Электронная библиотека » Иэн Стюарт » » онлайн чтение - страница 5


  • Текст добавлен: 23 декабря 2015, 16:20


Автор книги: Иэн Стюарт


Жанр: Зарубежная прикладная и научно-популярная литература, Зарубежная литература


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 25 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

Это свойство алгебры очень существенно влияет на геометрические построения, сделанные при помощи линейки и циркуля. Любое подобное построение, каким бы сложным оно ни было, состоит из последовательности простых шагов. Каждый шаг дает новые точки в местах, где пересекаются две прямые, две окружности или прямая и окружность. Каждая из этих прямых и окружностей определяется ранее построенными точками. Переводя геометрию на язык алгебры, можно доказать, что алгебраическое уравнение, соответствующее пересечению двух прямых, обязательно линейное, а пересечению прямой и окружности или двух окружностей – квадратное. Причина в том, что уравнение окружности содержит x², но не содержит более высоких степеней x. Поэтому каждый отдельный этап построения соответствует решению уравнения первого или второго порядка, не выше.

Более сложные построения представляют собой последовательности этих базовых операций. Некоторое количество алгебраических преобразований позволяет нам сделать вывод, что каждая координата любой точки, которую можно получить геометрическим построением при помощи линейки и циркуля, является решением полиномиального уравнения с целыми коэффициентами, степень которого представляет собой одну из степеней двойки. Это значит, что степень уравнения должна быть равна одному из чисел 1, 2, 4, 8, 16 и т. д.{9}9
  Строго говоря, многочлен, о котором идет речь, должен иметь целые коэффициенты и быть несокращаемым (т. е. не являться произведением двух многочленов меньших степеней с целыми коэффициентами). Степень многочлена, равная степени двойки, – необходимое, но не достаточное условие для существования построения при помощи циркуля и линейки. Если степень не равна степени двойки, построение существовать не может. Если равна, то для решения вопроса о его существовании необходим дальнейший анализ.


[Закрыть]
Это необходимое условие существования такого построения. При должном старании из него можно извлечь точную характеристику, которой должен обладать правильный многоугольник, чтобы его можно было построить. Внезапно из сложной геометрической паутины появляется на свет аккуратное алгебраическое условие, причем применимое к любому построению. Необязательно даже знать, что при этом строится: достаточно, чтобы при построении использовались только линейка и циркуль.

Гаусс был знаком с этой элегантной идеей. Он знал также (к такому выводу пришел бы любой компетентный математик), что вопрос о том, какой правильный многоугольник можно построить при помощи линейки и циркуля, сводится к частному случаю, в котором многоугольник имеет простое число сторон. Чтобы понять, почему так происходит, представьте себе составное число, к примеру 15, т. е. 3 × 5. Любое гипотетическое построение правильного 15-угольника автоматически даст нам правильный же треугольник (возьмите каждую пятую вершину) и пятиугольник (каждую третью), как на рис. 6. Приложив еще немного усилий, можно так скомбинировать построения для трех– и пятиугольников, чтобы получить в результате 15-угольник{10}10
  Обратное тоже верно: данные построения для правильных трех– и пятиугольников можно получить из построения 15-угольника. Идея в том, что 2/5 − 1/3 = 1/15. В отношении простых степеней есть один тонкий момент. Эти рассуждения не позволяют построить, скажем, девятиугольник, хотя построение для простых делителей числа (а именно треугольника) существует. Гаусс доказал, что для нечетных простых чисел, возведенных в степень больше 1, построение невозможно.


[Закрыть]
. Числа 3 и 5 – простые, и к ним приложима та же общая идея. Так что Гаусс сосредоточился на многоугольниках с простым числом сторон и задался вопросом о том, на что похоже нужное уравнение. Ответ оказался удивительно изящным. Так, построение правильного пятиугольника эквивалентно решению уравнения x5 − 1 = 0. Замените 5 любым другим простым числом – и соответствующее утверждение тоже будет истинным.

Степень этого многочлена – 5, и это не степень двойки, о которой я говорил; тем не менее построить правильный пятиугольник можно. Гаусс быстро определил, почему: это уравнение раскладывается на две части – первого и четвертого порядка. И 1, и 4 являются степенями двойки; оказывается к тому же, что ведущую роль здесь играет уравнение четвертой степени. Чтобы понять, почему нам следует связать это уравнение с геометрией, придется привлечь новый тип числа, который обходит вниманием школьная математика, но без которого на любом более высоком уровне не обойтись. Речь идет о комплексных числах; их определяющим свойством является то, что в системе комплексных чисел из −1 можно извлечь квадратный корень.



