Текст книги "Основы физиологии сердца"
Автор книги: Лариса Шалковская
Жанр: Медицина, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 5 (всего у книги 22 страниц) [доступный отрывок для чтения: 5 страниц]
1.9. Механизмы закрытия клапанов сердца и их патологические изменения
Оптимальная в физиологическом отношении деятельность сердца как насоса невозможна без нормальной работы клапанного аппарата. Периодическое закрытие и открытие клапанов сердца обеспечивает нормальную кардиогемодинамику, нормальные величины конечно-диастолического, конечно-систолического и ударного объемов желудочков и, следовательно, сердечного выброса.
Еще в 1912 г. исследованиями А. Гендерсона и С. Джонсона было показано, что в нормальных условиях сердечного цикла, когда систола предсердий предшествует систоле желудочков, закрытие митрального и трикуспидального клапанов происходит до начала сокращений желудочков и обусловлено гидродинамическими факторами. Во время систолы предсердий из них в желудочки устремляется поток крови, который обладает инерцией. Когда сокращение предсердий (во время начала их диастолы) резко прекращается, то по инерции кровь еще движется в желудочки, и при этом в задней части потока возникает отрицательное давление. В результате формируются вихри, направленные вверх (к предсердиям) и сзади створок клапанов, которые и вызывают закрытие последних. Причем первой начинает движение часть клапанов, ближайшая к их основанию, а концы створок клапанов приходят в соприкосновение последними. Поэтому в таких условиях обратный ток (регургитация) крови из желудочков во время их сокращения в предсердия практически отсутствует. В случае если желудочки сокращаются преждевременно (без предшествующей систолы предсердий), например при желудочковой экстрасистолии, давление в желудочках возрастает и приводит к возникновению ретроградного тока крови из желудочков в предсердия, который и захлопывает створки клапанов.
В начале изоволюмического периода сокращения желудочков давление в них возрастает настолько быстро, что передается на закрытые створчатые клапаны и вызывает даже в норме некоторое прогибание последних в полость предсердий. Это приводит к повышению предсердного давления (подробнее см. в подразд. 1.10). Однако раскрытию створок атриовентрикулярных клапанов во время систолы желудочков препятствуют сухожильные нити (хорды), которые отходят от папиллярных мышц и прикрепляются к концам створчатых клапанов. При сокращении желудочков сосочковые мышцы сокращаются раньше, чем основная масса миокарда. В результате сухожильные нити натягиваются и удерживают створчатые клапаны от раскрытия при их прогибании в полость предсердий. В случае недостаточности этой функции во время систолы желудочков створки атриовентрикулярных клапанов раскрываются внутрь предсердий, то есть обратно, что приводит к регургитации крови из желудочков в предсердия. Подобная патология клапанов сердца называется пролапсом. В клинической практике чаще встречается пролапс митрального клапана. У детей и подростков часто имеют место функциональные нарушения закрытия створчатых клапанов, что обусловлено опережением роста миокарда над развитием эндокарда. В результате при эхокардиографических исследованиях можно обнаружить незначительную регургитацию крови из желудочков в предсердия в покое, которая прекращается при физической нагрузке. Подобные изменения внутрисердечной гемодинамики сопровождаются также так называемыми функциональными шумами сердца и проходят по мере развития и взросления подростков. Эхокардиографические исследования выявляют также незначительную регургитацию крови через трикуспидальный клапан у большинства здоровых людей, что обусловлено неполным смыканием его створок в силу особенностей строения.
Полулунные клапаны расположены в проксимальных отделах аорты и легочного ствола. Каждый такой клапан представляет собой три карманообразные складки, направленные свободными краями в просвет сосудов. Во время расслабления желудочков давление в них резко снижается. Когда оно становится меньше, чем в аорте и легочном стволе, кровь с ускорением движется обратно, в сторону желудочков, и наполняет кармашки полулунных клапанов. В результате клапаны полностью закрывают просвет сосудов, что препятствует обратному току крови из аорты и легочного ствола в желудочки. Во время же систолы желудочков, когда давление в них превысит давление в аорте и легочной артерии, мощный поток крови раздвигает кармашки полулунных клапанов и устремляется в артерии.
Как отмечено ранее, нарушения работы клапанного аппарата вызывают изменения внутрисердечной гемодинамики. Анатомические изменения клапанов, возникшие либо в результате нарушения эмбриогенеза (врожденные), либо в результате заболеваний (приобретенные), в клинической кардиологии называются пороками сердца. В случае неполного смыкания створок клапана возникает его недостаточность, а сужение отверстия между предсердиями и желудочками или между желудочками и аортой (легочным стволом) называется стенозом.
Примерно до середины 1980-х гг. основную группу приобретенных пороков сердца составляла патология клапанного аппарата вследствие эндокардита, вызванного ревматизмом.
Особенно часто в клинической практике у больных ревматизмом встречался стеноз митрального отверстия – изолированный или в сочетании с недостаточностью клапана. Однако профилактика ревматизма, улучшение общего благосостояния населения привели к практической ликвидации ревматических пороков сердца. Вместе с тем в конце 1990-х гг. в России угрожающими темпами стали нарастать неблагоприятные тенденции ухудшения здоровья населения: прогрессирующее старение, высокая заболеваемость атеросклерозом и ишемической болезнью сердца, артериальной гипертензией и др. Поэтому в клинической практике у пожилых людей чаще, чем ранее, отмечается аортальный стеноз, который развивается при развитии кальциноза аорты.
Следует также особо подчеркнуть, что с конца XX и начала XXI вв. все чаще стали встречаться врожденные пороки сердца, обусловленные нарушениями эмбриогенеза. Этому способствуют многие факторы нездорового образа жизни: ранние беременности, курение, алкоголизм, наркомания и др. Наряду с простыми дефектами эмбрионального развития сердца (незаращение артериального протока, дефект межпредсердной перегородки) все чаще диагностируются сложные пороки, например триада Фалло: сужение легочной артерии, незаращение межпредсердной перегородки и гипертрофия правого желудочка. При эхокардиографических исследованиях у детей и подростков все чаще выявляются пролапсы митрального и трикуспидального клапанов, что сопровождается ретроградным током крови из желудочков в предсердия, то есть развитием картины недостаточности атриовентрикулярных клапанов. Однако компенсация последней возможна длительное время (20–30 лет) благодаря в первую очередь миогенным механизмам саморегуляции деятельности сердца
1.10. Диастолическая функция сердца
Термин «диастолическая функция сердца», который получил особенно широкое распространение в клинической литературе начала XXI в., характеризует механизмы расслабления миокарда и кровенаполнения сердца во время диастолы. Способность миокарда к быстрому расслаблению получила название люзитропного эффекта (англ. lusitropic effect).
Исследованиями 1980–1990-х гг. установлено, что скорость релаксации миокарда непосредственно зависит от скорости удаления ионов кальция из цитоплазмы кардиомиоцитов. Ключевым и ведущим механизмом является энергозависимый транспорт Ca2+ в саркоплазматический ретикулум (СПР), который осуществляется с помощью специализированного кальциевого насоса – Са2+-АТФ-азы СПР, или SЕRСА (от англ. Sarco-Endoplasmatic-Reticulum-Calcium-ATPase). Поэтому скорость релаксации миокарда во многом определяется активностью именно этого фермента. Основным же регулятором активности Са2+-АТФ-азы СПР является белок фосфоламбан, расположенный на мембране СПР в непосредственной близости от Са2+-АТФ-азы. В фосфорилированном состоянии фосфоламбан увеличивает активность этой помпы, и в результате процесс релаксации возрастает. Реакции фосфорилирования фосфоламбана ускоряются, например, под влиянием катехоламинов (положительный люзитропный эффект катехоламинов).
Вторым по значимости механизмом удаления ионов Са2+ из цитоплазмы кардиомиоцитов во время диастолы является работа Na+/Ca2+-обменника, расположенного на поверхности сарколеммы и выводящего ионы Са2+ во внеклеточную жидкость в обмен на ионы Nа+. В норме относительное участие этих двух Са2+-выводящих систем расценивается как 4:1 в пользу Сa2+-АТФ-азы СПР, однако при патологии сердца данное соотношение уменьшается вплоть до 1:1.
Третьим механизмом релаксации является модификация сократительных белков кардиомиоцитов. Примером такого вида регуляции также может служить положительный люзитропный эффект катехоламинов. Помимо ускорения фосфорилирования фосфоламбана, катехоламины ускоряют фосфорилирование тропонина I в результате активации протеинкиназы за счет накопления ц-АМФ. Фосфорилирование тропонина I уменьшает чувствительность контрактильных белков к ионам кальция и тем самым ускоряет развитие релаксации. Этот процесс увеличивает скорость расслабления миокарда в ответ на укорочение диастолы в условиях тахикардии, вызванной применением катехоламинов.
На скорость расслабления миокарда влияет также аффинность (сродство) связи Са2+-тропонин С и АТФ-азная активность головок миозина. Очевидно, что при повышении сродства тропонина С к ионам Са2+ для высвобождения и удаления этого Са2+ из цитозоля клетки будет затрачено больше времени, что обусловит замедление релаксации.
АТФ-азная активность головок миозина влияет на скорость процесса расхождения нитей актина и миозина, что является необходимым условием возврата длины саркомера к исходной величине. Диастолическое расхождение нитей актина и миозина начнется не раньше того, как произойдет разрыв поперечных мостиков «последней волны», то есть тех мостиков, которые образовались непосредственно перед высвобождением Са2+ от связи с тропонином С. Скорость разрыва этих мостиков, определяемая АТФ-азной активностью головок миозина, зависит от:
– количества поступивших ионов кальция;
– сродства (аффинности) сократительных белков к ионам кальция;
– степени растяжения волокон миокарда (зависимость от преднагрузки);
– взаимодействия сократительных белков с АТФ;
– вязко-эластических свойств миокарда.
Исследования, проведенные в 1990-х гг., показали, что скорость расслабления миокарда тем больше, чем меньше остаточный (конечно-систолический) объем сердца. Это обусловлено как большим сохранением потенциальной энергии сердечного сокращения в случае низкого остаточного объема, так и выраженным укорочением миокардиальных волокон в конце систолы. Если остаточный объем сердца невелик, то в миокарде возникают так называемые восстанавливающие силы (по типу сжатой пружины), обусловленные, в частности, эластическими свойствами несократительных белков миокарда (коннектина, или титина, десмина, виментина и винкулина). Поскольку остаточный объем сердца зависит от сократимости миокарда, то увеличение сократимости миокарда, определяемое производной dP/dt, например, под влиянием катехоламинов, также вызывает увеличение скорости расслабления миокарда. Таким образом, остаточный объем сердца является одним из ключевых кардиогемодинамических факторов, определяющих скорость расслабления миокарда в диастолическом периоде.
Помимо расслабления миокарда к диастолической функции сердца относятся механизмы наполнения сердца кровью. В течение длительного времени в физиологической литературе считалось, что наполнение сердца кровью осуществляется пассивно, лишь под действием остаточной энергии крови, притекающей к сердцу. Однако исследования по биомеханике миокарда, проведенные в 1980–1990-х гг., позволили установить, что это представление верно лишь отчасти. На скорость наполнения желудочков кровью во время диастолы влияют следующие «сердечные» факторы:
1) пассивные эластические свойства миокарда, определяющие его жесткость;
2) скорость расслабления миокарда, влияющая на остаточное напряжение миокарда;
3) активное присасывающее действие желудочков во время диастолы;
4) вязко-упругие свойства миокарда;
5) функция предсердий.
Пассивные эластические свойства миокарда. Даже в условиях полного расслабления миокард обладает определенной жесткостью или эластичностью. При построении зависимости «давление – объем» на остановленном сердце наблюдается экспоненциальная зависимость давления в желудочках от объема крови, то есть по мере увеличения объема желудочков давление в них возрастает. Однако в условиях работающего сердца, особенно в раннюю фазу диастолического наполнения желудочков, жесткость последних может значительно изменяться, и кривая «давление – объем» смещается. Поэтому в норме даже при высоких объемах диастолическое давление в желудочках будет низким. При увеличении жесткости миокарда, что бывает, например, при так называемой диастолической форме сердечной недостаточности, или при гипертрофии миокарда, даже при низких величинах конечно-диастолического объема желудочков отмечается резкое повышение конечно-диастолического давления в их полостях. Особенно выражено это при рестриктивных формах кардиомиопатий.
На пассивные эластические свойства миокарда влияют свойства его «каркаса», то есть соединительнотканных элементов и несократительных белков (белки цитоскелета), свойства перикарда, коронарный кровоток, влияющий на процессы фильтрации и реабсорбции межклеточной жидкости.
В состав соединительнотканных элементов миокарда входят различные волокна и нити (коллагеновые волокна, волокнистая паутинообразная сеть, короткие нити и др.). К фибриллярным белкам цитоскелета относятся десмин, виментин и винкулин. Кроме того, между нитями собственно сократительного белка актина располагаются так называемые S-нити, а миозин и актин соединены между собой С-нитями. Между Z-пластинками саркомера, подобно пружинке, «растянут» белок коннектин, или титин. Считается, что этот белок вносит существенный вклад в процессы расслабления миокарда.
Экспериментальные данные о пассивных свойствах миокарда свидетельствуют о том, что ведущая роль в повышении жестко-упругих характеристик миокарда принадлежит избыточному накоплению коллагена в интерстициальном пространстве, а не гипертрофии миоцитов (хотя она также участвует в увеличении жесткости миокарда). Если в условиях гипертрофии миокарда удается предотвратить появление фиброза, то жесткость остается в пределах нормы, а регрессия фиброза (но не гипертрофии) сопровождается нормализацией эластических свойств. Избыточное накопление коллагена и развитие фиброза получило название ремоделирования миокарда.
На жесткость миокарда в определенной степени влияет перикард, который ограничивает перерастяжение камер сердца притекающей кровью. Кроме того, перикард обеспечивает механическую взаимосвязь желудочков при объемных перегрузках сердца, а также «присасывающую» функцию желудочков. Поскольку желудочки связаны общей перегородкой и заключены в малорастяжимый перикард, механическое напряжение в одном желудочке влияет на диастолические свойства другого. Так, при увеличении объема правого желудочка имеет место увеличение конечно-диастолического давления в левом желудочке при низком диастолическом объеме. В опытах с перфузией коронарных артерий показано, что при снижении коронарного перфузионного давления менее 60 мм рт. ст. и повышении его более 150 мм рт. ст. также происходит увеличение жесткости миокарда. В случае же поддержания перфузионного давления в пределах от 60 до 150 мм рт. ст., то есть в условиях нормальных диапазонов ауторегуляции коронарного кровотока, жесткость миокарда практически не изменяется.
Влияние скорости расслабления на жесткость миокарда. Диастолическая жесткость миокарда возрастает в случае его неполного расслабления. Степень влияния неполного расслабления миокарда на его жесткость определяется в основном скоростью изоволюмического расслабления, которая может также зависеть и от частоты сердечных сокращений. Следовательно, при увеличении частоты сердечных сокращений диастолическое расслабление миокарда будет неполным, то есть жесткость миокарда повышается.
Присасывающее действие желудочков сердца. Еще в 1914 г. английский физиолог Э. Старлинг при регистрации давления в левом желудочке у собаки с вскрытой грудной клеткой отметил наличие отрицательного давления в левом желудочке в начале фазы быстрого наполнения. Особенно выражен этот эффект при низких остаточных объемах желудочков. Из сказанного следует, что скорость расслабления миокарда превышает скорость наполнения желудочка, что и создает отрицательное давление. Можно предположить, что присасывающий эффект желудочков в определенной степени обусловлен конструктивными особенностями сердца. Так, во время систолы сердце смещается в сторону, противоположную выбросу крови (своего рода «реактивный эффект»), тогда как во время расслабления оно как бы подтягивается навстречу поступающей крови, что и создает ее «подсасывание». Кроме того, при этом создается дополнительное отрицательное давление в полости перикарда. Во время систолы желудочков их объем уменьшается, а объем перикардиальной полости в силу жесткости перикарда остается постоянным.
Следовательно, в полости перикарда создается отрицательное давление, которое способствует венозному возврату и создает дополнительный градиент давления для наполнения предсердий и желудочков.
Вязко-эластические свойства миокарда. Эксперименты, проведенные на остановленном сердце, показали, что миокард обладает вязко-упругими свойствами, то есть напряжение в стенке желудочков зависит не только от объема крови, но и от скорости их наполнения. Вязко-упругие свойства миокарда приводят к снижению жесткости миокарда, особенно во время фазы быстрого наполнения желудочков, что способствует снижению диастолического давления в желудочках.
Роль предсердий в кровенаполнении желудочков. Как отмечалось, во время систолы предсердий в желудочки поступает лишь незначительная часть (до 15 %) от конечно-диастолического объема крови желудочков, то есть роль систолы предсердий в кровенаполнении желудочков в условиях покоя невелика. Даже при отсутствии упорядоченного сокращения предсердий, например при мерцательной аритмии, если частота сокращений желудочков при этом невысока (до 90 уд/мин) (нормосистолическая форма мерцательной аритмии), кровенаполнение желудочков остается удовлетворительным, и сердечный выброс не снижается. В случае же мерцательной аритмии с увеличением частоты сокращений желудочков до 120–150 уд/мин (тахисистолическая форма) их кровенаполнение и сердечный выброс резко снижаются. Следовательно, роль нормальной систолы предсердий в кровенаполнении желудочков возрастает при увеличении частоты сердечных сокращений. Кроме того, вихревое движение крови из предсердий в желудочки во время систолы предсердий создает предпосылки для быстрого закрывания створок атриовентрикулярных клапанов, которые захлопываются еще до начала систолы желудочков. Поэтому в случае отсутствия нормального сокращения предсердий и неполного закрывания атриовентрикулярных клапанов может происходить обратное движение крови из желудочков в предсердия, что сопровождается уменьшением ударного объема сердца. В случае же преждевременного сокращения желудочков, которое при патологии может происходить одновременно с систолой предсердий, их кровенаполнение также снижается. При этом имеет место регургитация венозного кровотока из предсердий в полые вены. Таким образом, несмотря на незначительный «объемный» вклад, сокращение предсердий имеет важное значение в обеспечении нормальной внутрисердечной гемодинамики и наполнения желудочков, особенно при увеличении частоты сердечных сокращений.
Поскольку систола предсердий длится всего 0,1 с (при ЧСС 75 уд/мин), то, следовательно, большая длительность диастолы предсердий (0,7 с) обеспечивает практически непрерывное поступление крови из вен в предсердия. В силу этого вместимость и растяжимость предсердий достаточно высоки. Помимо основных камер в предсердиях имеются ушки, которые увеличивают объем предсердий. Таким образом, предсердия выполняют резервуарную функцию, которая обеспечивает быстрое поступление крови в желудочки во время их диастолы, особенно в ее начале.
Фазная кривая изменения давления в предсердиях напоминает кривую венозного пульса (флебограмма) и имеет несколько максимумов и минимумов (см. рис. 12, б). Во время систолы предсердий давление в них резко повышается (первый максимум – а (от лат. аtrium)), устья полых вен перекрываются, и поступление крови из полых вен в предсердия прекращается. В это время кровь из предсердий поступает в уже практически заполненные кровью (до 80 % конечно-диастолического объема) желудочки. В начале диастолы предсердий давление в них понижается, однако это уменьшение приостанавливается с началом систолы желудочков и прогибания внутрь полости предсердий створок атриовентрикулярных клапанов. Вследствие этого давление в предсердиях (в которые кровь еще не поступает) вновь повышается (волна с). Затем, в период изгнания крови из желудочков и смещения атриовентрикулярной перегородки вниз, в сторону верхушки сердца, происходит резкое снижение давления в предсердиях (систолический коллапс, первый минимум – волна x) при расслабленных предсердиях. Первый минимум давления в предсердиях способствует «присасыванию» крови из вен, в результате чего давление в предсердиях начинает медленно повышаться и вновь достигает максимума (второй максимум – волна v), тогда как в желудочках начинается диастолический период. Когда давление в желудочках становится меньше давления в предсердиях, атриовентрикулярные клапаны открываются, и кровь с ускорением поступает из предсердий в желудочки. В результате давление в предсердиях вновь снижается (диастолический коллапс, второй минимум – волна y), что также способствует поступлению в них крови из вен. С этого момента снова начинается систола предсердий. Таким образом, характер фазных изменений давления в предсердиях оказывается связанным с мгновенными значениями венозного кровотока и колебаниями давления в центральных венах. Очевидно, что приток крови из вен в предсердия обеспечивается низкой величиной предсердного давления (первый минимум), а поступление крови в желудочки достигается за счет градиента давления в предсердиях (второй максимум) и начального диастолического давления в желудочках. Следовательно, уровень давления в предсердиях должен быть не выше центрального венозного давления и не ниже начального диастолического давления в желудочках. В противном случае будет нарушено их нормальное кровенаполнение.
Итак, работа сердца как насоса обеспечивается прежде всего сократительной функцией миокарда, механизмами его расслабления и наполнения, а также работой клапанного аппарата. В свою очередь, адекватная сократительная активность осуществляется благодаря свойствам автоматии, возбудимости и проводимости.
Внимание! Это не конец книги.
Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?