окислительных прудов, предназначенных для обработки культивируемых растений, а водоемами могут служить мелкие, аэрируемые пруды с большим расходом или с рециркуляционными системами. В таких специализированных системах скорость производства биомассы в небольших масштабах может достигать 60 г/м2 сухой массы в сутки.[2–2].

Заболоченные земли с полупогруженными макрофитами характеризуются высокой продуктивностью (до 600 г/м2 сухой массы в год) и относительно большим выходом биомассы. Однако такие земли, как правило, представляют собой относительно небольшие изолированные участки, не говоря уже о том, что, как и для всех растительных источников биомассы, скорость производства биомассы водорослей зависит от времени года. Исключение, по-видимому, составляют районы вдоль побережья Мексиканского залива, где рост водорослей происходит в течение всего года, хотя и очень медленный зимой. [2–2].


Рис. 2–7. Мировой спрос на первичную энергию по источникам,2005 г [2-17].


2.3. Энергетический потенциал биомассы России

Исследования, проведенные в 2005 г. Институтом энергетической стратегии показали, что объем производимых органических отходов АПК и городов по всем регионам России в сумме составлял почти 700 млн. тонн (260 млн. т по сухому веществу) в год:

350 млн. т (53 млн. т с.в.) – животноводство,

23 млн. т (5.75 млн. с.в.) – птицеводство,

220 млн. т (150 млн. т с.в.) – растениеводство,

30 млн. т (14 млн. т с.в.) – отходы перерабатывающей промышленности,

ТБО – 56 млн. т (28 млн. т с.в.),

12 млн. т (2 млн. т с.в.), – . с валовым энергосодержанием 92–93 млн. ту.т. (технический потенциал составляет 90.4 млн. ту.т., экономический потенциал – 53.3 млн. ту.т.).



20 % потенциальной энергии приходится на отходы животноводства и птицеводства,

58 % – на растениеводство,

7.9 % – на отходы перерабатывающей промышленности,

11.9 % – на ТБО и 1.2 % – на осадки сточных вод.

Из этого количество отходов можно ежегодно получать до 73 млрд. куб. м биогаза (57 млн. ту.т.), до 90 млн. тонн пеллет или 75 млн. т «син-газа», который можно конвертировать в 160 млрд. куб. м водорода, а также получить до 330 тысяч тонн этанола, или до 88 млн. куб. м водорода и до 165 тысяч тонн растворителей (бутанола и ацетона).

*Источник: Институт энергетической стратегии

Литература

2-1.Hall D.O., Inst. Chem. Eng. Symp., Sept. 1982, n 72, T6/1-T.

2-2.БИОМАССА(ЭНЕРГИЯ БИОМАССЫ),

2-3. Biomass From Wikipedia, the free encyclopedia Jump to: navigation, search

2-4.Storl E. // Energia. 1988. V. 10. № 1. P. 4.

2-5. Я. М. Паушкин, Г. С. Головин, А. Л. Лапидус, А. Ю. Крылова, Е. Г. Горлов, В. С. Ковач., Получение моторных топлив из газов газификации растительной биомассы, Институт горючих ископаемых.

2-6. Wild W. H. //Erdol-Erdgaz-Kohle. 1989. № 3. S. 101.

2-7.Ramain P. //Cah. fr. 1988. № 236. P. 15.

2-8. Otto O. //Glukauf. 1983. B. 119. S. 335.

2-9.Leth H. //Angew. Botanik. 1972. B. 46. № 1. S. 37.

2-10.Bernard B. //Afrique exp. 1984. № 4. P. 44.

2-11.Masters S. D. World Petroleum Congress, Buenos Aeres, 1991

2-12. Frank E. //Petrol. Econ. 1984. V. 51. № 3. P. 104.

2-13.Коллеров Л. К. Газомоторные установки. М.: Машгиз, 1951.

2-14. File: Metz biomass power station.jpg From Wikipedia, the free encyclopedia, www.google.ru.

2-15. Inter. Bioenergy Directory. Ed. P.F. Bente, Washington: Aver. Council Bioenergy, 1984, p. 1000.

2-16. Панцхава Е.С. и др., Биогазовые технологии, М. 2008, 217стр.

2-17. Экономика питание биотопливо ООН., www.slideshare.net.

Глава 3. Общие вопросы биотоплива и биоэнергетические технологии

Энергия, продукты питания и труд – ресурсная триада, определяющая социально-экономическую ситуацию современного общества. При этом, если первые два ресурса привычно записываются в разряд дефицита (Миллиард (!) людей на планете голодает, а большая часть энергии добывается варварским способом, отравляющим атмосферу), то третий – трудовой ресурс – все время в избытке (есть страны, где безработица среди трудоспособного населения превышает 80 %). [335]


Этот парадокс объясняется – отсутствием системного подхода к проблеме ресурсов. [3-35].

Цена на нефть в условиях глобальной экономики – один из критичных и очень неустойчивых показателей. В результате, программы по биотопливу то открываются, то закрываются. Так будет продолжаться до тех пор, пока проблема не будет решаться как системная: не отдельно – продовольствие, энергия, трудовые ресурсы, а только в единой системе (куда естественно войдёт и экология, автор). Для того чтобы выявить факторы, лимитирующие решение проблемы, необходимо ответить на ряд вопросов. Прежде всего, достаточно ли биоресурсов второго поколения, чтобы сколь-нибудь значительно сократить использование ископаемого углеводородного топлива.

Биотопливо по механохимическим характеристикам делится на:

1. ТВЕРДОЕ БИОТОПЛИВО

2. ЖИДКОЕ БИОТОПЛИВО

3. ГАЗООБРАЗНОЕ БИОТОПЛИВО

По сырьевому происхождению биотопливо разделяют на:

БИОТОПЛИВО ПЕРВОГО ПОКОЛЕНИЯ (продукты сельскохозяйственного производства: зерно, растительные масла, животный жир, лесная стволовая древесина).

БИОТОПЛИВО ВТОРОГО ПОКОЛЕНИЯ (органические отходы лесопромышленного комплекса и агропромышленного комплекса).

Это различные виды топлива, полученные различными методами термохимии и биотехнологии из вторичной биомассы.

БИОТОПЛИВО ТРЕТЬЕГО ПОКОЛЕНИЯ(морские и пресноводные водоросли).


Поколения биотоплива [3-54].

Классификация биотоплива необходима для того чтобы избегать двойного учета различных видов биотоплива в статистике, а также для избирательной поддержки разработки и производства определенных видов биотоплива. Тем не менее, существуют различные системы классификации биотоплива во многом противоречащие друг другу.


Первичное и вторичное биотопливо

Наиболее общее разграничение проводится между первичным (необработанным) и вторичным биотопливом (обработанным). Под первичным биотопливом FAO понимает_ «топливо, органический материал которого используется главным образом в своей природной форме (как он был заготовлен)». Образцами такого топлива являются: топливная древесина, древесная щепа, гранулы и т. д. Вторичное биотопливо подвергается трансформации перед использованием и может существовать в твердой (например, древесный уголь), жидкой (например, этанол, биодизель и биомасло) или газообразной (например, биогаз, синтез-газ и водород) форме.

Согласно_Комитету по статистике ООН (Annex A. Стр. 174. Код 5) к первичному биотопливу относятся не только топливная древесина, пеллеты и т. д., но и биогаз, биодизельное топливо, авиационный биокеросин. Единственным видом вторичного биотоплива принимается древесный уголь (charcoal), что в целом противоречит определениям данным в том же документе (разделы 3.16 и 5.10).


Рис. 3–1. Первичная и вторичная энергия


В настоящее время объемы потребления первичного биотоплива намного превышают объем потребления вторичного биотоплива. По оценкам 1БЛ_в мировом потреблении первичной энергии биомасса составляет около 10 % (—1200 млн тонн нефтяного эквивалента) из них около 750 млн тонн используется в виде дров для приготовления еды и обогрева. Тогда как более современные методы использования биомассы, включая жидкие биотоплива, сжигание биомассы на ТЭЦ и т. д., потребляют около 460 млн тонн. В слаборазвитых странах (Танзания) первичное биотопливо составляет до 89 % от всего объема производства первичной энергии.


Биотоплива 1-го, 2-го, 3-го и 4-го поколения

Наиболее стройная система классификации вторичного биотоплива (по определению FAO) была предложена Biofuels Digest. В данной системе учитывается как конкуренция с производством продуктов питания, так и сокращение промежуточных этапов в производстве топлива. Система аналогична системе классификации в работе Dragone et al., 2010 за исключением 4-го поколения биотоплива отсутствующего у Dragone.


Рис. 3–2. Классификация биотоплив по системе Dragone et al., 2010 [3-55].


Первое поколение биотоплива

Биотоплива произведенные путем переработки пищевых сельскохозяйственных растений в биодизель или этанол используя трансэстерификацию или брожение, или путем смешивания растительных масел с ископаемым топливом, или используя чистое растительное масло в качестве топлива.


Второе поколение

Биотопливо, произведенное на землях непригодных для производства продукта питания и с использованием непищевых культур, или произведенное из остатков от производства продуктов питания. Включает в себя технологии производства этанола из целлюлозы, биотопливо из ятрофы, Фишер-Тропш и другие способы газификации биомассы.


Третье поколение

Биотопливо, произведенное на землях непригодных для сельского хозяйства с использованием интегрированных технологий, в ходе которых производится либо само биотопливо, либо предшественник биотоплива, но при этом требующее разрушения биомассы. Типичный пример технологии – это производство биотоплива с использованием микроводорослей накапливающих в себе липиды, но требующее разрушения клеток водорослей, затем экстракции липидов и их трансформации в биодизельное топливо.


Четвертое поколение

Биотопливо, произведенное на землях непригодных для сельского хозяйства и не требующее разрушения биомассы. Примером такой технологии является производство алканов (основных компонентов моторного топлива) генетически модифицированным цианобактериями в ходе фотосинтеза из углекислого газа. При этом происходит секреция алканов с среду, а сами цианобактерии могут продолжать синтез.


Обычное биотопливо и Передовое биотопливо

Также могут использоваться другие системы классификации. International Energy Agency_использует разделение на conventional (обычное) и advanced (передовое или продвинутое) биотопливо. Обычное биотопливо производится по существующим технологиям в промышленном масштабе (биоэтанол из кукурузы и сахарного тростника, биодизель и т. д.), продвинутое биотопливо включает в себя виды биотоплива находящиеся на ранней стадии развития такие как этанол из целлюлозного сырья, «biomass-to-liquids (BTL) diesel», «bio-derived synthetic natural gas (bio-SNG)» и т. д. Нужно отметить, что это определение отличается от определения “Advanced Biofuels” принятого в американском законодательстве, где оно обозначает биотопливо приводящее к снижению выбросов парниковых газов более чем на 50 % по сравнению с ископаемым топливом и включающего в себя этанол из сахарного тростника.

3.1. Поколения растительных биотоплив [3-36]

После мирового энергетического кризиса в начале семидесятых годов ХХ столетия в мире возник интерес к возобновляемым источникам энергии, в частности к биотопливу. Первая причина – озабоченность запасами невозобновляемого углеводородного сырья и ростом цен на него. Вторая – попытка стран – импортёров нефти уменьшить зависимость от стран-производителей. Третья – необходимо улучшить экологическую ситуацию. Четвертая – нужно поддержать сельское хозяйство, демпфируя перепроизводство зерновых.[3-37].

Технологии производства биотоплива, в отличие от других альтернативных технологий (использования энергии Солнца, ветра, приливов, геотермальных источников, водорода), могут давать дополнительный выигрыш при эксплуатации биосферы, в том числе повышать эффективность сельского хозяйства и лесного комплекса. Биоэтанол производится из сахарного тростника, багассы, свеклы или отходов свекловичного производства– мелассы, кукурузы, пшеницы, картофеля, соломы, шелухи, опилок – в общем, из любого сырья, которое содержит крахмал или сахар.

Биодизель – это моноэифры жирных кислот – из органических отходов, в частности древесных, можно получать газ – синтез-газ методом пиролиза – разложения органических веществ под действием температуры без доступа воздуха, с ограниченным доступом кислорода.

Биогаз можно получать путем метанового брожения куриного помета или навоза или других жидких отходов растительного и животного происхождения, осадков сточных вод, твердых бытовых отходов, причем побочный продукт этого процесса – отличные удобрения. Наконец, из отходов лесопиления и деревообработки можно под высоким давлением делать так называемые пеллеты (маленькие цилиндрические брусочки), которые охотно используются в Германии, Австрии и скандинавских странах в специальных котлах для отопления домов. Выход тепла у них почти в два раза больше, чем у обычных дров, а места они занимают намного меньше.[3-37]

Из этих технологий наибольшее распространение в мире получили биоэтанол, биодизель и биогаз.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации