Электронная библиотека » Марио Ливио » » онлайн чтение - страница 2


  • Текст добавлен: 1 июня 2016, 13:20


Автор книги: Марио Ливио


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 20 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +
Изобретение или открытие?

Даже такой сжатый рассказ уже содержит в себе массу убедительных доводов в пользу того, что Вселенная либо подчиняется математике, либо, как минимум, поддается анализу посредством математики. Как покажет эта книга, практически все, а может быть, и абсолютно все человеческие начинания, похоже, основаны на каком-то скрытом математическом механизме, даже там, где этого совсем не ждешь. Возьмем хотя бы пример из мира финансов – модель ценообразования опционов Блэка-Шоулза (Black and Scholes 1973). Модель Блэка-Шоулза стяжала своим разработчикам Нобелевскую премию по экономике (правда, только двоим из трех – Майрону Шоулзу и Роберту Кархерту Мертону, так как Фишер Блэк скончался до присуждения премии). Главная ее формула позволяет понять, как устроено ценообразование опционов (это такие финансовые инструменты, которые позволяют игрокам на бирже покупать или продавать ценные бумаги в какой-то момент в будущем по заранее согласованной цене). Однако тут-то и начались неожиданности. Эта модель опирается на явление, которое физики изучают уже десятки лет – броуновское движение, оживленное мельтешение крошечных частичек вроде пыльцы, если размешать их с водой, или частичек дыма в воздухе. А потом, будто этого оказалось мало, выяснилось, что то же самое уравнение применимо и к движению сотен тысяч звезд в звездных скоплениях. Выражаясь словами Алисы, все страньше и страньше, не так ли? Конечно, космос есть космос, но ведь бизнес и финансы – это определенно плод человеческого разума!

Или вспомним, с какими трудностями часто сталкиваются производители электронных комплектующих и разработчики компьютеров. В печатных платах нужно проделывать лазерным сверлом десятки тысяч отверстий. Чтобы снизить затраты, разработчики компьютеров стараются, чтобы сверло не вело себя словно «заблудившийся турист». Задача состоит в том, чтобы проложить кратчайший маршрут между отверстиями, при котором сверло проходило бы точку, где расположено каждое отверстие, ровно один раз. Как выяснилось, математики уже успели позаниматься этой задачей еще в 20-е годы ХХ века, и тогда она получила название «Задача коммивояжера». Суть ее такова: коммивояжеру или политику в рамках предвыборной компании нужно объехать определенные города, причем стоимость дороги между каждыми двумя городами известна заранее. Путешественник должен проложить самый выгодный маршрут, чтобы объехать все города и затем вернуться в исходную точку. В 1954 году было получено решение задачи коммивояжера для 49 городов в США. В 2004 году – для 24 978 населенных пунктов в Швеции[7]7
  Превосходное, хотя и сугубо научное описание этой задачи и ее решений можно найти в книге Applegate et al. 2007.


[Закрыть]
. Иными словами, электронная промышленность, компании, которые прокладывают маршруты для развозки посылок и покупок, и даже японские производители игровых автоматов под названием патинко – это что-то вроде пинбола, – которым приходится вбивать тысячи гвоздиков, должны полагаться на математику при выполнении простейших, казалось бы, действий – сверлении отверстий, составлении расписания, разработке компьютерного «железа».

Математика проникла даже в те сферы, которые по традиции никак не ассоциируются с точными науками. Например, существует «Журнал математической социологии» («Journal of Mathematical Sociology» (в 2006 году вышел его тридцатый выпуск), тематика которого – статьи о математическом понимании сложных общественных структур, организаций и неформальных объединений. В журнале публикуются статьи по самым разным вопросам от математических моделей прогнозов общественного мнения до предсказания взаимодействий внутри тех или иных социальных групп.

Если двинуться в обратном направлении, от математики в сторону гуманитарных наук, мы попадем в область вычислительной лингвистики, которая изначально привлекала исключительно специалистов по информатике, а сейчас превратилась в пространство междисциплинарных исследований, где совместно трудятся лингвисты, психологи-когнитивисты, логики и разработчики искусственного интеллекта, исследующие тонкости естественного развития языков.

Неужели это какой-то хитроумный розыгрыш – ведь все попытки человека что-то понять, в чем-то разобраться приводят в конце концов к открытию все новых отраслей математики, по законам которой, как видно, создана и сама Вселенная, и мы, ее сложные творения? Неужели математика, как любят говорить педагоги, – спрятанный учебник, тот, по которому учится преподаватель, сообщая ученикам неполную версию, чтобы казаться умнее? Или, если обратиться к библейской метафоре, математика – это и есть плод древа познания?

Как я уже отмечал в начале этой главы, непостижимая эффективность математики задает множество интереснейших загадок. Можно ли считать, что математика существует независимо от человеческого разума? Иначе говоря, можно ли считать, что мы просто открываем математические истины, как астрономы открывают неизвестные ранее галактики? Или математика – всего лишь изобретение человека? Если математика и правда существует в какой-то абстрактной стране чудес, как этот волшебный мир соотносится с физической реальностью? Каким образом человеческий мозг со всеми его ограничениями, о которых нам прекрасно известно, находит путь в этот незыблемый мир вне времени и пространства? С другой стороны, если математика не более чем человеческое изобретение и вне нашего разума не существует, как объяснить тот факт, что изобретение огромного количества математических истин по какому-то волшебству надолго опередило вопросы об устройстве Вселенной и человеческой жизни, которые возникли лишь много веков спустя? Ответить на эти вопросы непросто. Не раз и не два на страницах этой книги вы увидите, насколько разные ответы дают на них даже современные математики, психологи-когнитивисты и философы. В 1989 году французский математик Ален Конн, удостоенный двух самых престижных премий по математике – Филдсовской медали (1982) и премии Крафорда (2001), высказался вполне ясно и недвусмысленно (Changeux and Connes 1995).

Возьмем, к примеру, простые числа (то есть те, которые делятся только сами на себя и на единицу. – М. Л.), – насколько я могу судить, они составляют куда более стабильную реальность, чем та материальная реальность, которая нас окружает. Математика, который трудится над своей задачей, можно уподобить естествоиспытателю, который изучает неведомый мир. Основные факты обычно выводят из опыта. Например, если проделывать несложные вычисления, становится понятно, что последовательность простых чисел продолжается бесконечно. Значит, задача математика – доказать, что существует бесконечно много простых чисел. Это, разумеется, очень старый результат, мы обязаны им еще Евклиду. Среди самых интересных следствий из этого доказательства – если когда-нибудь кто-нибудь заявит, будто нашел самое большое простое число, будет легко показать, что он заблуждается. Это справедливо для любого доказательства. То есть мы сталкиваемся с реальностью, которая в точности так же неопровержима, как и реальность физическая.

Мартин Гарднер, знаменитый писатель, автор множества книг и статей о развлекательной математике, тоже придерживается того мнения, что математика – это открытие. Он ничуть не сомневается, что числа и математика существуют сами по себе и неважно, знают ли о них люди. Как-то раз он остроумно подметил: «Если два динозавра повстречали на полянке двух других динозавров, всего их было четыре, даже если поблизости не было людей и некому было это пронаблюдать, а сами зверюги по глупости об этом не догадывались» (Gardner 2003). Как подчеркивал Конн, сторонники точки зрения «математика-открытие» (что, как мы вскоре убедимся, соответствует взглядам Платона) указывают, что как только удается усвоить какое-то одно математическое понятие, скажем, понятие натуральных чисел 1, 2, 3, 4…, как мы натыкаемся на неопровержимые факты вроде 32 + 42 = 52, и при этом не играет никакой роли, что мы думаем об этих соотношениях. Это, по крайней мере, оставляет впечатление, что мы сталкиваемся с некоей существующей реальностью.

Но с этим согласны не все. Когда английский математик сэр Майкл Атья, получивший Филдсовскую медаль в 1966 году и Абелевскую премию в 2004 году, писал рецензию на книгу, в которой Конн излагал свои идеи, то заметил следующее (Atiyah 1995).

Любой математик не может не сочувствовать Конну. Все мы интуитивно чувствуем, что целые числа или, скажем, окружности и в самом деле существуют в некоем абстрактном смысле и платоновское мировоззрение (о нем мы подробно поговорим в главе 2. – М. Л.) необычайно соблазнительно. Однако как его отстоять? Трудно представить себе, чтобы во Вселенной возникла и развилась геометрия, будь Вселенная одномерной или даже дискретной. Может показаться, что с целыми числами мы чувствуем себя увереннее и что счет – это и в самом деле нечто существующее изначально. Однако представим себе, что разумом наделено не человечество, а какая-нибудь огромная одинокая медуза в глубинах Тихого океана. Все ее сенсорные данные определялись бы движением, температурой и давлением. Поскольку все это – чистейший континуум, в такой обстановке не может появиться ничего дискретного, и медузе нечего было бы считать.

Поэтому Атья считает, что «человек создал (курсив мой. – М. Л.) математику посредством идеализации и абстрагирования элементов физического мира». Той же точки зрения придерживаются и ингвист Джордж Лакофф и психолог Рафаэль Нуньес. В своей книге «Откуда взялась математика» («Where Mathematics Comes From») они приходят к такому выводу: «Математика – естественная составляющая человеческого бытия. Она возникает из нашего тела, нашего мозга, нашего повседневного опыта взаимодействия с миром» (Lakoff and Núñez 2000).

Точка зрения Атья, Лакоффа и Нуньеса затрагивает еще один интересный вопрос. Если математика – это целиком и полностью человеческое изобретение, универсальна ли она? Иначе говоря, если существуют внеземные цивилизации, будет ли их математика такой же, как наша? Карл Саган (1934–1996) полагал, что ответ на последний вопрос утвердительный. В своей книге «Космос» Саган, в частности, размышлял о том, какого рода сигналы передавала бы в космос разумная цивилизация, и писал: «Крайне маловероятно, чтобы какой-нибудь естественный физический процесс генерировал радиосообщение, содержащее только простые числа. Получив подобное сообщение, мы можем заключить, что где-то есть цивилизация, которая любит простые числа (пер. А. Сергеева)». Но можно ли утверждать это с уверенностью? Недавно физик и математик Стивен Вольфрам в своей книге «Наука нового типа» («A New Kind of Science») утверждал, что так называемая «наша математика», вероятно, соответствует лишь одному из богатейшего ассортимента «вкусов» математики (Wolfram 2002). Например, вместо того, чтобы описывать природу при помощи законов, выраженных в виде математических уравнений, мы могли бы пользоваться законами иного типа, воплощенными в виде простых компьютерных программ. Более того, некоторые космологи в последнее время стали обсуждать гипотезу, согласно которой наша Вселенная – всего лишь составная часть множественной Вселенной или мультиверса, огромного ансамбля вселенных. Если множественная Вселенная и вправду существует, вправе ли мы ожидать, что в других вселенных будет такая же математика?

Специалисты по молекулярной биологии и психологии познания предлагают совершенно иную точку зрения, основанную на изучении свойств и способностей мозга. По представлениям некоторых ученых, математика – это нечто вроде языка. Иными словами, согласно «когнитивному сценарию», после того как человечество сотни тысяч лет таращилось на свои две руки, две ноги и два глаза, появилось абстрактное определение числа 2 – примерно так же, как возникло слово «птица», обозначающее множество двукрылых теплокровных пернатых существ, умеющих летать. По словам французского нейрофизиолога Жан-Пьера Шанжё: «С моей точки зрения, аксиоматический метод (применяющийся, например, в евклидовой геометрии. – М. Л.) – выражение способностей головного мозга, связанное с его использованием. Ведь основная характеристика языка – это именно его генеративный характер (Changeux and Connes 1995)». Однако, если математика – тот же язык, как объяснить, что, хотя дети легко учатся родному языку, математика дается многим с таким трудом? Марджори Флеминг (1803–1811), шотландская девочка-вундеркинд, не дожившая до 9 лет, оставила дневник – более девяти тысяч слов прозы и около пятисот стихотворных строк – где, помимо всего прочего, очаровательно описывает, с какими сложностями сталкиваются дети при изучении математики. В одном месте Марджори жалуется: «А теперь я хочу рассказать тебе, дорогой дневник, как страшно и ужасно мучает меня таблица умножения, ты себе и представить не можешь! Самое кошмарное – это восемь на восемь и семь на семь, это противно самой природе!»

Сложные вопросы, о которых я здесь рассказал, можно в некоторой степени переформулировать: есть ли какое-то фундаментальное различие между математикой и другими выражениями человеческого разума, например изобразительным искусством и музыкой? Если нет, почему математика обладает столь впечатляющей последовательностью, всеохватностью и самодостаточностью, в отличие от всех остальных творений человечества? Ведь, к примеру, евклидова геометрия в наши дни (когда она нашла практическое применение) так же точна, что и в 300 году до нашей эры; она отражает «истины», которые нам навязаны. А при этом мы, напротив, не обязаны ни слушать ту же самую музыку, которую слушали древние греки, ни придерживаться наивной аристотелевой модели Вселенной. Лишь очень немногие научные дисциплины в наши дни находят применение идеям, которым уже три тысячи лет от роду. С другой стороны, последние достижения математики могут относиться к теоремам, опубликованным в прошлом году или на прошлой неделе, однако при этом, не исключено, что они опираются на формулу площади сферической поверхности, которую вывел Архимед около 250 года до нашей эры! Узловая модель атома прожила всего лет двадцать, поскольку были сделаны новые открытия, показавшие, что составные части этой теории ошибочны. Так и происходит научный прогресс. Ньютон благодарил (или не благодарил, см. главу 4!) гигантов, на плечах которых стоял. Надо было ему еще и извиниться перед гигантами, чьи труды из-за него канули в Лету.

В математике все идет совсем иначе. Хотя математический инструментарий, необходимый для доказательства определенных результатов, иногда меняют, сами математические результаты не меняются никогда. Более того, как выразился математик и писатель Иэн Стюарт: «В математике есть особый термин для полученных когда-то результатов, которые затем были изменены: они называются ошибками» (Stewart 2004). И эти ошибки называются ошибками не потому, что были совершены какие-то новые открытия, как в других науках, а потому, что результаты более тщательно и дотошно сверили со все теми же старыми математическими истинами. Но делает ли это математику родным языком Бога?

Если вам кажется, что не так уж важно знать, изобрели мы математику или открыли, задумайтесь, как сильно оказывается нагружена разница между словами «изобрели» и «открыли», если задать вопрос иначе: а что же Бог – изобрели мы его или открыли? Или еще провокационнее: Бог ли создал людей по Своему образу и подобию или люди изобрели Бога по своему образу и подобию?

Многие из этих интереснейших вопросов (и довольно много дополнительных), а также весьма неоднозначные ответы на них, я и попытаюсь рассмотреть в этой книге. По ходу дела я предложу обзор идей, которые можно почерпнуть в трудах величайших математиков, физиков, философов, специалистов по когнитивной психологии и лингвистов прошлого и настоящего. Кроме того, я приведу мнения, оговорки и размышления многих современных мыслителей. Это увлекательное путешествие мы начнем с революционных прорывов, которые совершили философы далекой древности.

Глава 2
Мистики: нумеролог и философ

Жажда понять устройство мироздания двигала человечеством с самого начала времен. Попытки наших собратьев добраться до дна с вопросом «Что все это значит?» выходили далеко за рамки необходимого для простого выживания, улучшения экономической ситуации или качества жизни. Из этого не следует, что все и всегда активно участвовали в поисках каких-то закономерностей в природе или в метафизике. Тот, кто тратит все силы, чтобы свести концы с концами, редко может позволить себе роскошь размышлять о смысле жизни. А в череде тех, кто искал закономерности в головокружительно сложной на первый взгляд структуре Вселенной, выделяется несколько гигантов – на голову выше прочих.

Для многих из нас символом начала современной эпохи в философии науки стало имя французского математика, философа и естествоиспытателя Рене Декарта (1596–1650). Декарт был среди тех, кто добился перехода от описания мира природы с точки зрения качеств, воспринимаемых нашими органами чувств, к объяснению природных явлений при помощи численных величин, полученных на основе точных математических методов (о вкладе Декарта в научный прогресс мы поговорим подробнее в главе 4). Вместо ощущений, запахов и цветов, которые можно было охарактеризовать лишь расплывчато, Декарт потребовал научных объяснений, которые доходили бы до самого фундаментального микроуровня и были бы сформулированы на языке математики (Descartes 1644).

…Мне неизвестна иная материя телесных вещей, как только… та, которую геометры называют величиной и принимают за объект своих доказательств… И так как этим путем… могут быть объяснены все явления природы, то, мне думается, не следует в физике принимать других начал, кроме вышеизложенных, да и нет оснований желать их (пер. С. Шейнман-Топштейн, Н. Сретенского).

Интересно, что Декарт исключил из своей общей научной картины мира царства «мышления и разума»: он считал, что они независимы от материального мира, который можно описать математически. Хотя не приходится сомневаться, что Декарт входит в число самых влиятельных мыслителей последних четырех столетий, не он первый отвел центральное место математике. Хотите верьте, хотите нет, но обобщенные представления о космосе, пронизанном и управляемым математикой, заходившие временами даже дальше декартовских, высказывались, пусть и с сильным уклоном в мистицизм, за две с лишним тысячи лет до Декарта. Легенды гласят, что не кто иной, как загадочный Пифагор, считал, что душа человека, занимающегося чистой математикой, «напоена музыкой».

Пифагор

Пифагор (ок. 572–497 гг. до н. э.) был, вероятно, первым человеком, которому удалось одновременно быть и авторитетным естествоиспытателем, и харизматическим главой философской школы, и ученым, и религиозным мыслителем. В сущности, считается, что именно он и ввел понятия «философии» – любви к мудрости – и «математики» – совокупности научных дисциплин, подлежащих изучению (Iamblichus ca. 300 ADa, см. Guthrie 1987). Хотя до нас не дошло ни одного подлинного сочинения Пифагора (если они вообще записывались, поскольку его учение распространялось в основном устно), в нашем распоряжении есть три подробные, пусть и не вполне достоверные биографии Пифагора, созданные в III веке (Laertius ca. 250 AD; Porphyry ca. 270 AD; Iamblichus ca. 300 ADa, b.). Четвертая, анонимная, пересказана в трудах византийского патриарха и философа Фотия (ок. 820–891 гг.). При изучении наследия Пифагора основная трудность заключается в том, что его последователи и ученики, пифагорейцы, неизменно приписывали ему все свои идеи. В результате даже Аристотелю (384–322 гг. до н. э.) было сложно определить, какие принципы пифагорейской философии можно без опасений приписывать самому Пифагору, поэтому он обычно ссылается на «пифагорейцев» или «так называемых пифагорейцев» (Aristotle ca. 350 гг. до н. э.; см. Burkert 1972). Тем не менее, если учесть, как часто Пифагор упоминается в позднейшей традиции, в целом принято считать, что по крайней мере часть пифагорейских теорий, оказавших сильное влияние на Платона и даже на Коперника, восходят к самому Пифагору.

Нет практически никаких сомнений, что Пифагор родился в начале VI века до н. э. на острове Самос, неподалеку от побережья современной Турции. Вероятно, в юности он много путешествовал, особенно в Египет и, возможно, в Вавилон, где и получил первоначальное математическое образование. Затем он эмигрировал в маленькую греческую колонию Кротон у южной оконечности Италии, где вокруг него быстро собралась группа энтузиастов – учеников и последователей.

Греческий историк Геродот (ок. 485–425 гг. до н. э.) назвал Пифагора «величайшим эллинским мудрецом» (Herodotus 440 гг. до н. э.), а поэт и философ-досократик Эмпедокл (ок. 492–432 гг. до н. э.) восхищенно добавил (Porphyry ca. 270 AD)/

Жил среди них некий муж, умудренный безмерным познаньем,

Подлинно мыслей высоких владевший сокровищем ценным,

В разных искусствах премудрых свой ум глубоко изощривший.

Ибо как скоро всю силу ума напрягал он к Познанью,

То без труда созерцал любое, что есть и что было,

За десять или за двадцать провидя людских поколений.

(Пер. Г. Якубаниса в обр. М. Гаспарова.)

Однако не на всех учение Пифагора производило такое сильное впечатление. Философ Гераклит Эфесский (ок. 535–475 гг. до н. э.) в комментариях, в которых явственно прослеживается личное соперничество, признает широкие познания Пифагора, однако тут же пренебрежительно добавляет: «Многознание не научает быть умным, иначе бы оно научило Гесиода (греческого поэта, жившего около 700 г. до н. э. – М. Л.) и Пифагора» (пер. М. Дынника).

Пифагор и ранние пифагорейцы не были ни математиками, ни учеными в строгом смысле слова. Скорее, в основе их учения лежит метафизическая философия значения чисел. В глазах пифагорейцев числа были и актуальными сущностями, практически живыми, и универсальными принципами, которые охватывали все, от небес до человеческой этики. Иначе говоря, числа рассматривались с двух разных, хотя и взаимосвязанных сторон. С одной стороны, они существовали вполне осязаемо, физически, с другой – это были абстрактные рецепты, на основании которых строилось все остальное. Скажем, монада (число 1) понималась и как генератор всех прочих чисел, сущность, столь же реальная, сколь и вода, огонь и воздух, играющая свою роль в структуре физического мира, и как идея, метафизическая единица, стоящая у источника всего творения[8]8
  Популярное изложение пифагорейского учения см. в книге Strohmeier and Westbrook 1999.


[Закрыть]
. О двойном значении, которое придавали числам пифагорейцы, писал (на прелестном языке XVII века) и английский историк философии Томас Стэнли (1625–1678).

Число двояко – его можно понимать либо как нечто умственное (то есть нематериальное), либо как нечто научное. Умственное число есть та вечная сущность числа, которую пифагорейцы в своих рассуждениях о богах называли тем самым первоначалом, на котором и зиждется и земля, и небо, и заключенная меж ними природа… Именно его называют первоначалом, источником и корнем всего сущего… Научное же число Пифагор определяет как расширение и претворение в действие продуктивных первопричин, заключенных в монаде или в скоплении монад (Stanley 1687).

Итак, числа – не просто инструменты для обозначения количества или объема. Нет, их надо было открыть – и именно они служат основными движущими силами в природе. Все во Вселенной, от материальных объектов вроде Земли до абстрактных понятий вроде справедливости, – это числа и только числа.

В принципе, числа вполне могут заинтересовать и увлечь кого угодно, в этом нет ничего удивительного[9]9
  О поразительных свойствах чисел превосходно рассказано в Wells 1986.


[Закрыть]
. Ведь даже самые заурядные числа, с которыми мы сталкиваемся изо дня в день, и те обладают занятными свойствами. Возьмем, к примеру, число дней в году – 365. Нетрудно убедиться, что 365 – это сумма трех последовательных квадратов: 365 = 102 + 112 + 122. Мало того, это число также равно сумме двух следующих квадратов (365 = 132 + 142). Или рассмотрим число дней в лунном месяце – 28. Это число – сумма всех своих делителей (чисел, на которые его можно делить без остатка): 28 = 1 + 2 + 4 + 7 + 14. Числа, обладающие этим особым свойством, называются совершенными числами (первые четыре совершенные числа – 6, 28, 496, 8218). Отметим также, что 28 – это сумма кубов первых двух нечетных чисел: 28 = 13 + 33. Свои странности есть даже у такого широкоупотребительного в нашей десятичной системе числа, как 100: 100 = 13 + 23 + 33 + 43.

В общем, ясно, что в числах много интересного. И все же вполне можно задаться вопросом, каков источник пифагорейского учения о числах. Откуда появилась идея, что не просто всему на свете можно приписать число – что все на свете суть числа? Поскольку, либо пифагорейцы ничего не записывали, либо все их сочинения были уничтожены, ответить на этот вопрос нелегко. Мы имеем возможность составить впечатление о пифагорейской логике на основании небольшого числа доплатоновских фрагментов и гораздо более поздних и менее надежных суждений, принадлежащих в основном философам-последователям Платона и Аристотеля. Картина, которую удается воссоздать из этих разрозненных отрывков, наталкивает на мысль, что подобная одержимость числами, вероятно, объясняется тем, что пифагорейцы увлекались двумя занятиями, на первый взгляд не связанными, – музыкальными экспериментами и наблюдением над небесами.

Чтобы понять, как образовались все эти таинственные взаимосвязи между числами, небесами и музыкой, придется начать с интересного наблюдения: пифагорейцы придумали способ представлять числа в виде фигур из точек или камешков. Например, натуральные числа 1, 2, 3, 4,… они представляли в виде треугольников (как на рис. 1). В частности, треугольник, выстроенный из первых четырех целых чисел (треугольник из десяти камешков), называется тетрактида (тетрактис, тетрада, «четверица») и в глазах пифагорейцев символизировал совершенство и составляющие его элементы. Это нашло отражение в рассказе о Пифагоре, который приводит греческий сатирик Лукиан (ок. 120–180 гг.) Пифагор просит собеседника начать считать (цит. по Heath 1921). Тот считает: «Один, два, три, четыре…» Пифагор перебивает его: «Видишь? То, что ты принимаешь за четыре, на самом деле десять, идеальный треугольник и наша клятва». Философ-неоплатоник Ямвлих (ок. 250–325 гг.) говорит, что пифагорейцы и правда клялись особой клятвой (Iamblichus ca. 300 ADa; разбор см. у Guthrie 1987).

Именем клятву даю открывшего нам четверицу,

Неиссякаемой жизни источник.

(Здесь и далее пер. И. Мельниковой.)

Рис. 1


За что же так почитали тетрактиду? Дело в том, что в глазах пифагорейцев VI века до н. э. она воплощала в себе всю природу Вселенной. В геометрии – которая послужила трамплином для эпохальной древнегреческой научной революции – число 1 соотносилось с точкой , число два – с отрезком  или линией, число 3 – с плоскостью или поверхностью , а 4 – с трехмерным телом, тетраэдром . Поэтому тетрактида, по всей видимости, охватывала все пространственные измерения, доступные органам чувств.

Однако это только начало. Тетрактида неожиданно проявилась даже в музыковедении. Считается, что именно Пифагор и пифагорейцы открыли, что если разделить струну так, чтобы длины частей относились как соседние натуральные числа, получаются гармоничные созвучные интервалы – это заметно, когда слушаешь выступление струнного квартета. Когда две подобные струны звучат одновременно, звук получается приятным, если отношения длин этих струн представляют собой простую пропорцию (Strohmeier and Westbrook 1999; Stanley 1687). Например, струны равной длины (соотношение 1:1) звучат в унисон, при соотношении 1:2 получается октава, 2:3 – чистая квинта, 3:4 – чистая кварта. Выходит, что тетрактида не только охватывает все пространственные измерения, но еще и может считаться воплощением математических соотношений, которые лежат в основе музыкальной гаммы. Этот волшебный на первый взгляд союз музыки и пространства стал для пифагорейцев важнейшим символом, дарующим чувство гармонии («взаимного соответствия частей») космоса («прекрасного порядка вещей»).

Где же тут место небесам? Пифагор и пифагорейцы сыграли в истории астрономии роль пусть не главную, однако существенную. Они одними из первых предположили, что Земля имеет форму шара (возможно, потому, что считали сферу совершенной с математико-эстетической точки зрения). Возможно, они также первыми установили, что планеты, Солнце и Луна независимо, сами по себе движутся с запада на восток, в направлении, противоположном ежедневному (очевидному) движению сферы неподвижных звезд. Энтузиасты-наблюдатели ночного неба не пропустили и бросающиеся в глаза основные свойства созвездий – количество звезд и общие очертания. Каждое созвездие характеризовалось числом входящих в него звезд и геометрической фигурой, которую они образуют. И именно эти характеристики лежат в основе пифагорейской доктрины чисел, что ясно видно на примере тетрактиды. Пифагорейцы были под таким впечатлением от того, что геометрические фигуры, созвездия и музыкальные гармонии зависят от чисел, что числа стали для них и строительным материалом Вселенной, и первоначалом самого ее существования. Неудивительно, что девиз Пифагора гласил: «Все есть число».

О том, насколько серьезно воспринимали эту максиму сами пифагорейцы, можно судить по двум замечаниям Аристотеля. В компилятивном трактате «Метафизика» Аристотель пишет: «В это же время и раньше так называемые пифагорейцы, занявшись математикой, первые развили ее и, овладев ею, стали считать ее начала началами всего существующего» (здесь и далее пер. А. Кубицкого). В другом месте Аристотель живо описывает, как пифагорейцы почитали числа, и упоминает об особой роли тетрактиды: «Эврит [ученик пифагорейца Филолая] устанавливал, какое у какой вещи число (например, это вот – число человека, а это – число лошади); и так же как те, кто приводит числа к форме треугольника и четырехугольника (курсив мой. – М. Л.), он изображал при помощи камешков формы животных и растений». Выделенная фраза – «кто приводит числа к форме треугольника и четырехугольника» – отсылает и к тетрактиде, и к другому интереснейшему пифагорейскому понятию: к идее гномона.

Слово «гномон» (в сущности, «маркер») происходит от названия вавилонского астрономического устройства для определения времени, похожего на солнечные часы[10]10
  Подробно об истории и значении этого термина и о том, что означало это слово в разное время, см. Heath 1921. Математик Теон Смирнский (ок. 70–135 гг.) употреблял это слово применительно к фигурному выражению чисел, о чем говорится в его трактате «Изложение математических предметов, полезных при чтении Платона» (Theon of Smyrna ca. 130 AD).


[Закрыть]
. Похоже, что этот аппарат привез в Грецию учитель Пифагора, естествоиспытатель Анаксимандр (ок. 611–547 гг. до н. э.). Не приходится сомневаться, что геометрические представления наставника и их применение в космологии – науке о Вселенной в целом – произвели на ученика сильное впечатление. Впоследствии слово «гномон» стало обозначать и чертежный угольник, и фигуру в виде двух полос, состыкованных под прямым углом, – если приложить ее к квадрату, получится квадрат большего размера (рис. 2). Обратите внимание, что если добавить, например, к квадрату 3 × 3 семь камешков, выложенных в форме прямого угла (гномона), получится квадрат 4 × 4, состоящий из 16 камешков. Это фигурное изображение следующего свойства: в последовательности нечетных целых чисел 1, 3, 5, 7, 9,… сумма любого количества последовательных членов (начиная с 1) всегда дает квадрат. Например, 1 = 12, 1 + 3= 4 = 22, 1 + 3 + 5 = 9 = 32, 1 + 3 + 5 + 7 = 16 = 42, 1 + 3 + 5 + 7 + 9 = 25 = 52 и так далее. Такие тесные отношения между гномоном и квадратом, который он «обнимает», пифагорейцы считали символом познания в целом: знание «обнимает» познанное. Следовательно, по мнению пифагорейцев, числа не просто описывали физический мир, но и лежали в основе умственных и эмоциональных процессов.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации