Электронная библиотека » Марио Ливио » » онлайн чтение - страница 8


  • Текст добавлен: 1 июня 2016, 13:20


Автор книги: Марио Ливио


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 20 страниц)

Шрифт:
- 100% +
И стал свет

Великому английскому поэту XVIII века Александеру Поупу (1688–1744) в год смерти Ньютона исполнилось тридцать девять лет (на рис. 27 изображена могила Ньютона в Вестминстерском аббатстве)[65]65
  Монумент воздвигнут в 1731 году. Он создан фламандским скульптором Михаэлем Райсбраком по поручению Уильяма Кента. Помимо статуи самого Ньютона, который опирается на тома своих трудов, в композицию входят фигуры купидонов с эмблемами важнейших открытий Ньютона. За саркофагом стоит пирамида, на которую водружена сфера с изображением нескольких созвездий, а также траектории кометы 1681 года.


[Закрыть]
. Поуп попытался подвести итог достижениям Ньютона в своей известной эпиграмме.

Был этот мир извечной тьмой окутан.

«Да будет свет!» – И вот явился Ньютон.

(Пер. С. Маршака).

Спустя почти сто лет после смерти Ньютона лорд Байрон (1788–1824) вписал в свою эпическую поэму «Дон Жуан» следующие строки.

Впервые от Адамовых времен

О яблоке разумное сужденье

С паденьем и с законом тайных сил

Ум смертного логично согласил.

(Пер. Т. Гнедич)

Рис. 27


В глазах последующих поколений ученых Ньютон и в самом деле был и остается фигурой мифологического масштаба, пусть даже и опровергавшей эти самые мифы. Знаменитые слова Ньютона «Если я и видел дальше других, то лишь потому, что стоял на плечах гигантов» зачастую приводят как образец смирения и великодушия, с которыми ученые должны судить о величайших своих открытиях. Но на самом деле Ньютон, вероятно, вложил в эту фразу завуалированный сарказм – она содержится в ответе на письмо человека, которого он считал своим заклятым научным врагом: это был плодовитый физик и биолог Роберт Гук (1635–1703)[66]66
  Невозможно сказать наверняка, хотел ли Ньютон этими словами задеть своего корреспондента. Р. К. Мертон обнаружил, что выражение «на плечах гигантов» во времена Ньютона использовалось довольно часто (Merton 1993).


[Закрыть]
. Гук не раз и не два обвинял Ньютона в том, что тот крадет у него идеи – сначала по теории света, затем по теории всемирного тяготения. Двадцатого января 1676 года Гук избрал более миролюбивый тон и в личном письме к Ньютону объявил: «И ваши рассуждения, и мои [касательно теории света], думается мне, направлены на одно и то же, то есть на открытие истины, и я полагаю, что оба мы вполне способны вытерпеть возражения». Ньютон решил сыграть в его игры. В своем ответе на письмо Гука, датированном 5 февраля 1676 года, он писал[67]67
  Вся переписка Ньютона издана в собрании Turnbull, Scott, Hall, and Tilling 1959–1977 – поистине титанический труд.


[Закрыть]
: «Декарт сделал хороший шаг вперед [речь идет о декартовой теории света]. Вы сделали несколько важных дополнений, в особенности – подвергнув философскому осмыслению цвета тонких пластин. Если я и видел дальше других, то лишь потому, что стоял на плечах гигантов». Поскольку Гук был далеко не гигантом, а, наоборот, коротышкой и к тому же сильно сутулился, самая знаменитая цитата из Ньютона вполне могла означать попросту, что Гуку он решительно ничем не обязан! К тому же Ньютон никогда не упускал случая поддеть Гука, утверждал, что его теория не оставила камня на камне «от всего, что он [Гук] говорил», и отказывался публиковать собственную книгу о свете – «Оптику» – до смерти Гука. Все это свидетельствует о том, что такое толкование его высказывания имеет полное право на существование. Однако когда дело дошло до теории всемирного тяготения, вражда между учеными достигла кульминации[68]68
  Этот спор подробнейшим образом описан в нескольких превосходных биографиях Ньютона, в том числе Westfall 1983, Hall 1992 и Gleick 2003.


[Закрыть]
. Когда Ньютон услышал, что Гук претендует на авторство закона всемирного тяготения, его обуяла такая жажда мщения, что он педантично искоренил любые упоминания о Гуке из последней части своей книги по этому вопросу. Двадцатого июня 1668 года Ньютон так писал своему другу астроному Эдмонду Галлею (1656–1742).

Ему [Гуку] лучше было бы отказаться от этого дела, потому что он неспособен сделать его. Ведь по его словам совершенно ясно, что он не понимал, что с этим делать. Разве это не чудовищно? Математики, которые все выясняют, согласуют и вообще делают все дело, должны довольствоваться тем, что они всего лишь сухие вычислители и поденщики, а этот, который не делает ничего, только притворяется и сует свой нос куда попало, получит славу за все изобретения как своих последователей, так и всех, кто был до него.

Ньютон совершенно недвусмысленно указал, почему он считал, что у Гука нет никаких заслуг: Гук не умел формулировать свои идеи на языке математики. И в самом деле, то качество, которое, собственно, и выделяет теории Ньютона из общего ряда, та присущая им особенность, которая и превращает их в нерушимые законы природы, – это и есть тот самый факт, что все они выражены на кристально ясном, самосогласованном языке математических уравнений. А теоретические идеи Гука, напротив, при всей своей – во многих случаях – изобретательности, выглядели всего лишь как собрание подозрений, домыслов и натяжек[69]69
  В эссе, опубликованном в 1674 году, Гук писал о гравитации, что ее «притягательная сила действует гораздо сильнее, если приблизить друг к другу центры взаимодействующих тел». То есть мыслил Гук в верном направлении, но не сумел выразить свои соображения математически.


[Закрыть]
.

Кстати, в феврале 2006 года были обнаружены рукописные протоколы заседаний Королевского общества с 1661 по 1682 год, которые долгое время считались утраченными. Рукописи, содержащие более 520 страниц, начертанных рукой самого Гука, были обнаружены в одном доме в Гемпшире, где, видимо, последние полвека хранились в буфете. В протоколах за декабрь 1679 года речь идет о переписке между Гуком и Ньютоном, где они обсуждали эксперимент, который подтверждал бы, что Земля вращается.

Ньютон – вернемся к его научной стратегии – опирался на концепцию Декарта, гласящую, что Вселенную можно описать математически, и превратил ее в рабочую реальность. В предисловии к своему фундаментальному труду «Математические начала натуральной философии» («Philosophiae Naturalis Principia Mathematica» или просто «Principia») он провозгласил следующее[70]70
  Существует несколько прекрасных переводов ньютоновых «Principia» на английский, в том числе Motte 1729 и Cohen and Whitman 1999 (см. Newton 1729). Самое доступное издание с полезными примечаниями – это отредактированное и дополненное издание Чандрасекара (Chandrasekhar 1995). Концепция закона всемирного тяготения и его история подробно обсуждаются в Girifalco 2008, Greene 2004, Hawking 2007 и Penrose 2004.


[Закрыть]
.

…Сочинение это нами предлагается как математические основания физики. Вся трудность физики, как будет видно, состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления. Для этой цели предназначены общие предложения, изложенные в книгах первой и второй. В третьей же книге мы даем пример вышеупомянутого приложения, объясняя систему мира, ибо здесь из небесных явлений, при помощи предложений, доказанных в предыдущих книгах, математически выводятся силы тяготения тел к Солнцу и отдельным планетам. Затем по этим силам, также при помощи математических предложений, выводятся движения планет, комет, Луны и моря (здесь и далее пер. А. Крылова).

Как только мы поймем, что Ньютон в своих «Началах» и в самом деле выполнил все обещания, которые дал в предисловии, остается только ахнуть от восхищения. Очевиден также намек на превосходство сочинения Ньютона над трудами Декарта: Ньютон решил назвать свою книгу «Математические начала» в пику «Первоначалам философии» Декарта. Того же метода математических рассуждений Ньютон придерживается и в своем трактате, в большей степени основанном на экспериментальных данных – в книге о свете «Оптика» (Newton 1730). Он открывает книгу следующим предуведомлением: «Мое намерение в этой книге – не объяснять свойства света гипотезами, но изложить и доказать их рассуждением и опытами. Для этого я предпосылаю следующие определения и аксиомы (здесь и далее пер. С. Вавилова)». И далее излагает свои мысли так, словно пишет книгу о евклидовой геометрии – дает краткие описания и утверждения. Затем, в конце книги, Ньютон еще раз подчеркивает: «Как в математике, так и в натуральной философии исследование трудных предметов методом анализа всегда должно предшествовать методу соединения».

Мастерство, с которым Ньютон владел математическим аппаратом, иначе как чудесным не назовешь. Этот гений, по странному историческому совпадению родившийся в год смерти Галилея, сформулировал фундаментальные законы механики, расшифровал законы, описывающие движение планет, заложил теоретическую основу явлений света и цвета, а также основы интегрального и дифференциального исчисления. Одних этих достижений было бы достаточно, чтобы отвести Ньютону почетное место в галерее самых выдающихся ученых. Однако на первое место на пьедестале почета волшебников – на месте, отведенном для величайшего ученого всех времен и народов – его поставили именно труды по гравитации. Эти труды заполнили пропасть между Землей и небесами, позволили свести воедино астрономию и физику и поместили всю Вселенную под один математический «зонтик». Как же появился на свет этот шедевр – «Начала»?

Я задумался о том, что тяготение простирается до самой Луны

Уильям Стьюкли (1687–1765), врач и антиквар, друг Ньютона (несмотря на почти сорокалетнюю разницу в возрасте), впоследствии стал первым биографом великого ученого. В своих «Мемуарах о жизни сэра Исаака Ньютона» («Memoirs of Sir Isaac Newton’s Life» он рассказал нам одну из самых знаменитых легенд в истории науки[71]71
  Stukeley 1752. Помимо полных биографий, существуют и небольшие книги, описывающие те или иные эпизоды из жизни Ньютона и его родных. Я бы отметил De Morgan 1885 и Craig 1946.


[Закрыть]
.

Пятнадцатого апреля 1726 года я навестил сэра Исаака в его квартире в доме Орбелла в Кенсингтоне, и мы с ним пообедали и провели целый день вдвоем… После обеда, поскольку погода стояла теплая, мы вышли в сад попить чаю в тени яблонь – только он и я. Помимо всего прочего, он рассказал мне, что идея всемирного тяготения пришла ему в голову точно в таких же обстоятельствах, только значительно раньше [в 1666 году, когда Ньютон приехал из Кембриджа домой из-за эпидемии]. Это было связано с падением яблока, когда Ньютон сидел в задумчивости. И он подумал: почему яблоко всегда падает перпендикулярно земле? Почему оно летит не вбок и не вверх, но всегда только к центру Земли? Несомненно, причина в том, что Земля его притягивает. Должно быть, в веществе заключена какая-то притягательная сила, причем сумма притягательной силы вещества Земли сосредоточена, как видно, в центре Земли, а не с какой-то ее стороны. Именно поэтому яблоко падает перпендикулярно, то есть к центру. Таким образом, если вещество притягивает вещество, это должно быть пропорционально его количеству. Поэтому и яблоко притягивает Землю, как и Земля – яблоко. То есть существует сила, которую мы зовем тяготением, которая распространяется через всю Вселенную… Таково было рождение этих поразительных открытий, благодаря чему он выстроил философию на прочном фундаменте, к вящему изумлению всей Европы.

Когда произошла легендарная история с яблоком – именно в 1666 году или нет, – в сущности, неважно; главное – эта легенда сильно недооценивает гениальность и уникальную глубину аналитического мышления Ньютона[72]72
  Дэвид Брюстер в биографии Ньютона писал: «Знаменитая яблоня, падение одного из плодов которой, как говорят, привлекло внимание Ньютона к тяготению, года четыре назад была повалена ветром, однако мистер Тернор [владелец дома Ньютона в Вулсторпе] сохранил ее, сделав из нее кресло» (Brewster 1831).


[Закрыть]
.

Хотя нет никаких сомнений, что первую свою рукопись о теории гравитации Ньютон написал до 1669 года, ему не нужно было своими глазами увидеть падение яблока, чтобы понять, что Земля притягивает тела вблизи своей поверхности. Да и формулировка закона всемирного тяготения не могла опираться исключительно на зрелище падающего яблока. Более того, многое указывает, что некоторые важнейшие понятия, без которых Ньютон не мог заявить о существовании универсальной силы тяготения, сложились лишь к 1684–85 годам. Идеи такого масштаба в анналах науки столь редки, что даже человек феноменального интеллекта – такой как Ньютон – мог прийти к ней лишь посредством длинной цепочки интеллектуальных шагов.

Все началось, вероятно, еще в юности Ньютона, при крайне неудачном знакомстве с «Началами» Евклида, объемистым трактатом по геометрии[73]73
  О том, как Ньютон изучал математику, хорошо рассказано в книге Hall 1992.


[Закрыть]
. По признанию самого Ньютона, сначала он «читал только формулировки теорем», поскольку, по его мнению, они были до того очевидны, что он «не понимал, кому может быть интересно писать для них доказательства». Первой теоремой в трактате, которая заставила его задуматься и написать несколько строчек рассуждений, была теорема о том, что «в прямоугольном треугольнике квадрат гипотенузы равен квадратам двух других сторон» – теорема Пифагора. Как ни странно, хотя Ньютон во время обучения в Колледже Св. Троицы в Кембридже читал книги по математике, многие работы, доступные в его время, прошли мимо него. Очевидно, они ему были просто не нужны!

Пожалуй, самое сильное влияние на направление математической и научной мысли Ньютона оказала именно «Геометрия» Декарта. Ньютон прочитал ее в 1664 году и перечитывал несколько раз, пока «постепенно не овладел всем ее содержанием». Идея функций и их свободных переменных обеспечивала гибкость, которая и открыла перед Ньютоном поистине безграничные возможности. Аналитическая геометрия не только проложила Ньютону путь к дифференциальному и интегральному исчислению, а тем самым и к изучению свойств функций, их графиков и касательных к ним – она воспламенила у Ньютона исследовательский дух. Позади остались занудные построения при помощи циркуля и линейки – на смену им пришли произвольные кривые, выраженные алгебраически. Затем, в 1665–66 годах, на Лондон обрушилась страшная эпидемия чумы. Когда количество жертв за неделю достигло нескольких тысяч человек, колледжи Кембриджа пришлось закрыть. Ньютон был вынужден оставить занятия и вернуться домой в далекую деревушку Вулсторп. Там, в сельской тиши, Ньютон предпринял первую попытку доказать, что сила, которая удерживает Луну на орбите вокруг Земли, и тяготение Земли – та самая сила, из-за которой падают яблоки, – на самом деле одно и то же. Ньютон описал свои первые подступы к закону всемирного тяготения в заметке, написанной около 1714 года[74]74
  Эта заметка хранится в архиве графа Портсмута. Есть и другие документы, заставляющие сделать вывод, что Ньютон и в самом деле обдумывал закон всемирного тяготения, обратно пропорционального квадрату расстояния, во время эпидемии чумы. См., например, Whiston 1753.


[Закрыть]
.

И вот в том же [1666] году я задумался о силе тяготения, которая простирается до самой орбиты Луны, и, обнаружив, как рассчитать силу, с которой шар, вращающийся внутри сферы, давит на поверхность сферы, по закону Кеплера, согласно которому квадраты периодов вращения планет относятся как кубы их расстояний от центров орбит, я вывел, что силы, удерживающие планеты на орбитах, должны быть обратно пропорциональны квадратам их расстояний от центров, вокруг которых они вращаются, и таким образом сравнил силу, требуемую для удержания Луны на орбите, с силой тяготения на поверхности Земли, и ответы оказались почти одинаковыми. А было это в два чумные года, 1665 и 1666, ведь именно тогда я был в том возрасте, который более всего способствует изобретательности, и математика и философия увлекали меня особенно сильно.



Рис. 28


Здесь Ньютон ссылается на свой важный вывод (из законов движения планет Кеплера), что гравитационное притяжение двух сферических тел меняется обратно пропорционально расстоянию между ними. Иначе говоря, если бы расстояние между Землей и Луной утроилось, сила тяготения, которая действовала бы на Луну, оказалась бы в девять раз (три в квадрате) меньше.

По не вполне понятным причинам Ньютон, в сущности, отложил сколько-нибудь серьезные исследования гравитации до 1679 года[75]75
  Исследование причин, по которым Ньютон так долго не публиковал закон всемирного тяготения, см. в Cajori 1928 и Cohen 1982. В следующем разделе мы рассмотрим два самых убедительных, по моему мнению, предположения о том, каковы могли быть эти причины.


[Закрыть]
. Затем он получил два письма от своего злейшего врага Роберта Гука, которые оживили в нем затухший было интерес к динамике в целом и к движению планет в частности. А пробудившееся любопытство привело к колоссальным результатам: опираясь на свои недавно сформулированные законы механики, Ньютон доказал второй закон движения планет Кеплера. Точнее, он показал, что при движении планеты по эллиптической орбите вокруг Солнца линия, соединяющая планету с Солнцем, заметает за равные промежутки времени равные площади (рис. 28). Кроме того, Ньютон доказал, что «для тела, вращающегося по эллипсу… притяжение, направленное к фокусу эллипса… обратно пропорционально квадрату расстояния». Все это были важные вехи на пути к «Началам».


«Начала»

Весной или летом 1684 года Ньютона в Кембридже навестил Галлей. Он уже некоторое время обсуждал законы движения планет Кеплера с Гуком и со знаменитым архитектором Кристофером Реном (1632–1723). Во время этих бесед за чашкой кофе в кофейне и Гук, и Рен заявили, что уже несколько лет назад независимо вывели закон всемирного тяготения, обратно пропорционального квадрату расстояния, однако ни тот ни другой так и не смог представить полное математическое доказательство. Галлей решил задать Ньютону наболевший вопрос: знает ли он, какой была бы орбита планеты, подвергавшейся воздействию силы, которая меняется обратно пропорционально квадрату расстояния? К его изумлению, Ньютон ответил, что уже несколько лет назад доказал, что орбита эта – эллипс. Эта история рассказана в заметке математика Абрахама де Муавра (1667–1754), страничка которой приведена на рис. 29[76]76
  Де Муавр вспоминал, что ему рассказывал сам Ньютон.


[Закрыть]
.


Рис. 29


В 1684 году доктор Галлей приехал навестить его [Ньютона] в Кембридже, и когда они провели вместе некоторое время, доктор спросил его, какова, по его мнению, та кривая, которую описывали бы планеты, если предположить, что сила притяжения к Солнцу обратно пропорциональна квадрату расстояния до него. Сэр Исаак тут же ответил, что это будет эллипс, и доктор, вне себя от радости и изумления, спросил, откуда он это знает; что же, говорит Ньютон, я это вычислил; на это доктор Галлей попросил его, не откладывая, показать ему выкладки, и сэр Исаак поискал в своих бумагах, не нашел их, однако пообещал заново записать и послать доктору.

Галлей еще раз приехал к Ньютону в ноябре 1684 года. Между этими визитами Ньютон лихорадочно трудился. Де Муавр кратко описывает этот период.

Дабы исполнить свое обещание, сэр Исаак уселся за работу, однако никак не мог прийти к тому же выводу, который, как он полагал, ему удалось ранее получить со всей строгостью, однако он попробовал пойти другим путем, который, хотя и оказался длиннее прежнего, привел его еще раз к тому же выводу, а затем тщательно исследовал, по каким же причинам те вычисления, которые он проделал до этого, оказались неверными, и… добился, чтобы оба доказательства привели к одному и тому же результату.

Этот суховатый отчет не дает даже самого отдаленного представления о том, чего на самом деле достиг Ньютон за несколько месяцев между двумя визитами Галлея. Он написал целый трактат «De Motu Corporum in Gyrum» («О движении тел по орбитам»), где доказал почти все законы о движении тел по круглым и эллиптическим орбитам и все законы Кеплера и даже решил задачу о движении частицы в сопротивляющейся среде (например, в воздухе). Галлей был потрясен. К вящей своей радости, он в конце концов уговорил Ньютона опубликовать все эти поразительные открытия, и тогда наконец и сложились все условия для написания «Начал».

Поначалу Ньютон полагал, что эта книга будет всего лишь углубленной и расширенной редакцией трактата «О движении». Однако, приступив к работе, он обнаружил, что некоторые темы нуждаются в дальнейшем обдумывании. Особенно его беспокоили два вопроса. Один состоял в следующем. Ньютон первоначально сформулировал закон всемирного тяготения так, словно и Солнце, и Земля, и остальные планеты были математическими материальными точками, не имеющими измерений. Разумеется, он понимал, что на самом деле это не так, поэтому считал, что применительно к Солнечной системе его результаты лишь приблизительны. Некоторые исследователи даже полагают, что он в очередной раз отложил работу над законом всемирного тяготения после 1679 года именно потому, что такое положение дел его не устраивало[77]77
  В числе прочих это предположение высказано в Cohen 1982.


[Закрыть]
. Что же касается силы, действующей на яблоко, тут все было еще хуже. Ведь очевидно, что те части Земли, которые находятся прямо под яблоком, гораздо ближе к нему, чем те части, которые находятся по ту сторону земного шара. Как же вычислить результирующую силу притяжения? Астроном Герберт Холл Тернер (1861–1930) описывал мысленные терзания Ньютона в статье, напечатанной в лондонской «Times» 19 марта 1927 года.

В то время ему уже приходило в голову общее представление о том, что тяготение меняется обратно пропорционально расстоянию, однако он видел существенные препятствия обобщению этого закона, о которых умы меньшего масштаба и не подозревали. Главное из них ему удалось преодолеть лишь в 1685 году… Дело в том, что нужно было увязать силу притяжения Земли, действующую на тело, расположенное далеко, скажем, на расстоянии Луны, с силой притяжения, которая действует на яблоко вблизи земной поверхности. В первом случае различные частицы, составляющие Землю (чтобы сделать свой закон универсальным, Ньютон хотел распространить его на каждую из них в отдельности), находятся от Луны на примерно одинаковом расстоянии – и с точки зрения величины, и с точки зрения направления, – однако их расстояния до яблока и в том и в другом отношении сильно разнятся. Как же сложить или свести в единую результирующую силу все отдельные силы притяжения в последнем случае? И в каком таком «центре гравитации» они могут быть сосредоточены – да и существует ли он?

Окончательный прорыв произошел весной 1685 года. Ньютон сумел доказать необходимую теорему: для двух сферических тел «сила, с которой одна сфера притягивает другую, обратно пропорциональна квадрату расстояния между их центрами». То есть сферические тела с гравитационной точки зрения ведут себя так, словно это точечные массы, сосредоточенные в их центрах. Значение этой теоремы и ее красивого доказательства подчеркивал математик Джеймс Уитбред Ли Глейшер (1848–1928). В обращении к участникам празднования двухсотлетия «Начал» Ньютона (в 1887 году) Глейшер сказал такие слова (Glaisher 1888).

Лишь когда Ньютон доказал эту великолепную теорему – а мы с его собственных слов знаем, что он никак не ожидал столь красивого результата, пока не получил его после математических выкладок – перед ним открылась вся механика Вселенной… Насколько же иначе стали видеться Ньютону его построения, когда он обнаружил, что его результаты для Солнечной системы, которые он предполагал лишь приблизительно верными, оказались на самом деле абсолютно точными! Можно представить себе, как этот внезапный переход от приблизительности к точности вдохновил Ньютона на еще более усердный интеллектуальный труд. Теперь в его власти было с абсолютной точностью применять математический анализ к решению актуальных астрономических задач.

Другой вопрос, который, очевидно, не давал Ньютону покоя еще тогда, когда он писал первые черновики трактата «О движении», – то обстоятельство, что он пренебрегал силой, с которой планеты притягивают Солнце. Иначе говоря, в первоначальной формулировке Ньютон свел Солнце просто к неподвижному центру сил такого рода, какой, по словам Ньютона, «едва ли существует» в реальном мире. Эта конструкция противоречила третьему закону самого же Ньютона, согласно которому «сила действия равна силе противодействия». Каждая планета притягивает Солнце с точно такой силой, с какой Солнце притягивает планету. Поэтому Ньютон добавил: «Если имеются два тела [например, Земля и Солнце], ни притягиваемое, ни притягивающее тело не могут быть в состоянии покоя». Эта незначительная на первый взгляд поправка на самом деле стала важным недостающим звеном в цепи рассуждений, которые привели к формулировке закона всемирного тяготения. Мы можем попробовать проследить логику Ньютона. Если Солнце притягивает Землю, то Земля должна тоже притягивать Солнце с той же силой. То есть Земля не просто вращается вокруг Солнца – скорее они оба вращаются вокруг общего центра тяжести. Но это еще не все. Все другие планеты также притягивают Солнце, и каждая планета, само собой, ощущает не только притяжение Солнца, но и притяжение всех других планет. Такую же логику можно применить к Юпитеру с его спутниками, к Земле и Луне и даже к яблоку и Земле. Вывод гениально прост: существует одна и только одна гравитационная сила, и действует она между двумя любыми массами в любой точке Вселенной. Именно это и было нужно Ньютону. «Начала» – 510 страниц убористого латинского текста – вышли в свет в июле 1687 года.

Ньютон провел наблюдения и опыты с погрешностью всего в четыре процента и из них вывел математическую формулу тяготения, которая оказалась точной с погрешностью в одну миллионную и даже меньше. Он впервые объединил объяснения природных явлений с мощным инструментом предсказания результатов наблюдений. Физика и математика оказались связаны навек – а развод науки и философии стал неизбежен.

В 1713 году вышло второе издание «Начал», которое основательно переработали и сам Ньютон, и в особенности математик Роджер Котс (1682–1716). На рис. 30 приведен его фронтиспис. Ньютон, который никогда не отличался добротой и приветливостью, даже не поблагодарил Котса за отличную работу в предисловии к книге. И все же, когда Котс в тридцать три года скончался от лихорадки, Ньютон выразил некоторую признательность: «Если бы он прожил дольше, мы бы наверняка что-нибудь узнали».

Любопытно, что некоторые самые примечательные соображения Ньютона о Боге появились лишь в его размышлениях о «Началах» уже после подготовки второго издания. В письме к Котсу 28 марта 1713 года, менее чем за три месяца до завершения работы над вторым изданием «Начал», Ньютон пишет: «Рассуждения о Боге на основании [природных] явлений относятся, несомненно, к области натурфилософии». Более того, Ньютон изложил свои идеи о Творце, который «вечен и бесконечен, всемогущ и всеведущ» в «Общем поучении», которое присовокупил к «Началам» в качестве завершающего штриха.


Рис. 30


Однако осталась ли прежней роль Бога во Вселенной, которая становилась все более и более математической? Или Бог тоже все больше и больше становился математиком? Ведь до формулировки закона всемирного тяготения регулировка движения планет считалась безусловной прерогативой Господа. Как же Ньютон и Декарт видели такой сдвиг в сторону научного объяснения природных явлений?


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации