Электронная библиотека » Лариса Шалковская » » онлайн чтение - страница 4


  • Текст добавлен: 18 мая 2016, 15:00


Автор книги: Лариса Шалковская


Жанр: Медицина, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 22 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
1.6. Сопряжение возбуждения и сокращения в миокарде

Фундаментальные свойства миокарда (возбудимость, проводимость и автоматия) обеспечивают его сократимость – способность мышечных волокон укорачиваться или увеличивать свое напряжение. В соответствии с теорией «скользящих нитей», предложенной X. Хаксли и А. Хаксли еще в 1950-х гг., при сокращении миофибрилл происходит укорочение саркомера, то есть уменьшение его продольного размера вследствие активного перемещения актиновых нитей относительно миозиновых. При этом длина нитей не изменяется. Молекулярными исследованиями 1970–1980-х гг. установлено, что актиновые нити скользят вдоль миозиновых благодаря «гребковым» движениям головок миозина. Головка прикрепляется к участку связывания на актине, потом наклоняется, вызывая укорочение саркомера, и отсоединяется от актина. Далее головка прикрепляется к следующему участку связывания на актиновой нити, и цикл повторяется. При этом сила сокращения определяется количеством связей (мостиков) между миозином и актином.

В расслабленном миокарде соединению миозина и актина препятствуют молекулы тропонина, «закрывающие» участки связывания на актиновой нити. Однако при повышении концентрации кальция в цитоплазме, что имеет место во время возбуждения кардиомиоцита, ионы кальция соединяются с тропонином С. Присоединение Са2+ к этому белку приводит к конформационным изменениям тропонин-тропомиозинового комплекса. В результате молекулы тропомиозина смещаются, миозиновые и актиновые нити вступают во взаимодействие, и начинается процесс сокращения. Чем больше ионов Са2+ поступит к миофибриллам при возбуждении, тем большее количество актомиозиновых мостиков будет образовываться, и тем сильнее, следовательно, будет сокращение. Таким образом, повышение концентрации ионов Са2+ в цитоплазме кардиомиоцита является ключевым фактором, обеспечивающим электромеханическое сопряжение – связь между возбуждением и сокращением миокарда.

Исследования, проведенные в 1980–1990-е гг., позволили установить, что на мембране Т-трубочек поверхностной мембраны кардиомиоцитов имеется кальциевый потенциалзависимый канал, который блокируется препаратами из группы дигидропиридинов. Поэтому он получил название дигидропиридинового рецептора (DHPR). На мембране терминальных цистерн саркоплазматического ретикулума расположен другой потенциалзависимый кальциевый канал, проницаемость которого модулируется растительным алкалоидом рианодином, поэтому он получил название рианодинового рецептора (RyaR). Кроме того, с последним, возможно, связан белок кальмодулин, конформационные изменения которого могут приводить к активации рианодинового рецептора и выходу ионов кальция из цистерн саркоплазматического ретикулума. По другим данным, рианодиновые рецепторы непосредственно активируются ионами кальция (рис. 7).


Рис. 7. Транспорт ионов кальция в процессах сопряжения возбуждения и сокращения в сердечной мышце


Электромеханическое сопряжение в кардиомиоците начинается с возникновения фазы 0 потенциала действия на плазматической мембране. Когда мембранный потенциал достигает уровня –65 мВ, открываются потенциалзависимые Са2+-каналы L-типа, обеспечивающие формирование входящего ICa2+L тока, который ускоряет деполяризацию кардиомиоцитов. В результате активируются потенциалзависимые кальциевые ионные каналы мембраны T-трубочек (дигидропиридиновый рецептор), через которые ионы кальция поступают внутрь кардиомиоцитов. «Внешние» ионы кальция взаимодействуют (прямо или через посредство кальмодулина) с рианодиновыми рецепторами саркоплазматического ретикулума. Вследствие этого кальциевые ионные каналы саркоплазматического ретикулума открываются, и кальций начинает поступать из мембранных цистерн в цитоплазму кардиомиоцита. В результате концентрация кальция в цитоплазме клетки возрастает с менее чем 10-7 М/л до 10-5 М/л. Резкое повышение концентрации ионов Са2+ в саркоплазме устраняет тропомиозиновую блокаду взаимодействия актина и миозина и запускает процесс сокращения кардиомиоцитов.

Таким образом, поступление «внешних», или триггерных, ионов кальция вызывает высвобождение «внутренних» ионов кальция из саркоплазматического ретикулума. Такой процесс получил название кальций-индуцированного высвобождения кальция. Важно подчеркнуть, что чем более выраженным будет поступление внешних ионов кальция в цитоплазму кардиомиоцита, тем в большей степени будет возрастать количество ионов кальция, выходящих из саркоплазматического ретикулума. Поскольку входящий кальциевый ток ICa2+L достигает максимальной величины во время фазы 2 (плато) потенциала действия рабочего кардиомиоцита, длительность именно этой фазы в норме определяет силу сокращения миокарда. Следовательно, сократимость сердечной мышцы непосредственно зависит от силы входящего кальциевого тока (ICa2+L), которая может возрастать, например, под влиянием катехоламинов, влияющих на степень открытия кальциевых каналов L-типа. Наряду с этим поступление в цитоплазму внешних ионов кальция восполняет запасы кальция в цистернах саркоплазматического ретикулума, что в итоге также влияет на сократимость миокарда.

Существует и другой механизм поступления больших количеств ионов Са2+ в цитоплазму рабочего кардиомиоцита при его возбуждении. Он обеспечивается сопряженным транспортом ионов кальция и натрия через мембрану, то есть Са2+/Na+-обменом. Во время диастолы Са2+/Na+-насос активно удаляет из клетки ионы Са2+ в обмен на ионы Na+. При возбуждении кардиомиоцита направление Са2+/Na+-обмена меняется на противоположное: ионы Са2+ активно переносятся в клетку, тогда как ионы Na+, напротив, удаляются, и в результате концентрация ионов кальция в цитоплазме кардиомиоцита возрастает.

Нарушение процесса электромеханического сопряжения при патологии сердца может привести к тому, что потенциалы действия, продолжая возникать в синусовом узле и распространяться по проводящей системе к рабочему миокарду, не вызывают его сокращения. Отсутствие сократительной функции миокарда приводит к остановке кровообращения. Однако электрическая активность сердца может быть выявлена, например, с помощью регистрации электрокардиограммы. Такое состояние называется электромеханической диссоциацией и может явиться одной из непосредственных причин смерти, например при инфаркте миокарда.

Снижение сократимости миокарда является одной из основных причин развития сердечной недостаточности – состояния, при котором нарушаются гемодинамическая функция сердца и нормальное кровоснабжение органов и тканей. В клинической практике для лечения сердечной недостаточности применяют сердечные гликозиды – вещества, выделенные из таких растений, как наперстянка (дигиталис), строфант, ландыш и др. (Впервые в клиническую практику препараты наперстянки были внедрены английским врачом В. Уитерингом еще в 1785 г.) Как показали физиологические и фармакологические исследования, проведенные в середине 1970–1980-х гг., механизм действия этих препаратов обусловлен их способностью влиять на работу К+/Na+-насоса мембран кардиомиоцитов, а также метаболизм миокарда. В малых терапевтических дозах сердечные гликозиды усиливают работу К+/Na+-насоса, что отчасти увеличивает концентрацию ионов калия в клетках, вызывая увеличение его сократимости.

В средних и высоких терапевтических дозах данные препараты, напротив, угнетают К+/Na+-насос мембраны кардиомиоцитов, что приводит к возрастанию внутриклеточной концентрации Na+ и усилению поступления ионов Са2+ в клетку по механизму Са2+/Na+-обмена (как в покое, так и при возбуждении). В результате увеличивается продолжительность фазы плато потенциала действия рабочего кардиомиоцита, а следовательно, еще больше возрастает сократимость миокарда.

1.7. Особенности сократимости и биомеханики сердечной мышцы

Работа сердца как насоса обеспечивается прежде всего нормальной сократительной функцией миокарда. В исследованиях, проведенных в 1970–1980-х гг. на сосочковой (папиллярной) мышце миокарда млекопитающих, были предприняты попытки, во-первых, создать биофизические модели для описания параметров сократительной активности миокарда, таких как сила и скорость сокращения, а во-вторых, выявить взаимосвязь между указанными параметрами и показателями насосной функции сердца, например ударным объемом желудочков и сердечным выбросом. Эти модели сначала опирались на теорию сокращения скелетной мышцы, предложенную английским физиологом, лауреатом Нобелевской премии А. Хиллом еще в 1922 г. Однако, как оказалось, по ряду фундаментальных характеристик сократимости сердечная мышца отличается от скелетной.

Закон «все или ничего». Поскольку миокард представляет собой функциональный синцитий, то при развитии потенциала действия в одном кардиомиоците процесс возбуждения с высокой скоростью (до 0,5 м/с) распространяется на соседние невозбужденные клетки. Таким образом, происходит быстрый охват возбуждением всех рабочих кардиомиоцитов, что обеспечивает синхронность и практически одновременность их сокращения. Вследствие этого сила сокращения сердца не зависит от силы сверхпорогового раздражителя (закон «все или ничего»). Этот закон был впервые сформулирован американским физиологом X. Боудичем в опытах с электростимуляцией изолированного сердца в конце XIX в.

Невозможность суммации сокращений (тетануса). Как указано выше, продолжительность рефрактерного периода (абсолютного и относительного) рабочего миокарда примерно соответствует времени всего потенциала действия (300 мс). Принципиально важно, что длительность потенциала действия рабочих кардиомиоцитов практически совпадает по времени с продолжительностью их сокращения. Поэтому последующий импульс может вызвать сокращение миокарда только после его расслабления, что соответствует окончанию предыдущего потенциала действия. В результате в миокарде невозможна суммация сокращений при увеличении частоты стимуляции, то есть развитие тетануса, как в скелетной мышце, что могло бы привести к нарушению сокращения и остановке сердца. (Напомним, что продолжительность потенциала действия скелетной мышцы составляет около 5–10 мс, а длительность ее сокращения – 40–50 мс.) В скелетной мышце следующий импульс уже через 10 мс после первого может вызвать новое сокращение, когда мышца еще не расслабилась, что приводит к суммации сокращений. В миокарде этого не происходит в силу значительной продолжительности рефрактерного периода.

Зависимость силы сокращений от величины входящего тока кальция. Выше говорилось, что сокращение миокарда возникает в ответ на поступление «внешних» ионов кальция, которые вызывают высвобождение «внутреннего» кальция из саркоплазматического ретикулума. Поэтому чем более выраженным будет входящий ток ICa2+L, тем большее количество ионов кальция будет выходить в цитоплазму через рианодиновый кальциевый канал-рецептор из саркоплазматического ретикулума, и тем большее количество актомиозиновых мостиков будет образовываться. Таким образом, именно величина входящего тока кальция ICa2+L и определяет силу сокращения рабочих кардиомиоцитов и миокарда в целом. Поскольку входящий кальциевый ток ICa2+L в норме достигает максимальной величины во время фазы 2 потенциала действия рабочего кардиомиоцита, длительность именно этой фазы определяет силу сокращения миокарда. Продолжительность фазы 2 может возрастать под влиянием агонистов β-адренорецепторов, – катехоламинов, выделяющихся из симпатических нервов сердца или циркулирующих в крови. Поэтому возбуждение таких рецепторов сопровождается усилением сократимости миокарда, что играет важную роль в нервной и гуморальной регуляции сердечной деятельности.

Зависимость «частота – сила». Как уже отмечалось, даже при очень высоких частотах стимуляции миокард не способен к развитию тетануса (суммированного сокращения), характерного для скелетной мышцы. Такая особенность является следствием длительного рефрактерного периода кардиомиоцитов, совпадающего по времени с продолжительностью сокращения, и защищает сердце от преждевременных возбуждений и утомления. Однако еще в XIX в. американский физиолог X. Боудич в экспериментах с электростимуляцией изолированного сердца наблюдал увеличение силы сердечных сокращений при увеличении частоты стимуляции. Данная зависимость «частота – сила» получила название «лестницы Боудича», или хроноинотропного эффекта (греч. chronos – время, inos – сила). Возникновение хроноинотропного эффекта, возможно, связано с тем, что при высокой частоте стимуляции промежутки времени между сокращениями укорачиваются, вследствие чего не происходит полного удаления ионов Са2+ , поступивших в саркоплазму при очередном сокращении. В результате с каждым последующим сокращением концентрация внутриклеточного ионизированного Са2+ возрастает, и соответственно возрастает сила сокращений. Хроноинотропный эффект можно рассматривать как разновидность гомеометрической регуляции сердца, и она будет рассмотрена далее вместе с другими миогенными механизмами.

Зависимость «длина – сила». Исследования на папиллярной мышце миокарда кошки показали, что при растяжении саркомера происходит выдвижение актиновых и миозиновых нитей из промежутков между ними. В результате увеличивается количество актин-миозиновых мостиков, которые могут образоваться при сокращении, и, следовательно, создаются условия для возрастания силы сокращения при большем растяжении миофибрилл. Максимальная сила сокращения достигается при исходной длине саркомера около 2,2 мкм. Вместе с тем при растяжении волокон миокарда имеет место и увеличение входящего кальциевого тока в ответ на активацию так называемых кальциевых каналов растяжения (англ.

stretch-activated channels), которые были обнаружены не только в гладких мышцах, но и в миокарде.

Увеличение входящего кальциевого тока непосредственно вызывает повышение сократимости миокарда. Кроме того, в ответ на изменение исходной длины волокон миокарда возрастает чувствительность тропонина C к ионам кальция, что способствует активации большего количества актомиозиновых мостиков.

Таким образом, исходная длина волокон миокарда является ключевой детерминантой регуляции силы его сокращения. В интактном сердце об исходном растяжении волокон миокарда могут свидетельствовать такие показатели, как конечно-диастолическое давление и объем желудочков. Зависимость силы сокращения от степени предварительного растяжения миокарда была отмечена немецким физиологом О. Франком на сердце лягушки в 1895 г. и детально исследована на сердечно-легочном препарате собаки английскими физиологами С. Паттерсоном и Е. Старлингом в 1914 г. Значение «закона сердца» Франка – Старлинга для регуляции его насосной функции (гетерометрическая регуляция) будет подробно рассмотрено в связи с миогенной регуляцией деятельности сердца.

Зависимость «скорость – сила». Исследования, проведенные А. Хиллом на скелетной мышце, позволили установить графическую гиперболическую зависимость между нагрузкой и скоростью мышечного сокращения, которая выражается уравнением Хилла:



где V – скорость сокращения, см/с; Р – сила мышечного сокращения (нагрузка), гс; Р0 – максимальная возможная сила сокращения; а – константа, которая характеризует тепло, выделяющееся при укорочении мышцы, и зависит от КПД работы мышцы; b – константа, характеризующая скорость перехода химической энергии в механическую (константы а и b имеют соответственно размерности нагрузки и скорости).

Из этого уравнения следует, что если нагрузка на мышцу равна нулю (Р = 0), то скорость ее сокращения максимальна и равна Vmax = 0/а. Режим сокращения мышцы с постоянной силой (при постоянной нагрузке) называется изотоническим (греч. isos – равный, tonos – напряжение). Если же нагрузка на мышцу максимальна (Р = P0), то укорочение отсутствует, то есть V = 0, что соответствует состоянию максимального изометрического сокращения (греч. isos – равный, metron – мера, размер сокращения (напряжения)).

Однако исследования, выполненные на папиллярной мышце, показали, что в миокарде наблюдается отклонение гиперболической зависимости «сила – скорость», установленной для скелетной мышцы. Это обусловлено многими причинами. Во-первых, даже при постоянном объеме камер сердца при сокращении миокарда имеет место внутреннее укорочение центральных и одновременное растяжение периферических участков сердечной мышцы. Следовательно, в сердце отсутствует классическое изометрическое сокращение, при котором длина мышечных волокон остается постоянной. Вовторых, миокард как функциональный синцитий обладает неоднородностью строения, и поэтому одни саркомеры могут быть растянуты в большей или меньшей степени, чем другие. В-третьих, на характер зависимости «сила – скорость» в миокарде в большей мере, чем в скелетной мышце, влияют процессы активной релаксации (подробнее см. подразд. 1.10). Наконец, изменение гиперболической зависимости «сила – скорость» вызывают многие вещества, действующие на сердце, например адреналин, ионы кальция, препараты дигиталиса.

1.8. Сердечный цикл и его фазовая структура

Деятельность сердца как насоса представляет собой непрерывное в течение всей жизни человека последовательное чередование периодов сокращения (систолы) и расслабления (диастолы) предсердий и желудочков. Сменяющие друг друга систола и диастола составляют сердечный цикл. В покое частота сокращений сердца (ЧСС) у взрослого человека составляет 60–80 циклов в 1 мин, то есть каждый цикл продолжается около 0,8 с. Из этого времени около 0,1 с продолжается систола предсердий, около 0,3 с – систола желудочков, а остальное время (примерно 0,4 с) – общая диастола, или пауза сердца.

Впервые детальный фазовый анализ деятельности сердца был проведен американским физиологом К. Уиггерсом в первой трети XX в. Им были получены одновременные записи кривых изменения давления крови в аорте, левом желудочке и предсердии, а также объема левого желудочка. Сердечный цикл удобно рассматривать на диаграмме «давление – объем», которая получается при одновременной регистрации давления и объема в полости левого желудочка и их сопоставления на одном графике (рис. 8).

Во время общей паузы миокард расслаблен, и сердечные камеры заполняются кровью, поступающей из магистральных вен. Атриовентрикулярные клапаны в это время раскрыты, и кровь свободно поступает из предсердий в желудочки. Напротив, полулунные клапаны аорты и легочного ствола закрыты, поскольку диастолическое давление в этих сосудах значительно выше, чем в желудочках (давление в желудочках во время их диастолы близко к нулю) (участок А – В).

Генерация очередного импульса в синоатриальном узле вызывает электрическое возбуждение предсердий, что приводит к их сокращению. Клапаны между магистральными венами и предсердиями отсутствуют, поэтому для препятствия оттоку крови из предсердий обратно в вены во время систолы предсердий происходит сокращение кольцевой мускулатуры, окружающей устья полых и легочных вен. В течение систолы предсердий давление крови в них повышается и становится больше, чем в желудочках, которые в это время еще расслаблены (рис. 9).

За счет разности давлений из предсердий в желудочки переходит дополнительная порция крови, объем которой не превышает 15 % от общего наполнения желудочков за время диастолы. Движение крови при этом является турбулентным вследствие отражения от стенок желудочков. Такой характер потока крови облегчает закрытие атриовентрикулярных клапанов в начале систолы желудочков. С окончанием систолы предсердий заканчивается и диастола желудочков.


Рис. 8. Изменения давления и объема крови в желудочках на протяжении сердечного цикла:

а – в координатах «давление – время»; б – в координатах «давление – объем» (PV-диаграмма левого желудочка) А – В – период напряжения; В – С – период изгнания; C – D – период расслабления; D – A – период наполнения. Моменты времени: А – закрытия, С – открытия левого атриовентрикулярного клапана; В – открытия, D – закрытия аортального клапана. АДд – диастолическое артериальное давление, АДс – систолическое давление в аорте; КСД – конечно-систолическое, КДД – конечно-диастолическое давление в левом желудочке; КСО – конечно-систолический, КДО – конечно-диастолический объем желудочка; УОС – ударный объем сердца


Рис. 9. Давление в сердечных полостях в разные фазы сердечного цикла:

а – правая половина сердца; б – левая половина; верхние цифры – давление в предсердиях, нижние – давление в желудочках


К этому моменту в желудочках имеется определенное количество крови, которое образует конечно-диастолический объем и создает отличное от нуля конечно-диастолическое давление, определяющее преднагрузку сердца (нагрузка объемом).

Из предсердий возбуждение после атриовентрикулярной задержки с большой скоростью распространяется по проводящей системе желудочков, достигая рабочих кардиомиоцитов.

Начинается первый период систолы желудочков – период напряжения. Начальная фаза этого периода – фаза асинхронного сокращения – соответствует последовательному «включению» сократительных кардиомиоцитов. Внутрижелудочковое давление в эту фазу систолы растет незначительно. С момента охвата возбуждением всего миокарда желудочков начинается фаза изоволюмического сокращения, режим которого близок к изометрическому. Однако, как уже отмечалось, классического изометрического сокращения, при котором длина мышечных волокон остается постоянной, в интактном сердце не наблюдается. Даже при неизменном объеме камер сердца происходит внутреннее укорочение центральных и одновременное растяжение периферических участков сердечной мышцы. Кроме того, при сокращении сердца его стенки подвергаются деформации, что приводит к изменению длины мышечных волокон. Поэтому термин «изоволюмическое сокращение» применительно к этой фазе является более правильным и точным (рис. 10).

Оно характеризуется синхронным сокращением всех кардиомиоцитов в условиях, когда атриовентрикулярные клапаны уже закрыты, а полулунные еще не открылись, поскольку давление в аорте и легочном стволе в этот момент больше, чем в желудочках. Таким образом, желудочки оказываются изолированными с одной стороны от предсердий, а с другой – от сосудов. При этом объем желудочков остается постоянным. Фаза изоволюмического сокращения является важнейшей в деятельности сердца, поскольку именно в этот период сокращающийся миокард сообщает крови потенциальную энергию. Внутрижелудочковое давление в фазе изоволюмического сокращения нарастает с максимальной скоростью до 2000 мм рт. ст./с, и когда оно становится выше диастолического давления в аорте и легочном стволе, открываются полулунные клапаны, и начинается период изгнания крови из желудочков в магистральные артерии.


Рис. 10. Изменение формы сердца при сокращении его отделов:

а – разрез в поперечной плоскости. Пунктиром показаны контуры желудочков и отверстий; б – разрез во фронтальной плоскости; 1 – полулунные клапаны аорты; 2 – трехстворчатый клапан; 3 – двустворчатый клапан; 4 – полулунные клапаны легочной артерии; 5 – систола предсердий; 6 – систола желудочков


При изгнании крови потенциальная энергия, сообщенная ей миокардом, переходит в кинетическую. Вначале кровь в аорте и легочном стволе движется с большой скоростью (фаза быстрого изгнания), затем скорость движения крови уменьшается (фаза медленного изгнания). Это происходит потому, что кровь из сердца попадает в уже заполненные кровью аорту и легочный ствол; при изгнании крови из сердца она растягивает стенки данных сосудов (например, диаметр аорты увеличивается на 25 %). Кроме того, по мере изгнания крови уменьшается скорость сокращения миокарда. В фазе быстрого изгнания желудочки сокращаются в режиме, близком к изотоническому (с постоянной силой), давление крови в них возрастает незначительно по сравнению с периодом изоволюмического сокращения, тогда как их объем быстро уменьшается. По мере увеличения кровенаполнения аорты и легочных артерий давление в этих сосудах возрастает, достигая к концу систолы максимальной величины, которая называется систолическим давлением. Скорость движения крови из сердца после этого уменьшается, поэтому конечная фаза периода изгнания, как отмечалось ранее, называется фазой медленного изгнания. Иногда для обозначения фаз быстрого и медленного изгнания применяют термины фазы максимального и редуцированного изгнания соответственно.

К концу систолы желудочков в них остается некоторое количество крови (конечно-систолический, или остаточный, объем), которому соответствует и определенное давление крови (конечно-систолическое давление). После окончания сокращения желудочков начинается период расслабления. При этом давление в них, а также в аорте и легочном стволе начинает снижаться, причем в магистральных артериях за счет их эластических свойств, а также гидравлического сопротивления сосудов это происходит медленнее, чем в желудочках. Как только давление крови в желудочках становится меньше давления в аорте и легочном стволе, закрываются полулунные клапаны. Время от начала периода расслабления до закрытия полулунных клапанов называется протодиастолическим периодом (интервалом).

С момента закрытия полулунных клапанов желудочки, продолжая расслабляться, вновь становятся изолированными от аорты и легочного ствола, а также от предсердий, поскольку атриовентрикулярные клапаны в этот период еще закрыты. Это связано с тем, что давление в расслабляющихся желудочках пока еще выше, чем в предсердиях. Такой период диастолы получил название фазы изометрического, или изоволюмического, расслабления. Когда давление в желудочках снизится настолько, что станет меньше, чем в предсердиях, открываются атриовентрикулярные клапаны и начинается период наполнения желудочков, во время которого в них поступает кровь из предсердий. При этом давление, как в предсердиях, так и в желудочках, продолжает снижаться. Вначале кровь движется быстро (фаза быстрого наполнения). Именно в это время происходит основное кровенаполнение желудочков (около 85 %). Затем по мере наполнения желудочков давление в них возрастает, и движение крови замедляется (фаза медленного наполнения). Завершающая фаза периода наполнения желудочков ограничена наступающей систолой предсердий.

Правые и левые отделы здорового сердца сокращаются и расслабляются практически синхронно, то есть систола правого и левого предсердий, а также правого и левого желудочков начинается одновременно. При точном измерении временных характеристик фаз сердечного цикла в условиях эксперимента на животных и в клинике у человека можно наблюдать некоторый асинхронизм в работе правых и левых отделов здорового сердца. Так, систола правого предсердия начинается несколько раньше, а длится дольше, чем систола левого предсердия. Систола обоих желудочков начинается одновременно, но у правого желудочка она более длительная, чем у левого (за счет увеличения продолжительности фазы асинхронного сокращения), в то время как период расслабления, наоборот, дольше у левого желудочка. В норме эти расхождения в длительности фаз разных отделов сердца не превышают сотых долей секунды, однако могут заметно увеличиваться, например при нарушении проводимости миокарда.

Временные соотношения между описанными фазами приведены в табл. 3 и на рис. 11.


Рис. 11. Схема двух последовательных сердечных циклов длительностью 0,8 с. Черным цветом обозначены периоды систолы предсердий и желудочков; заштрихованные участки соответствуют закрытию атриовентрикулярных и полулунных клапанов



Таблица 3

Примерная длительность (с) основных фаз сердечного цикла при частоте сердечных сокращений 75 мин– 1


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации