Текст книги "Был ли Бог математиком? Галопом по божественной Вселенной с калькулятором, штангенциркулем и таблицами Брадиса"
Автор книги: Марио Ливио
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 3 (всего у книги 20 страниц)
Рис. 2
Квадраты целых чисел, которые ассоциируются с гномонами, вероятно, привели Пифагора и к формулировке его знаменитой теоремы. Это прославленное математическое утверждение гласит, что у любого прямоугольного треугольника площадь квадрата, достроенного на самой длинной стороне – гипотенузе, равна сумме площадей квадратов, достроенных на двух других сторонах – катетах (рис. 3). Карикатуристы под псевдонимом «Франк и Эрнест» посвятили истории открытия теоремы смешную картинку (рис. 4). Как видно на рис. 2, если добавить к квадрату 4 × 4 гномон 9 = 32, получится новый квадрат 5 × 5, то есть 32 + 42 = 52. Поэтому числа 3, 4, 5 могут быть длинами сторон прямоугольного треугольника. Наборы целых чисел, обладающие этим свойством (например, 5, 12, 13, поскольку 52 + 122 = 132), называются пифагоровыми тройками.
Рис. 3
Рис. 4
Мало какие математические теоремы могут похвастаться такой «узнаваемостью», как теорема Пифагора. В 1971 году, когда республика Никарагуа выбирала «десять математических формул, изменивших облик планеты» для коллекционной серии марок, теорема Пифагора появилась на второй марке (рис. 5); на первой значилось «1 + 1 = 2»).
Однако был ли Пифагор первым, кто сформулировал широкоизвестную теорему, которую ему приписывают? Некоторые древнегреческие историки в этом не сомневались. В комментарии к «Началам» Евклида (ок. 325–265 гг. до н. э.) – пространному труду по геометрии и теории чисел – греческий философ Прокл (ок. 411–485) писал: «Если мы захотим послушать тех, кто любит записывать древности, мы узнаем, что они приписывают эту теорему Пифагору и сообщают, что он принес в жертву быка за свое открытие» (здесь и далее пер. А. Щетникова)[11]11
Обратите внимание, что в этом комментарии Прокл ничего не говорит о собственных представлениях о том, был ли Пифагор первым, кто сформулировал эту теорему. История о быке упоминается в трудах Диогена Лаэрция, Порфирия и историка Плутарха (ок. 46–120 гг.). Все эти рассказы восходят к Аполлодору. Однако там говорится лишь о каком-то «знаменитом утверждении» и не уточняется, о каком именно утверждении идет речь. См. Laertius ca. 250 AD, Plutarch ca. 75 AD.
[Закрыть]. Однако пифагоровы тройки изображены и на вавилонской клинописной табличке Plimton 322, которая датируется куда более ранним временем – приблизительно династией Хаммурапи (ок. 1900–1600 гг. до н. э.). Более того, геометрические конструкции, основанные на теореме Пифагора, обнаружены и в Индии, где этим соотношением пользовались при строительстве алтарей. Несомненно, о них знал и автор «Шатапатха-брахманы», комментария к древнеиндийским священным текстам, созданного, вероятно, по меньшей мере за несколько веков до Пифагора (Renon and Felliozat 1947, van der Waerden 1983). Впрочем, не так уж важно, первым ли Пифагор сформулировал теорему, получившую его имя, – главное, что постоянно обнаруживавшая себя разного рода взаимосвязь между числами, формами и Вселенной еще на шаг приблизила пифагорейцев к детальной метафизике порядка.
Рис. 5
Важнейшую роль в пифагорейском мире играла и другая идея – понятие о космических противоположностях. Поскольку система противоположностей была основным принципом ранней ионийской научной школы, было естественно, что ее приняли пифагорейцы с их одержимостью порядком. Более того, Аристотель рассказывает, что с идеей, что все на свете уравновешено, поскольку организовано в пары, соглашался даже врач по имени Алкмеон, живший в Кротоне в те годы, когда там существовала знаменитая школа Пифагора. Главная пара противоположностей состояла из предела, выраженного нечетными числами, и беспредельного, выраженного четными. Предел есть сила, наводящая порядок и гармонию в диком необузданном беспредельном. И хитросплетения Вселенной в целом, и перипетии человеческой жизни на уровне микрокосма, как полагали пифагорейцы, состоят из пар противоположностей, которые так или иначе соотносятся друг с другом, и управляются этими противоположностями. Эта несколько черно-белая картина мира описывалась «таблицей противоположностей», которая приведена в «Метафизике» Аристотеля:
Философская концепция, выраженная в этой таблице, была распространена отнюдь не только в Древней Греции[12]12
Такая космология основана на идее, что реальность возникла из Вещества (которое считалось неопределенным), подвергшегося воздействию Формы (то есть предела).