Обычное «действительное» число может быть положительным и отрицательным, но его квадрат в том и другом случае положителен, так что −1 не может быть квадратом какого бы то ни было действительного числа. В некоторых случаях это сильно мешает; математики даже изобрели новый тип «воображаемого», или «мнимого», числа, квадрат которого равен −1. Нужно было как-то обозначить это новое число, для чего воспользовались первой буквой слова imaginary (воображаемый) – i. Обычные алгебраические операции – сложение, вычитание, умножение, деление – привели к возникновению комбинаций действительных и мнимых чисел, таких как 3 + 2i. Такие числа называют комплексными, что вовсе не означает «сложные», а просто указывает на то, что они состоят из двух частей: 3 и 2i. Если действительные числа располагаются на известной числовой прямой, как числа на линейке, то комплексные числа лежат на числовой плоскости, на которой мнимая ось располагается под прямым углом к действительной, а вместе они образуют систему координат (см. рис. 7, слева).

Уже 200 лет математики считают комплексные числа фундаментальной концепцией своей науки. Мы сегодня признаем, что логически комплексные числа имеют ту же основу, что и более знакомые «действительные» – ведь те тоже, подобно всем математическим структурам, представляют собой абстрактное понятие, а не реальную физическую вещь. Комплексные числа широко использовались еще до Гаусса, но их статус оставался неясным, пока Гаусс и другие математики не сорвали с них завесу тайны, раскрыв неожиданную и парадоксальную причину их привлекательности: несмотря на загадочность и неясный смысл, комплексные числа ведут себя гораздо лучше действительных. Они внесли недостающую составляющую, которой не хватало действительным числам, – обеспечили любому алгебраическому уравнению полный набор решений.

Простейший пример – квадратные уравнения. Одни из них имеют по два действительных решения, другие – не имеют ни одного. К примеру, решениями уравнения x² − 1 = 0 являются 1 и −1, а уравнение x² + 1 = 0 решений не имеет. Промежуточное положение занимает x² = 0, единственное решение которого равно 0, но в некотором смысле это единственное решение «повторяется дважды»{11}11
  Чтобы разобраться в этом утверждении, разложим квадратный многочлен на линейные множители. Тогда x² − 1 = (x + 1) (x − 1), что равно нулю, если любой из множителей равен нулю, так что x = 1 или x = −1. Те же рассуждения можно применить к x² = xx: это равно нулю, если нулю равен один из множителей. В данном случае они совпадают, но наличие двух множителей x отличает этот случай от чего-нибудь вроде x (x − 1), где множитель x один. При ответе на вопрос о том, сколько решений имеет алгебраическое уравнение, подобную «множественность» лучше учитывать.


[Закрыть]
. Если же мы разрешим комплексные решения, то окажется, что x² + 1 = 0 тоже имеет два решения: i и – i. Гаусс не стеснялся пользоваться комплексными числами; мало того, его докторская диссертация содержала первое логически безупречное доказательство фундаментальной теоремы алгебры: число комплексных решений любого полиномиального уравнения (если корректно посчитать кратные корни) равняется степени уравнения. Поэтому квадратные уравнения (второй степени) всегда имеют по два комплексных решения, кубические (третьей степени) – по три и т. д.

Уравнение x5 − 1 = 0, определяющее, как я уже сказал, правильный пятиугольник, – это уравнение пятой степени, поэтому и комплексных решений у него пять. Действительное решение одно: x = 1. Где же остальные четыре? Они представляют собой четыре вершины правильного пятиугольника на комплексной плоскости, притом что x = 1 – это пятая вершина (см. рис. 7, справа). Это соответствие – удачный пример математической красоты: элегантная геометрическая фигура становится элегантным уравнением.



Вспомним, однако, о том, что эти пять точек являются решениями уравнения пятой степени, а 5 – это не степень двойки. Но, как уже говорилось, уравнение пятой степени раскладывается на две части со степенями 1 и 4; эти части называют его неприводимыми делителями.

x5 − 1 = (x1) (x4 + x3 + x2 + x + 1).

(«Неприводимость» означает, что у этих многочленов уже нет делителей, как у простых чисел.) Первый делитель дает единственное действительное решение x = 1. Второй делитель дает четыре комплексных решения – и четыре вершины пятиугольника. Так что с комплексными числами все выглядит гораздо разумнее и элегантнее.


Часто сложно понять, каким путем математики прошлого приходили к новым открытиям, потому что в те времена было принято представлять только конечный результат размышлений и оставлять в стороне все ошибочные шаги, которые были сделаны в ходе исследования. Эта проблема часто осложняется и тем, что естественный ход мысли в прошлом выглядел иначе, чем сегодня. Гаусс, в частности, широко известен своей склонностью заметать следы и публиковать только конечный, тщательно отшлифованный анализ. Однако в том, что касается исследований Гаусса по построению 17-угольника, материала у нас достаточно: окончательная публикация содержит достаточно ценных указаний.

Его отправная точка новизной не отличалась. И до Гаусса кое-кто из математиков понимал, что приведенный выше анализ правильных многоугольников работает в общем случае. Построение многоугольника с числом сторон n эквивалентно решению уравнения xⁿ − 1 = 0 в комплексных числах. Более того, этот многочлен раскладывается на два многочлена вида

(x1) (xn−1 + xn−2 + … + x2 + x + 1).

Опять же первый множитель дает действительное решение x = 1, а остальные n − 1 решений получаются из второго множителя. Если n нечетное, все они комплексные; если n четное, одно из них становится вторым действительным решением x = −1.

Однако Гаусс заметил то, что просмотрели все остальные: иногда второй делитель можно выразить через несколько квадратных уравнений. Не представить в виде произведения более простых множителей, поскольку это невозможно, а решить с использованием уравнений, коэффициенты которых решают другие уравнения. Ключевым фактором – слабым звеном всей задачи – является одно элегантное свойство алгебраических уравнений, возникающее, когда мы решаем их подобным образом одно за другим. Такой расчет всегда эквивалентен решению единственного уравнения, но, как правило, более высокой степени. Повышение степени – цена, которую мы платим за уменьшение количества уравнений. Технически эта процедура может оказаться достаточно сложной и путаной, но одно мы можем предсказать заранее: какая получится степень. Для этого достаточно перемножить степени всех последовательных многочленов.

Если все они квадратные, то результат будет 2 × 2 × … × 2, т. е. степень двойки. Поэтому, если построение существует, n − 1 должно быть степенью двойки. Однако этого условия не всегда достаточно. Если n = 9, n − 1 = 8, а это степень двойки. Но Гаусс выяснил, что для правильного девятиугольника построения не существует, поскольку 9 – не простое число{12}12
  При n = 9 второй множитель будет
x8 + x7 + x6 + x5 + x4 + x3 + x2 + x + 1.  Но он и сам является составным: он равен
(x2 + x + 1) (x6 + x3 + 1).  Гауссова характеристика чисел, допускающих построение, требует, чтобы степень каждого несократимого множителя была степенью 2. Но степень второго множителя – 6 – не является степенью 2.


[Закрыть]
. А как насчет следующего шага, на котором мы решаем систему из четырех квадратных уравнений? Степень n − 1 соответствующего объединенного уравнения равна 2 × 2 × 2 × 2 = 16. Тогда n = 17, а это простое число.

К этому моменту Гаусс, вероятно, уже понял, что наткнулся на что-то интересное, но оставался еще один технический момент, который вполне мог все испортить. Гаусс убедился, что для существования построения правильного многоугольника с простым числом сторон это простое число должно равняться степени двойки плюс 1. Получалось, что это условие необходимо для существования построения: если оно не выполняется, такого построения не существует. Однако вполне могло оказаться, что этого условия недостаточно; в самом деле, существует множество уравнений 16-й степени, которые не сводятся к системе из четырех квадратных уравнений.

Однако был и повод для оптимизма – греческие построения. Какие простые числа там фигурировали? Только три из них: 2, 3 и 5. Все они на единицу больше какой-либо степени двойки, а именно 20 + 1,21 + 1 и 22 + 1. Алгебра, связанная с пятиугольником, дает дополнительную пищу для размышлений. Обдумывая все это, Гаусс доказал, что многочлен 16-й степени, соответствующий правильному 17-угольнику, действительно может быть сведен к системе квадратных уравнений. Поэтому построение правильного 17-угольника при помощи линейки и циркуля обязательно должно существовать. Аналогичным методом удалось доказать, что то же верно для любого случая, когда количество сторон является простым числом, на 1 превосходящим некоторую степень двойки. Вообще, эта идея наглядно свидетельствует, насколько хорошо Гаусс понимал математические закономерности. В основе их лежат некоторые общие теоремы теории чисел, в которые я сейчас не буду вдаваться; замечу только, что все это не случайно и у этих закономерностей существуют серьезные структурные причины. Просто надо быть Гауссом, чтобы их заметить.

Гаусс не составил полного алгоритма такого построения, но вывел формулу для решений уравнения 16-й степени. А имея формулу, можно при большом желании придумать и построение{13}13
  Гаусс доказал, что 17-угольник можно построить, если вы умеете строить отрезки длиной
  Поскольку квадратный корень всегда можно построить, это вполне эффективно решает задачу. Другие математики нашли более очевидные построения. Ульрих фон Гугенин опубликовал первое из них в 1803 г., а Г. Ричмонд в 1893 г. нашел более простое. На рис. 54 возьмем два перпендикулярных радиуса AOP0 и BOC окружности. Пусть OJ = 1/4 OB, а угол OJE = 1/4 OJP0. Найдем F, такое, что угол EJF равен 45°. Построим окружность с диаметром FP0; она пересекается с OB в точке K. Проведем через K окружность с центром в точке E; она пересечет AP0 в точках G и H. Построим в этих точках перпендикуляры к AP0, назовем их HP3 и GP5. Тогда P0, P3, P5 представляют собой соответственно нулевую, третью и пятую вершины правильного 17-угольника. Теперь несложно построить и остальные вершины.


[Закрыть]
. Публикуя свои идеи в «Арифметических исследованиях», он опустил несколько подробностей, но заявил, что обладает полным доказательством. Это грандиозное открытие убедило Гаусса в том, что лучше посвятить жизнь математике, а не языкам. Герцог по-прежнему не оставлял Гаусса без финансовой поддержки, но молодому человеку хотелось чего-то более стабильного. Когда астроном Джузеппе Пиацци открыл первый астероид – Цереру, – ученым удалось провести всего несколько наблюдений, прежде чем новооткрытый мир скрылся в сиянии Солнца. Астрономы тревожились, что не смогут вновь найти его. Проявив чудеса изобретательности и использовав новую методику расчета орбит, Гаусс предсказал, где новооткрытое небесное тело появится вновь, и оказался прав. В результате он получил место профессора астрономии и директора Геттингенской обсерватории и оставался на этом посту до конца своих дней.

Оказалось, что 17 – не единственное новое число такого типа. На сегодня известны еще два подобных числа: 28 + 1 = 257 и 216 + 1 = 65 537. (Еще немного алгебры – и можно показать, что степень двойки, фигурирующая в этом выражении, сама должна быть степенью двойки; в противном случае результат не будет простым.) Однако на 16 эта закономерность прекращается, и 232 + 1 = 4 294 967 297, что равно 641 × 6 700 417, а значит, не является простым числом. Известно, что так называемые числа Ферма 22n + 1 не являются простыми для n = 5, 6, 7, … и так до 32. Известно также, что многие более крупные числа Ферма тоже не простые. Вообще, больше простых чисел Ферма пока не найдено, но вполне возможно, что они все же существуют. Известно построение для правильного 257-угольника. Один математик посвятил много лет поиску построения для 65 537-угольника – правда, эта задача представляется несколько бессмысленной, и, кроме того, в его результатах есть ошибки{14}14
  Ф. Ришло опубликовал построение правильного 257-угольника в 1832 г. Йоханн Хермес посвятил десять лет жизни исследованию 65 537-угольника. Его неопубликованную работу можно найти в Университете Геттингена, но считается, что в ней есть ошибки.


[Закрыть]
.


Итак, основной вывод из проведенного Гауссом анализа состоит в том, что правильный многоугольник может быть построен при помощи линейки и циркуля в том и только том случае, когда число его сторон представляет собой произведение степени двойки и различных нечетных простых чисел Ферма. В частности, правильный девятиугольник так построить нельзя. Из этого сразу следует, что по крайней мере один угол невозможно разделить натрое построением: ведь угол равностороннего треугольника равен 60°, а одна треть такого угла – это 20°. Но, имея такой угол, несложно построить правильный девятиугольник. Следовательно, это невозможно, и общего метода трисекции угла при помощи геометрического построения не существует.

Гаусс, записывая доказательства, опустил немало подробностей, и математики не могли просто так поверить ему на слово. В 1837 г. французский математик Пьер Ванцель опубликовал полное доказательство гауссовой характеризации пригодных для геометрического построения правильных многоугольников и сделал вывод о невозможности трисекции произвольного угла при помощи линейки и циркуля. Он доказал также невозможность построения куба объемом вдвое больше данного (т. е. доказал неразрешимость еще одной древнегреческой задачи, известной как «задача об удвоении куба»).

Причина того, что задачи трисекции угла и удвоения куба оказались неразрешимыми, заключается в том, что задействованные в них длины фигурируют в неприводимых кубических уравнениях – уравнениях третьей степени. Раз 3 не является степенью двойки, это все решает. Однако этот метод, на первый взгляд, не работает для квадратуры круга, причем по достаточно интересным причинам. Круг единичного радиуса имеет площадь π, а сторона квадрата той же площади равна √π. Геометрические построения для квадратного корня существуют, как и построения для квадратов, так что квадратура круга, по существу, сводится к тому, чтобы взять отрезок длиной 1 и построить отрезок длиной π. Конечно, если π является решением неприводимого кубического уравнения – или любого другого неприводимого уравнения, чья степень не является степенью двойки, – то метод Ванцеля доказал бы, что квадратура круга невозможна.

Однако никто не слышал ни об одном алгебраическом уравнении, решением которого было бы в точности π, не говоря уж об уравнении степени, не являющейся степенью двойки. Приближенное значение 22/7 удовлетворяет уравнению 7x − 22 = 0, но на самом деле эта дробь немного больше π, так что это никак нам не поможет. Если бы можно было доказать, что такого уравнения не существует, – а многие подозревали, что так оно и есть, поскольку если бы уравнение существовало, то его бы нашли, – то из этого следовала бы и невозможность решения задачи квадратуры круга. К несчастью, никто не мог доказать, что такого уравнения не существует. Алгебраический статус π пребывал в состоянии неопределенности. В конце концов этот вопрос все же удалось решить, но при помощи методов, далеко выходящих за пределы не только геометрии, но и алгебры.

Чтобы разобраться в существе дела, нам придется начать с более простой концепции. В математике существует важное различие между числами, которые можно точно выразить при помощи дроби p/q, где p и q – целые числа, и числами, которые невозможно выразить таким образом. Первые называются рациональными (поскольку представляют собой отношение, т. е. ratio, целых чисел), а последние – иррациональными. Так, приближенное значение π(22/7) рационально. Существуют и более точные приближения; знаменитое 355/113 соответствует π до шестого знака после запятой. Однако известно, что никакая дробь не может выразить π точно; число π иррационально. Это свойство, о котором математики давно догадывались, первым доказал швейцарский математик Иоганн Генрих Ламберт в 1768 г. Его доказательство основано на хитрой формуле для функции тангенса в тригонометрии, где тангенс выражается в виде цепной (непрерывной) дроби – бесконечного множества обычных дробей{15}15
  Типичная цепная дробь выглядит примерно так:
  Данная конкретная цепная дробь представляет собой начало дроби, представляющей число π.


[Закрыть]
. В 1873 г. Шарль Эрмит нашел более простое доказательство, основанное на аналитических формулах, которое доказало иррациональность не только π, но и π². Так что π помимо всего прочего не является корнем квадратным из какого-то рационального числа.

Ламберт выдвинул и более серьезные гипотезы. В той же статье, где доказывалась иррациональность π, он предположил, что число π трансцендентно, т. е. не является решением никакого полиномиального уравнения с целыми коэффициентами. Оно выходит за рамки алгебраического выражения. Более поздние исследования доказали правоту Ламберта. Сделано это было в два этапа. Разработанный Эрмитом новый метод доказательства иррациональности подготовил площадку, намекнув, что удачной стратегией здесь может оказаться исчисление, а точнее, его более строгая версия – анализ. Но Эрмит развил эту идею дальше и нашел чудесное доказательство трансцендентности другого знаменитого и очень любопытного числа e – основания натуральных логарифмов. Численно e приблизительно равно 2,71828, и, пожалуй, оно еще важнее, чем π. Эрмитово доказательство трансцендентности волшебно, как кролик, с помпой извлекаемый фокусником из цилиндра математического анализа. Сам кролик – это сложная формула, связанная с гипотетическим алгебраическим уравнением, корнем которого, согласно первоначальному предположению, является e. При помощи алгебраических методов Эрмит доказывает, что эта формула эквивалентна некоему ненулевому целому числу. При помощи математического анализа он доказывает, что число это должно лежать между −1/2 и 1/2. Поскольку единственным целым числом в этом интервале является 0, получаем противоречие. Следовательно, предположение о том, что e является решением некоего алгебраического уравнения, неверно, а значит, e трансцендентно.

В 1882 г. Фердинанд фон Линдеман несколько усовершенствовал метод Эрмита и доказал, что если ненулевое число является решением некоего алгебраического уравнения, то e в степени этого числа не является решением никакого алгебраического уравнения. Затем он воспользовался соотношением, известным еще Эйлеру и связывающим π, e и мнимое число i, – знаменитой формулой eiπ = −1. Предположим, что π удовлетворяет некоему алгебраическому уравнению. То же можно сказать и про iπ, а по теореме Линдемана получим, что −1 не удовлетворяет никакому алгебраическому уравнению. Это очевидно неверно: −1 является решением уравнения x + 1 = 0. Единственный выход из этого логического противоречия заключается в том, что π не удовлетворяет никакому алгебраическому уравнению, т. е. π трансцендентно. А это означает, что задача квадратуры круга неразрешима.


Путь от евклидовой геометрии к доказательству Линдемана получился долгим и кружным. Но математики, хоть и через две с лишним тысячи лет, все же добились своего. Однако вся эта история не просто сообщает нам о невозможности квадратуры круга. Это наглядный урок того, как вообще решаются великие математические задачи. Во-первых, математикам потребовалось точно сформулировать, что они имеют в виду, говоря о «геометрическом построении». Им пришлось определить общие черты таких построений и понять, как эти черты ограничивают возможности построений. Для поиска общих свойств потребовалось связать геометрию с другой областью математики – алгеброй. Но при решении алгебраических задач, даже не самых сложных, таких как построение правильных многоугольников, не обойтись без теории чисел. Сложный случай числа π потребовал дополнительных новшеств, и задачу пришлось перенести в еще одну область математики – математический анализ.

Ни один из перечисленных шагов не был простым или очевидным. Уже после того, как основные идеи были высказаны, потребовалось еще около 100 лет, чтобы окончательно доработать доказательство. Математики, бившиеся над этой задачей, были лучшими умами своего времени, а по крайней мере один из них входит в число величайших умов всех времен. Решение подобных задач помимо глубокого понимания математики требует настойчивости и изобретательности. Иногда на это уходят годы сосредоточенных усилий, на первый взгляд, по большей части бесплодных. Но представьте, что чувствует математик, когда его настойчивость приносит плоды, и ему наконец удается расколоть крепкий орешек, над которым человечество билось не один век. Как сказал президент Джон Кеннеди в 1962 г. в одной из речей, посвященных Лунной программе, «мы решили… это сделать… не потому, что это просто, а потому, что это сложно».


Мало что в математике имеет конец, и история числа π – не исключение. И сегодня время от времени появляются поразительные новые открытия, имеющие к нему отношение. В 1997 г. Фабрис Беллар объявил, что триллионная цифра числа π в двоичном выражении – единица. Замечательным это заявление делает не собственно факт. Поразительно то, что он не вычислял ни одной из предыдущих цифр. Он просто извлек одну конкретную цифру, что называется, из воздуха.

Такой расчет оказался возможен благодаря любопытной формуле для π, которую открыли Дэвид Бэйли, Питер Боруэйн и Саймон Плафф в 1996 г. Она может показаться несколько сложноватой, но все же посмотрим:



Большой знак ∑ означает «просуммировать» на заданном диапазоне. Здесь n изменяется от 0 до бесконечности (∞). На самом деле Беллар пользовался формулой, которую вывел сам с использованием аналогичных методов и расчет по которой ведется чуть быстрее:



Ключевая особенность этих формул в том, что многие из используемых в них чисел – 1, 4, 32, 64, 256, а также 24n и 210n – являются степенями двойки, что, конечно, сильно упрощает расчеты в двоичной системе, которая используется для внутренних операций в компьютерах. После этого открытия хлынул целый поток новых формул для π и некоторых других интересных чисел. Рекорд вычисления одиночных двоичных цифр числа π обновляется регулярно: в 2010 г. Николас Ши из Yahoo рассчитал двухквадрильонную двоичную цифру π, которой оказался 0.

При помощи тех же формул можно находить отдельные цифры числа π в арифметических операциях с основаниями 4, 8 и 16. Ни для каких других оснований ничего подобного не известно; в частности, мы не можем вычислять десятичные цифры по отдельности. Существуют ли в принципе такие формулы? До открытия формулы Бэйли – Боруэйна – Плаффа никому даже в голову не приходило, что можно это делать хотя бы в двоичной системе.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 3.2 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации