Текст книги "Стивен Хокинг. Непобедимый разум"
Автор книги: Китти Фергюсон
Жанр: Биографии и Мемуары, Публицистика
сообщить о неприемлемом содержимом
Текущая страница: 2 (всего у книги 31 страниц) [доступный отрывок для чтения: 10 страниц]
К произвольным элементам относятся такие “природные константы”, как масса и заряд электрона и скорость света. Мы знаем их по наблюдениям, но ни одна теория не способна объяснить эти величины или предсказать их. Другой пример: физикам известна сила электромагнитного поля и слабых ядерных взаимодействий. Теория электрослабых взаимодействий включает оба явления, но не объясняет, как вычислить разницу между этими двумя силами. Эта разница сил – “произвольный элемент”, теория бессильна предсказать его. Физики наблюдают разницу и попросту вставляют ее в теорию “вручную”, но, конечно же, видят в этом изъян, недостаток научной стройности.
Предсказание в физике не означает обращенное в будущее пророчество. Задавая вопрос, предсказывает ли та или иная теория скорость света, физик не подразумевает, что теория должна угадать, какова будет скорость света в ближайший вторник. Ученый хочет знать, сумели бы мы, опираясь на эту теорию, вычислить скорость света, если бы не было возможности замерить эту скорость в наблюдении. Так вот, ни одна из ныне признанных теорий не предсказывает скорость света. Это – произвольный элемент во всех физических теориях.
Когда Хокинг взялся за “Краткую историю времени”, он хотел, помимо прочего, прояснить и сам термин “теория”. Теория – это не истина с большой буквы, не правило, не факт, не последнее и окончательное слово в науке. Теория – словно игрушечный кораблик: чтобы проверить, поплывет ли он, нужно спустить кораблик на воду. Опускаем осторожно, смотрим – если наш кораблик тонет, вытаскиваем его из воды и что-то в нем переделываем или же вовсе строим новый, учитывая полученные в этом опыте знания.
Некоторые теории оказываются хорошими корабликами, они долго держатся на воде. Кое-где в них имеются течи, и ученые об этом знают, но для практических целей и такие кораблики сойдут. Некоторые теории служат нам так хорошо, так убедительно подтверждаются опытом, экспериментами, что мы начинаем принимать их за истину. Правда, сами ученые, зная, как сложна и полна неожиданностей наша вселенная, не спешат произносить слово “истина”. Пусть одни теории подкреплены множеством экспериментов, а другие остаются лишь прекрасными чертежами в умах физиков – великолепно задуманные суда, так и не испытанные на воде, – опасно принимать любую из них за абсолютную, фундаментальную, научную “истину”.
С другой стороны, нельзя и колебаться вечно, бесконечно перепроверять надежные теории, если не появилось новых причин усомниться в них. Для развития науки необходимо отобрать среди теорий те, на которые можно положиться, которые в достаточной мере соответствуют данным наблюдений, и, начав строительство с этих блоков, продвигаться дальше. Разумеется, в какой-то момент появятся новые идеи или открытия и попытаются затопить нашу лодку. О том, как это происходит, мы расскажем позднее.
В “Краткой истории времени” Стивен Хокинг дал такое определение научной теории: “Это всего лишь модель вселенной или какой-то ее ограниченной части и набор правил, соотносящих количественные данные этой модели с нашими наблюдениями. Модель существует только у нас в головах и не обладает иной реальностью (что бы ни означало это слово)”[3]3
Hawking S. A Brief History of Time: From the Big Bang to Black Holes. New York: Bantam, 1988. p. 9.
[Закрыть]. Проще всего понять это определение, обратившись к конкретным примерам.
Сохранилась короткая видеозапись, предположительно начала 1980-х: Хокинг через ассистента читает студентам лекцию. К этому времени речь Хокинга была уже настолько затруднена, что его понимали только самые близкие люди. В этом фильме аспирант “переводит” невнятную речь Хокинга – мы слышим: “Мы прихватили на это занятие модель вселенной”, – и водружает на стол большой картонный цилиндр. Хокинг хмурится, бормочет что-то, понятное одному лишь ассистенту, и тот, извиняясь, хватает цилиндр и переворачивает его. Хокинг одобрительно кивает, студенты хохочут.
Разумеется, модель вселенной – не картонный цилиндр, не рисунок, который мы могли бы разглядеть или пощупать. Это мысленный образ, а то и рассказ – математическое уравнение или миф о творении.
В каком смысле картонный цилиндр мог представлять вселенную? Чтобы извлечь из него полноценную теорию, как фокусник извлекает из цилиндра кролика, Хокингу пришлось бы объяснить связь этой модели с тем, что мы видим вокруг, с “данными наблюдений” или с теми данными, которые мы могли бы получить, располагай мы более точной аппаратурой для наблюдений. И даже если кто-то поставит на стол картонный цилиндр и объяснит его связь с реальной вселенной, мы еще не обязаны признать этот цилиндр единственной моделью вселенной. Никто не заставляет нас доверчиво глотать любые теории: сперва нужно присмотреться и разобраться. Это всего лишь идея, существующая “только у нас в голове”. Может быть, этот картонный цилиндр и годится в модели, а может быть, найдутся факты, противоречащие такой теории. Возможно, мы убедимся, что правила игры, в которую мы вовлечены, в чем-то отличаются от правил, подразумеваемых этой картонной моделью. Означает ли это, что нам предложили “плохую” теорию? Нет, вполне вероятно, что для своего времени это была очень даже хорошая теория, и пока ученые разбирались с ней, проверяли, что-то в ней меняли или опровергали ее, они многому успели научиться. И для того чтобы покончить с этой теорией, понадобились новый подход, эксперименты, открытия, в результате которых сложилась новая, более удачная теория или же эта работа окупилась каким-то иным образом.
По каким же критериям оценивается, насколько “хороша” теория? Процитируем вновь Хокинга: она должна “точно описывать целый класс наблюдений на основании модели, содержащей не слишком много произвольных элементов, и должна с определенностью предсказывать результаты будущих наблюдений”[4]4
Ibid.
[Закрыть].
Например, теория всемирного тяготения Ньютона охватывает огромный класс наблюдений. Она предсказывает как поведение объектов, падающих на Землю, так и движение планет по их орбитам.
Однако следует учесть, что хорошая теория рождается не только из наблюдения – это может быть шальная догадка, подвиг воображения. “Способность к скачкам воображения – дар, необходимый физику-теоретику”, – утверждает Хокинг[5]5
Professor Hawking’s Universe. BBC broadcast, 1983.
[Закрыть]. Тем не менее хорошая теория не должна противоречить уже известным данным наблюдений, разве что к ней прилагается убедительное объяснение, почему этими наблюдениями можно пренебречь. Так, теория суперструн, одна из самых интересных современных теорий, предсказывает существование более трех пространственных измерений, и это со всей очевидностью противоречит тому, что мы видим собственными глазами. Теоретики предлагают объяснение: дополнительные измерения свернуты и потому недоступны нашему зрению.
Что подразумевает второе требование Хокинга – ограничить число произвольных элементов в теории, – нам уже известно.
И последнее требование: хорошая теория должна предсказывать результаты будущих наблюдений. Она бросает ученым вызов: проверьте меня в эксперименте! Она говорит нам, что́ мы увидим, если эта теория верна. Она также подскажет нам, какие наблюдения смогут опровергнуть эту теорию, если она окажется неверной. Например, общая теория относительности Альберта Эйнштейна предсказывает искривление световых лучей дальних звезд при прохождении мимо тел, обладающих большой массой, – например, мимо Солнца. Это предсказание можно проверить, и проверка подтвердила правоту Эйнштейна.
Некоторые теории, в том числе большинство теорий Стивена Хокинга, не поддаются проверке с помощью современных технологий. Может быть, подходящих технологий не создадут и в будущем. Тем не менее эти теории проверяются – математически. Они должны математически соответствовать тому, что нам известно и что мы наблюдаем. Однако ранние стадии формирования вселенной нам наблюдать не дано, и нет прямых данных за или против гипотезы об отсутствии граничных условий (о ней мы поговорим в дальнейшем). Кое-какие тесты для доказательства или опровержения существования “кротовых нор” предлагались, но сам Хокинг сомневался в результативности этих проверок. Зато он поведал нам, что мы обнаружим, если когда-нибудь обзаведемся нужной технологией, и он убежден, что его теории не противоречат уже имеющимся данным. В некоторых случаях он отваживался предсказывать вполне конкретные результаты опытов и наблюдений, которые должны раздвинуть границы нынешних наших возможностей.
Если вселенная едина и гармонична, то граничные условия при возникновении вселенной, элементарные частицы и управляющие ими силы, физические константы – все взаимосвязано и полностью совпадает и подчиняется единому закону, неизбежному, абсолютному и самоочевидному. Достигни мы такого уровня понимания, мы бы действительно открыли теорию всего, абсолютно всего, вероятно, получили бы даже ответ на вопрос, почему вселенная устроена именно таким образом. Проникли бы в “замысел Бога”, как формулирует Хокинг в “Краткой истории времени”, в “Высший замысел”, как он выражается в недавней книге, именно так и озаглавленной.
Перчатка БрошенаА теперь перечислим задачи, стоявшие перед любым кандидатом на теорию всего в 1980 году, когда Хокинг читал вступительную лекцию в качестве Лукасовского профессора. С тех пор – об этом мы еще будем говорить – некоторые требования из этого списка слегка видоизменились. Итак, теория-кандидат должна:
• Объединять частицы и силы.
• Описывать граничные условия вселенной, ее состояние на момент “ноль”, когда все только началось и не прошло еще ни мгновения.
• Быть “ограничительной”, не допускать слишком много вариантов. (Например, она должна точно предсказать количество существующих видов частиц. Если теория допустит существование разных путей развития вселенной, ей придется объяснить, почему в итоге мы получили именно такую вселенную, а не какую-либо иную.)
• Содержать не слишком много произвольных элементов. (Она не должна вынуждать нас чересчур часто обращаться за ответами к вселенной как она есть. Парадокс: сама теория всего может оказаться произвольным элементом. Большинство ученых не рассчитывают, что теория всего разъяснит саму себя: почему она существует и почему именно в таком виде, а также почему существует все то, что она призвана описать. Вряд ли она ответит на вопрос Стивена Хокинга: “Почему вселенная [или в данном случае теория всего] вообще не погнушалась существовать?”[6]6
Hawking S. A Brief History of Time. p. 174.
[Закрыть])
• Предсказывать вселенную, похожую на ту, что нам известна, или убедительно объяснять, почему мы видим одно, а “на самом деле” тут другое. (Если теория предсказывает скорость света десять километров в час или не допускает существования пингвинов – или пульсаров, – возникает серьезная проблема. Теория всего должна выдержать проверку всем, что мы наблюдаем.)
• Быть простой и в то же время допускать невероятную сложность устройства мира. Принстонский физик Джон Арчибальд Уилер писал:
Самые мощные теории – такие как теория всемирного тяготения Ньютона или теории относительности Эйнштейна – просты именно в том смысле, о котором пишет Уилер.
Всеохватывающая теория должна каким-то образом примирить общую теорию относительности Эйнштейна (которая объясняет явления гравитации) с квантовой механикой (которую мы успешно применяем, обсуждая остальные три силы). Стивен Хокинг ответил на этот вызов. Проблему мы обозначили, а суть ее вы лучше поймете, когда прочитаете в этой главе о принципе неопределенности в квантовой механике, а далее – об общей теории относительности.
Теории встречаютсяТеория относительности Эйнштейна описывает самые крупные объекты во вселенной – звезды, планеты, галактики. Она замечательно объясняет работу гравитации на этом уровне.
Квантовая механика описывает самые малые объекты. В этой теории силы природы предстают в виде сообщений, которыми обмениваются фермионы, частицы материи. И еще в квантовой механике присутствует сводящий с ума принцип неопределенности: мы не можем одновременно с точностью установить позицию частицы и ее количество движения (как она движется). Несмотря на этот изъян, квантовая механика прекрасно справляется со своей задачей – объяснять явления на уровне бесконечно малых.
Объединить две великие теории ХХ века в одну можно было бы, например, объяснив гравитацию – более успешно, чем это удавалось до сих пор – как сообщения, которыми обмениваются фермионы (так мы объясняем остальные три силы). Другой вариант объединения – переосмыслить общую теорию относительности в свете принципа неопределенности.
Объяснить гравитацию как работу частиц-вестников не получается. Если попытаться описать силу, удерживающую нас на Земле, в виде обмена гравитонами (частицами-вестниками гравитации) между частицами вещества нашего тела и частицами вещества, из которого состоит Земля, то вроде бы получается квантово-механическая версия теории всемирного притяжения. Однако этим гравитонам тоже придется обмениваться гравитонами, и математически выйдет довольно неопрятно: мы уходим в бесконечность, в математическую бессмыслицу.
Бесконечность не вмещается в физическую теорию. Когда бесконечность все-таки пролезает в теорию, физики прибегают к “перенормировке”. Ричард Фейнман использовал перенормировку, создавая теорию для объяснения электромагнитных сил, но его это нисколько не радовало. “Словцо-то умное, – писал он, – но уловка безумная”[8]8
Feynman, p. 128.
[Закрыть]. Для перенормировки приходится добавлять в уравнения другие бесконечности, а потом сокращать старые и новые. Выглядит сомнительно, хотя на практике вроде бы работает: в результате складываются теории, вполне согласующиеся с практикой.
Перенормировка выручила при создании теории электромагнетизма, но с гравитацией она справиться не помогает. Бесконечности, пролезающие в теорию гравитации, куда упорнее и противнее, чем электромагнетические: раз появившись, они уже не уходят. В ХХ веке большие надежды были связаны с теорией супергравитации, которую Хокинг упоминал в своей Лукасовской лекции, и с теорией суперструн, представляющей основные объекты вселенной в виде не точек-частиц, но скорее струн или струнных петель. В этой книге мы расскажем о еще более многообещающих прорывах последних лет. Но полностью решить проблему так и не удалось.
А что произойдет, если допустить квантовую механику в область крупных объектов, туда, где безраздельно царит сила всемирного притяжения? Что получится, если пересмотреть объяснение гравитации, предлагаемое общей теорией относительности, в свете того, что нам известно о принципе неопределенности, согласно которому невозможно одновременно точно замерить и положение частицы, и ее движение? Хокинг подошел к проблеме именно с этой стороны и получил парадоксальные результаты: черные дыры оказались белыми, а основным граничным условием оказалось отсутствие граничных условий.
И раз мы взялись перечислять парадоксы, вот еще один: пустое пространство не пусто. Позднее мы обсудим, как ученые пришли к такому выводу, а пока лишь скажем, что из принципа неопределенности следует: пустое якобы пространство кишит частицами и античастицами. (Полагаю, по научной фантастике всем знакомы понятия материи и антиматерии.)
Общая теория относительности предсказывает искривление пространства-времени в присутствии материи или энергии. Один из примеров такого искривления мы уже приводили: лучи света далеких звезд отклоняются от своего пути, когда проходят мимо массивных объектов вроде Солнца.
Обратите внимание на эти два пункта: 1) “пустое” пространство заполнено частицами и античастицами, а значит, и огромным количеством энергии; 2) присутствие этой энергии вызывает искривление пространства-времени.
Если оба пункта верны, вселенная должна была свернуться в крошечный мячик. Такого не произошло. То есть при одновременном использовании общей теории относительности и квантовой механики их предсказания, по-видимому, оказываются совершенно неправильными. Обе эти теории сами по себе очень удачны, каждая из них стала плодом замечательных научных достижений ХХ века. Они годятся не только для умозрительных построений, но и для решения многих практических задач. И тем не менее в совокупности они порождают бесконечности и бессмыслицу. Теория всего должна каким-то образом извлечь из этой бессмыслицы смысл.
Предсказание в подробностяхВообразите себя вновь инопланетянином, незнакомым с нашей вселенной. Теория всего позволит вам предсказывать любые события в ней… так или не так? Понятно, что вы сможете предсказать существование солнц и планет, галактик и черных дыр. Но сможете ли вы предсказать победителя на следующем Дерби? Насколько подробным будет предсказание? Скорее всего, не очень подробным.
Чтобы обработать все данные вселенной, понадобился бы компьютер, во много раз превосходящий мощностью все те, что мы в состоянии хотя бы представить. Хокинг напоминал, что, пусть мы и умеем решать уравнения движения двух тел согласно теории всемирного притяжения, уже уравнение с тремя телами не поддается точному решению – не потому, что для трех тел перестает действовать теория Ньютона, а потому, что слишком усложняются сами вычисления. А в реальной вселенной тел несколько больше трех.
Мы не можем предсказать состояние своего здоровья, хотя и понимаем основные принципы медицины, химии и биологии. И здесь тоже проблема в том, что в реальной системе – даже если это всего-навсего система одного человеческого тела – чересчур много элементов, миллиарды и миллиарды.
Даже создав теорию всего, мы не научимся делать всеохватывающие прогнозы. Даже если основные принципы окажутся простыми и понятными, работают они весьма сложным образом. “Выучишь за минуту, совершенствуешься всю жизнь вселенной”, перефразируя слоган очередной игры. Но эту игру не осилить и за множество жизней вселенной[9]9
Слоган игры “Отелло”: “Выучишь за минуту, совершенствуешься всю жизнь”.
[Закрыть].
Что из этого следует? Теория всего могла бы предсказать, какая лошадь выиграет кубок в следующем году, но ни один компьютер не вместит данные и не осилит вычисления, которые необходимы для такого предсказания. Так, что ли?
Есть и другая проблема. Вернемся вновь к принципу неопределенности в квантовой механике.
Беспорядок бесконечно малыхВ царстве бесконечно малых, на квантовом уровне вселенной, нашу способность предсказывать ограничивает принцип неопределенности.
Подумайте о странных, вечно занятых обитателях квантового мира – фермионах и бозонах. Прямо-таки зоопарк частиц. Среди фермионов значатся электроны, протоны, нейтроны, каждый протон и каждый нейтрон состоит из трех кварков-фермионов. А еще бозоны: фотоны (вестники электромагнитных сил), гравитоны (представители силы всемирного тяготения), глюоны (сильные взаимодействия), W и Z (слабые взаимодействия). Хотелось бы знать, где все эти господа и другие им подобные находятся, куда несутся и с какой скоростью. Возможно ли это установить?
Рис. 2.1. В резерфордовской модели ядра гелия электроны вращались вокруг ядра, как планеты вокруг Солнца. Теперь мы знаем, что в силу принципа неопределенности орбиты планет нельзя прочертить так отчетливо, как в этой схеме.
На рисунке 2.1 изображен атом, каким его представил Эрнест Резерфорд в Лаборатории Кавендиша в начале ХХ века. На этом рисунке электроны кружат вокруг ядра, как планеты вокруг Солнца. Теперь нам известно, что на квантовом уровне все происходит несколько иначе. Орбиты электронов нельзя представлять себе в виде планетарных орбит. Точнее было бы сказать, что они окружают ядро облаком или ульем. Почему эта картинка размыта?
Принцип неопределенности превращает жизнь на квантовом уровне в беспорядок и неопределенность – так живут не только электроны, но и все остальные частицы. Как бы внимательно мы ни наблюдали за ними, невозможно одновременно зафиксировать и положение частицы, и характер ее движения. Чем точнее мы измеряем движение, тем менее точно знаем положение частицы, и наоборот. Словно дети на качелях: когда точность одного параметра взмывает вверх, точность другого параметра идет на понижение. Чтобы сделать одно точное измерение, придется соглашаться с возрастающей неопределенностью другого.
Чтобы описать движение частицы, приходится рассмотреть все возможные варианты ее движения, а затем вычислить вероятность каждого из этих вариантов. Так мы вступаем в область вероятностей. С такой-то вероятностью частица движется туда, с такой-то вероятностью – сюда. И все же это весьма ценная информация.
Немного смахивает на попытки предсказать результаты выборов. Эксперты виртуозно работают с данными опросов. Обрабатывая достаточно большие числа, они получают статистические таблицы, позволяющие предсказать, кто и с каким отрывом победит на выборах, – при этом вовсе не требуется знать, как именно проголосует каждый избиратель. Так и квантовая физика: если рассмотреть множество вариантов движения частиц, то вероятность, что они движутся так-то и так или что находятся скорее в том месте, чем в этом, превращается в конкретную информацию.
Эксперты по выборам учитывают, что опрос может повлиять на голосование: отвечая на вопросы, избиратель начинает задумываться над последствиями своего решения. Такая же дилемма стоит и перед физиками, когда они проникают на квантовый уровень: их вмешательство отражается на полученных ими результатах.
До сих пор сравнение результатов выборов и жизни частиц работало, но дальше придется от него отказаться: в день выборов каждый гражданин подаст свой голос либо “за”, либо “против”. Его голос будет сохранен в тайне, и тем не менее это вполне конкретное решение. Если бы эксперты разместили в кабинках для голосования скрытые камеры (чудом избежав при этом ареста), они смогли бы узнать, как проголосовал каждый. В квантовой физике подобное невозможно. Физики изобретают хитроумнейшие способы проследить за частицами, но все напрасно. Мир элементарных частиц не просто кажется неопределенным, потому что мы не сумели придумать эффективный метод наблюдения, – этот мир действительно полон неопределенности. Не зря Хокинг в Лукасовской лекции назвал квантовую механику “теорией того, чего мы не знаем и не умеем предсказывать”[10]10
Hawking S. Is the End in Sight for Theoretical Physics? Inaugural lecture as Lucasian Professor of Mathematics, April 1980.
[Закрыть].
Учтя это ограничение, физики по-новому сформулировали задачу науки: теория всего должна представлять собой набор законов, которые позволят предсказывать события в пределах, заданных принципом неопределенности, то есть в большинстве случаев нам придется удовлетвориться статистической вероятностью, без конкретных подробностей.
Об этой проблеме и ведет разговор Стивен Хокинг. На вопрос, предопределено ли все теорией всего (или Богом), он отвечает утвердительно: по его мнению, это так. “Но может быть, и не так, потому что мы никогда не сможем узнать, что предопределено. Если теория предопределяет кому-то смерть на виселице, значит, он не утонет, но до какой же степени нужно быть уверенным в судьбе, чтобы отважиться выйти в шторм в море на хлипкой лодчонке”[11]11
Hawking S. Is Everything Determined? Unpublished, 1990.
[Закрыть]. По этой причине Хокинг считает концепцию свободной воли “вполне удачной теорией, приблизительно описывающей поведение человека”[12]12
Appleyard B. Master of the Universe: Will Stephen Hawking Live to Find the Secret? Sunday Times (London).
[Закрыть].
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?