[Закрыть]. Китайские инь и ян, где инь – это отрицание и тьма, а ян – утверждение и свет, отражают такое же мировоззрение. Примерно такие же идеи проникли и в христианство, где есть понятия рая и ада (и даже в заявления американских президентов наподобие «Вы или с нами, или с террористами»). У противоположностей есть и более общий смысл – всегда считается, что смерть оттеняет и подчеркивает смысл жизни, а знание особенно заметно по сравнению с невежеством.
Не все принципы пифагорейского учения имеют непосредственное отношение к числам. Стиль жизни замкнутого сообщества пифагорейцев был основан на вегетарианстве, убежденности в метемпсихозе – переселении бессмертных душ – а также на несколько загадочном запрете употреблять в пищу бобы. Существует несколько объяснений, почему пифагорейцам нельзя было есть бобы: то ли бобы напоминают видом детородный орган человека, то ли есть бобы – все равно что есть живую душу. Приверженцы последней версии считали, что когда человек, поевший бобов, испускает ветры, то это погибшая душа словно бы испускает дух.
В книге «Philosophy for Dummies» («Философия для чайников», Morris 1999) учение пифагорейцев кратко изложено следующим образом: «Все состоит из чисел, и не ешь бобы, потому что за это получишь по первое число».
Самая старая дошедшая до нас история о пифагорейцах довольно-таки поэтична и связана с представлением о переселении души в другие живые существа (Joost-Gaugier 2006). Она сохранилась в стихах поэта Ксенофана Колофонского, жившего в VI веке до н. э.
Как-то в пути увидав, что кто-то щенка обижает,
Он [Пифагор], пожалевши щенка, молвил такие слова:
«Полно бить, перестань! Живет в нем душа дорогого
Друга: по вою щенка я ее разом признал».
(Пер. М. Гаспарова.)
Влияние Пифагора явно прослеживается не только в учении древнегреческих философов – его непосредственных последователей, – но и в том, как строился учебный план средневековых университетов. Семь предметов, которые там преподавали, делились на тривиум – диалектику, грамматику и риторику – и квадривиум, в который входили любимые темы пифагорейцев – геометрия, арифметика, астрономия и музыка. Небесная «гармония сфер» – музыка, которую якобы исполняли планеты на орбитах и которую, по свидетельствам учеников, слышал один лишь Пифагор, – вдохновляла равным образом и поэтов, и ученых. Знаменитый астроном Иоганн Кеплер (1571–1630), открывший законы движения планет, назвал один из своих революционных трудов «Harmonices Mundi» – «Гармонии мира». И вполне в пифагорейском духе сочинил даже музыкальные «мотивы» разных планет (это же проделал три века спустя композитор Густав Холст).
Однако вернемся к теме нашей книги: если снять с пифагорейской философии мистический покров, обнаружится каркас, по которому можно сделать множество важнейших выводов касательно математики, ее природы и ее связи как с физическим миром, так и с человеческим разумом[13]13
О вкладе пифагорейцев в научный прогресс и об их влиянии см. Huffman 1999, Riedweg 2005, Joost-Gaugier 2006, а также Huffman 2006 в Stanford Encyclopedia of Philosophy.
[Закрыть]. Пифагор и пифагорейцы – первопроходцы на пути поисков вселенского порядка. Их можно считать основателями чистой математики, поскольку, в отличие от своих предшественников – вавилонян и египтян, – они подходили к математике абстрактно, в отрыве от каких бы то ни было практических целей. А вот ответить на вопрос, пифагорейцы ли поставили математику на службу естественным наукам, уже сложнее. Да, пифагорейцы связывали все природные явления с числами, однако предметом их изучения были числа как таковые, а не природные явления или их причины. Для научного исследования такой путь не слишком перспективен. И все же в основе пифагорейского учения лежало общее представление о существовании универсальных законов природы. Это представление, ставшее краеугольным камнем современной науки, вероятно, коренится еще в идее Рока в древнегреческой трагедии. Вплоть до конца эпохи Возрождения твердая вера в реальность совокупности законов, которые способны объяснить все природные явления, далеко опережала данные любых наблюдений и экспериментов, и лишь Галилей, Декарт и Ньютон обратили ее в гипотезу, которую можно обосновать методом логической индукции.
Пифагорейцам принадлежит и другая заслуга – они сами обнаружили, что их «культ числа», к сожалению, не проходит проверку реальностью. Это открытие, конечно, спустило их с небес на землю. Целых чисел 1, 2, 3,… не хватало даже для того, чтобы вывести из них математику, не говоря уже об описании Вселенной.
Рис. 6
Рассмотрим квадрат на рис. 6, сторона которого принята за единицу, а длину диагонали мы обозначили d. Мы без труда найдем d при помощи теоремы Пифагора, применив ее к любому из двух прямоугольных треугольников, на которые поделен квадрат. Согласно теореме Пифагора, квадрат диагонали (гипотенузы) равен сумме квадратов двух катетов (коротких сторон): d 2 = 12 + 12, то есть d 2 = 2. Поскольку мы знаем, что квадрат – это положительное число, его легко найти, если взять квадратный корень (например, если x 2 = 9, то положительное число x = √9 = 3) Поэтому из d 2 = 2 следует, что d = √2 единиц. Итак, соотношение длины диагонали к длине стороны квадрата – это число √2. И вот тут-то пифагорейцев и ждало страшное потрясение – открытие, которое не оставило камня на камне от тщательно сконструированной пифагорейской концепции дискретных чисел. Один пифагореец (возможно, это был Гиппас из Метапонта, живший в первой половине V века до н. э. (Fritz 1945)) сумел доказать, что квадратный корень из двух нельзя выразить в виде отношения каких бы то ни было целых чисел. Иначе говоря, даже если мы располагаем бесконечным множеством целых чисел, поиски такой их пары, отношение которой даст нам √2, изначально обречены на провал.
Если число можно выразить в виде отношения двух целых чисел (например, 3/17, 2/5, 1/10, 6/1), его называют рациональным числом (собственно, латинское слово ratio и означает «отношение»). Пифагорейцы доказали, что √2 – не рациональное число. Более того, вскоре после этого открытия обнаружилось, что и √3, √17 и вообще квадратный корень любого числа, которое не представляет собой точный квадрат (16, 25 и т. д.), – тоже не рациональные числа. Последствия были самые серьезные: пифагорейцы доказали, что к бесконечному множеству рациональных чисел придется добавить бесконечное множество чисел другой разновидности – сегодня мы называем их иррациональными числами. Важность этого открытия для дальнейшего развития математического анализа невозможно переоценить. Помимо всего прочего, оно привело и к тому, что в XIX веке признали существование счетных и несчетных бесконечностей[14]14
В рамках настоящей книги я не обсуждаю темы наподобие трансфинитных чисел и трудов Кантора и Дедекинда. Об этом прекрасно рассказано в популярных книгах Aczel 2000, Barrow 2005, Devlin 2000, Rucker 1995 и Wallace 2003.
[Закрыть]. Однако на самих пифагорейцев это открытие произвело настолько ошеломляющее впечатление, что философ Ямвлих пишет, что тот, кто открыл иррациональные числа, «вызвал, как говорят, такую ненависть, что его не только изгнали из общины и отлучили от пифагорейского образа жизни, но и соорудили ему надгробие, как будто действительно ушел из жизни тот, кто некогда был их товарищем».
Однако пифагорейцам принадлежит заслуга, вероятно, даже более важная, чем открытие иррациональных чисел, – то, что именно они первыми стали настаивать на математическом доказательстве, процедуре, основанной исключительно на логических рассуждениях, при помощи которой можно было раз и навсегда установить истинность любого математического предположения, исходя из некоторых постулатов. До древних греков даже сами математики не считали, что кому-то хоть сколько-нибудь любопытно, какие умственные упражнения привели их к тому или иному открытию. Если какой-то математический рецепт можно было с успехом применять на практике, скажем, чтобы распределять участки земли, иного доказательства не требовалось. А вот греки захотели объяснить, почему его можно с успехом применять на практике. Хотя саму идею доказательства первым предложил философ Фалес Милетский (ок. 625–547 гг. до н. э.), именно пифагорейцы превратили эту привычку в совершенный инструмент, позволявший удостовериться в истинности математических утверждений. Значение этого прорыва в логике колоссально. Когда математика стала прибегать к доказательствам, основанным на постулатах, сразу же оказалось, что она покоится на куда более прочном фундаменте, чем любая другая научная дисциплина, которую обсуждали философы того времени. Как только удавалось представить строгое доказательство, основанное на последовательности умозаключений, где не было никаких логических оплошностей, истинность соответствующего математического утверждения становилась незыблемой навечно. Особый статус математического доказательства признавал даже Артур Конан Дойл, создатель самого знаменитого сыщика в мире. В «Этюде в багровых тонах» Шерлок Холмс объявляет, что его выводы «безошибочны, словно теоремы Эвклида» (пер. Н. Треневой).
Для Пифагора и пифагорейцев не было никаких сомнений, изобретают они математику или открывают: математика для них была реальна, незыблема, вездесуща и гораздо более совершенна, чем любое мыслимое творение жалкого человеческого разума. Пифагорейцы буквально воплотили вселенную в математике. В сущности, пифагорейцы не считали, что Бог – математик, они считали, что математика есть Бог (см. разностороннее обсуждение этого тезиса в Netz 2005)!
Значение пифагорейской философии выходит далеко за рамки ее конкретных достижений. Пифагорейцы подготовили почву и в определенном смысле составили перечень важнейших вопросов для следующего поколения философов – в частности для Платона – и заложили основное направление развития западной мысли.
Во глубину платоновской пещеры
Знаменитый английский математик и философ Альфред Норт Уайтхед (1861–1947) однажды заметил, что «самое надежное обобщение, которое можно сделать при изучении истории западной философии, – что вся она представляет собой примечания к Платону» (Whitehead 1929).
И в самом деле, Платон (ок. 428–347 гг. до н. э.) первым свел воедино самые разные темы – от математики, науки и лингвистики до религии, этики и искусства – и понял, что нужно подходить к ним одинаково, в результате чего, собственно, и появилась философия как научная дисциплина. Философия для Платона была не каким-то отвлеченным предметом, который стоит особняком от повседневной жизни, а общим руководством, как нужно проживать жизнь, как отличать истину ото лжи и как строить политику. В частности, Платон считал, что философия способна открыть перед нами царство истин, которое простирается далеко за пределы того, что мы воспринимаем при помощи органов чувств, и даже того, что мы можем вывести на основании простого здравого смысла. Кто же был этот неутомимый искатель чистого знания, абсолютного блага и вечных истин?[15]15
Из одних названий книг и статей о Платоне можно, разумеется, составить целый том. Приведу лишь несколько трудов, которые представляются мне весьма познавательными. О Платоне вообще – Hamilton and Cairns 1961, Havelock 1963, Gosling 1973, Ross 1951, Kraut 1992. О Платоне и математике – Heath 1921, Cherniss 1951, Mueller 1991, Fowler 1999, Herz-Fischler 1998.
[Закрыть]
Платон, сын Аристона и Периктионы, родился в Афинах или в Эгине. На рис. 7 приведена герма Платона – скорее всего, копия с более раннего греческого оригинала, созданного в IV веке до н. э. Платон был весьма родовит и по отцовской, и по материнской линии: среди его предков были прославленные исторические деятели, в частности великий законодатель Солон и последний царь Аттики Кодр. Дядя Платона Хармид и двоюродный брат Критий были старыми друзьями знаменитого философа Сократа (ок. 470–399 гг. до н. э.) – многие исследователи полагают, что это знакомство в основном и сформировало взгляды юного Платона. Поначалу Платон хотел стать политиком, однако партия, взгляды которой ему тогда импонировали, была замешана в насильственных действиях, и это отвратило его от политического поприща. Именно нелюбовь к политике, вероятно, и побудила Платона в последующие годы изложить свои представления о том, каким должно быть фундаментальное образование государственных мужей будущего. Он даже попытался быть наставником правителя Сиракуз Дионисия II, впрочем, к успеху это не привело.
Рис. 7
После казни Сократа в 399 году до н. э. Платон отправился в длительное путешествие, которое завершилось лишь с основанием его легендарной научно-философской школы, Академии, около 387 года до н. э. Платон возглавлял Академию (был ее схолархом) до самой своей смерти; на посту его сменил Спевсипп, приходившийся ему племянником. Академия, в отличие от современных научно-образовательных учреждений, была скорее неформальным клубом интеллектуалов, которые под руководством Платона изучали самые разные предметы. Не было ни платы за обучение, ни устоявшегося учебного планая – не было даже преподавателей в привычном нам смысле слова. Однако же те, кто хотел поступить в Академию, должны были удовлетворять одному довольно необычному требованию. Согласно речи императора Юлиана Отступника, правившего в IV веке (уже нашей эры), над входом в Академию Платона висела массивная доска с надписью. Надпись гласила: «Не геометр да не войдет!»[16]16
Речь была написана в 362 году н. э., однако о содержании надписи в ней ничего не говорится. Сам текст обнаружен в заметке на полях рукописи Элия Аристида. Заметка, вероятно, сделана оратором Сопратом, жившим в IV веке. Она гласит: «На фронтоне Платоновой школы было написано: “Не геометр да не войдет!”. Это вместо “несправедливый” или “нечестивый”, поскольку геометрия стремится к честности и справедливости». Видимо, из этой заметки следует, что слова «не геометр» заменяли у Платона слова «несправедливый или нечестивый человек» в надписи, которую обычно помещали над входом в святилища («Нечестивый да не войдет!»). Впоследствии эту историю рассказывали целых пять александрийских философов VI века, и она попала даже в книгу «Хилиады» эрудита XII века Иоанна Цеца (ок. 1110–1180). Подробнее об этом см. Fowler 1999.
[Закрыть]. Поскольку с основания Академии до первого описания ее девиза прошло не меньше 800 лет, нет никакой уверенности, что надпись вообще существовала. Однако не приходится сомневаться, что выраженная в этом требовании идея отражает личное мнение Платона. В одном из своих знаменитых диалогов «Горгий» Платон пишет: «… Как много значит и меж богов, и меж людей равенство, – я имею в виду геометрическое равенство» (пер. С. Маркиша).
«Студенты» Академии по большей части сами себя обеспечивали, и некоторые, в том числе, например, великий Аристотель, оставались там лет по двадцать. Платон считал, что такое длительное общение творческих умов – лучшее средство для порождения новых идей в самых разных сферах, от отвлеченной метафизики и математики до этики и политики. Чистота помыслов и божественная возвышенность учеников Платона прекрасно отражены на картине «Школа Платона» бельгийского художника-символиста Жана Дельвиля (1867–1953). Чтобы подчеркнуть духовное совершенство учеников, Дельвиль изобразил их обнаженными, с андрогинными телами, поскольку именно таковы должны были быть первые люди.
Когда я узнал, что археологи не смогли найти никаких следов Академии Платона, то очень огорчился[17]17
Обзор многих безуспешных археологических попыток найти Академию дан в Glucker 1978.
[Закрыть]. Летом 2007 года я побывал в Греции и решил найти какой-нибудь заменитель. Платон упоминает, что его излюбленным местом для бесед с друзьями была Стоя Зевса (крытая галерея, выстроенная в V веке до н. э.). Я нашел развалины этой стои в северо-западной части древней афинской агоры, которая была центром общественной жизни города (рис. 8). Признаться, даже при сорокапятиградусной жаре меня пробрал холодок, когда я шагнул на те же каменные плиты, где сотни и даже тысячи раз ступала нога этого великого человека.
Рис. 8
Легендарная надпись над входом в Академию прямо и недвусмысленно говорит об отношении Платона к математике. Более того, львиная доля значительных математических исследований, которые велись в IV веке до н. э., были так или иначе связаны с Академией. Однако сам Платон не обладал ни математическими талантами, ни какими-либо существенными инженерными задатками, и непосредственный его вклад в развитие математических наук был, пожалуй, совсем невелик. Платон был скорее восторженным зрителем, вдохновителем и руководителем, поставщиком интересных задач и образованным критиком. Философ и историк Филодем, живший в I веке, рисует ясную картину: «В то время математика стремительно двигалась вперед, причем Платон, словно главный зодчий, ставил задачи, а математики усердно исследовали их» (см. Cherniss 1945, Mekler 1902). А математик и философ-неоплатоник Прокл добавляет: «…И геометрия, равно как и прочие математические науки, получила его [Платона] стараниями величайшее развитие: известно, сколь часто он использует в своих сочинениях математические рассуждения и повсюду пробуждает ими восторг в преданных философии» (Cherniss 1945, Proclus ca. 450). Иначе говоря, Платон, чьи познания в математике были достаточно широкими для своего времени, беседовал с математиками на равных и ставил им задачи, хотя его личные заслуги в развитии математики были незначительны.
Еще один яркий пример любви Платона к математике мы находим в его, пожалуй, лучшей книге – «Государство», где этика, эстетика, политика и метафизика сведены в единую систему головокружительной красоты. Главный герой «Государства» – Сократ, однако в книге VII именно Платон предлагает смелый план воспитания и образования будущих правителей утопических государств. Это строгая, пусть и несколько идеализированная программа предполагает обучение с самых ранних лет посредством игр, путешествий и физических упражнений. Затем подающих надежды детей отбирают и не менее десяти лет учат математике и пять лет – диалектике, после чего они в течение пятнадцати лет набираются практического опыта, то есть служат военачальниками и предаются другим занятиям, подобающим молодежи. Платон подробно объясняет, почему он считает, что именно так следует воспитывать и обучать будущих политиков (Plato ca. 360 ВС.).
Однако не следует, чтобы к власти приходили те, кто прямо-таки в нее влюблен. А то с ними будут сражаться соперники в этой любви… Кого же иного заставишь ты встать на страже государства, как не тех, кто вполне сведущ в деле наилучшего государственного правления, а вместе с тем имеет и другие достоинства и ведет жизнь более добродетельную, чем ведут государственные деятели? (Здесь и далее пер. А. Егунова.)
Освежает, правда? По правде говоря, такая строгая и трудоемкая программа обучения во времена Платона была, пожалуй, неосуществима, однако Джордж Вашингтон тоже считал, что будущих политиков хорошо бы обучать математике и философии.
Мало того, что без науки о числах в той или иной степени невозможно сделать ни шагу в цивилизованной жизни, – исследование математических истин приучает ум к методу и точности выводов; подобное занятие весьма подобает существу разумному. Когда бытие затуманено и растерянному исследователю столь многое представляется неясным – именно тогда находит себе опору дар рационального мышления. С прочной позиции математического и философского доказательства мы незаметно переходим к куда более благородным умозаключениям и тонким раздумьям (Washington 1788).
Что же касается вопроса о природе математики, Платон-философ сыграл здесь даже более важную роль, чем Платон-математик. Здесь его идеи, оставившие ярчайший след, не просто ставят его выше всех математиков и философов его поколения, но и делают самой влиятельной фигурой последующих тысячелетий.
Представление Платона о том, что такое на самом деле математика, имеет прямое отношение к его знаменитой «аллегории Пещеры». Платон подчеркивает, как опасно доверять сведениям, полученным посредством органов чувств человека. Он утверждает, что то, что мы воспринимаем как реальный мир, на самом деле не более реально, чем тени, отбрасываемые на стены пещеры[18]18
Интересное обсуждение см. в Stewart 1905.
[Закрыть]. Приведу этот примечательный отрывок из «Государства».
…Посмотри-ка: ведь люди как бы находятся в подземном жилище наподобие пещеры, где во всю ее длину тянется широкий просвет. С малых лет у них там на ногах и на шее оковы, так что людям не двинуться с места, и видят они только то, что у них прямо перед глазами, ибо повернуть голову они не могут из-за этих оков. Люди обращены спиной к свету, исходящему от огня, который горит далеко в вышине, а между огнем и узниками проходит верхняя дорога, огражденная – глянь-ка – невысокой стеной вроде той ширмы, за которой фокусники помещают своих помощников, когда поверх ширмы показывают кукол… Так представь же себе и то, что за этой стеной другие люди несут различную утварь, держа ее так, что она видна поверх стены; проносят они и статуи, и всяческие изображения живых существ, сделанные из камня и дерева… Разве ты думаешь, что, находясь в таком положении, люди что-нибудь видят, свое ли или чужое, кроме теней, отбрасываемых огнем на расположенную перед ними стену пещеры?
Согласно Платону, все мы – все человечество – не слишком отличаемся от этих узников в пещере, которые принимают тени за реальность (на рис. 9 приведена гравюра Яна Санредама, иллюстрирующая эту аллегорию (1604)). В частности, подчеркивает Платон, математические истины относятся не к окружностям, треугольникам и квадратам, которые можно нарисовать на клочке папируса или начертить палочкой на песке, а к абстрактным объектам, которые пребывают в идеальном мире – вместилище подлинных форм и совершенств. Этот платоновский мир математических понятий отделен от мира физического, и именно там, в этом первом мире, верны математические суждения наподобие теоремы Пифагора. Прямоугольный треугольник, который мы чертим на бумаге, лишь несовершенная копия, приближение к истинному, абстрактному треугольнику.
Рис. 9
Другая фундаментальная проблема, которую Платон подробно исследовал, – это природа математического доказательства как процесса, основанного на аксиомах и постулатах. Аксиомы – это основополагающие утверждения, истинность которых считается самоочевидной. Например, первая аксиома евклидовой геометрии гласит: «Между любыми двумя точками можно провести прямую». В «Государстве» Платон прекрасно сочетает понятия о постулатах и о мире математических форм.
…Я думаю, ты знаешь, что те, кто занимается геометрией, счетом и тому подобным, предполагают в любом своем исследовании, будто им известно, что такое чет и нечет, фигуры, три вида углов и прочее в том же роде. Это они принимают за исходные положения и не считают нужным отдавать в них отчет ни себе, ни другим, словно это всякому и без того ясно. Исходя из этих положений, они разбирают уже все остальное и последовательно доводят до конца то, что было предметом их рассмотрения… Но ведь когда они вдобавок пользуются чертежами и делают отсюда выводы, их мысль обращена не на чертеж, а на те фигуры, подобием которых он служит. Выводы свои они делают только для четырехугольника самого по себе и его диагонали, а не для той диагонали, которую они начертили. Так и во всем остальном. То же самое относится к произведениям ваяния и живописи: от них может падать тень, и возможны их отражения в воде, но сами они служат лишь образным выражением того, что можно видеть не иначе как мысленным взором (курсив мой. – М. Л.).
Представления Платона заложили основу платонизма – такое название получили его идеи в философии вообще и в проблеме природы математики в частности[19]19
Интересное обсуждение платонизма и его места в философии математики см. в книгах Tiles 1996, Mueller 1992, White 1992, Russell 1945, Tait 1996. Превосходное популярное изложение можно найти в Davis and Hersh 1981, Barrow 1992.
[Закрыть]. Платонизм в самом широком смысле слова предполагает веру в некие вечные, незыблемые абстрактные объекты, абсолютно независимые от эфемерного мира, которые мы воспринимаем посредством органов чувств. Согласно платонизму, реальное существование математических понятий – столь же объективный факт, сколь и существование самой Вселенной. Существуют не только натуральные числа, окружности и квадраты, но и мнимые числа, функции, фракталы, неевклидовы геометрии, бесконечные множества, а также самые разные теоремы, которые их описывают. Короче говоря, каждое математическое понятие или «объективно истинное» суждение (подробнее об этом чуть позже), когда бы то ни было сформулированные или возникшие в чьем-то воображении, и бесконечное количество понятий и утверждений, еще не открытых, – все это абсолютные сущности, или универсалии, которые нельзя ни создать, ни уничтожить. Они существуют независимо от наших знаний о них. Нет нужды говорить, что это не физические объекты, они обитают в автономном мире вечных сущностей. Математики для платонизма – исследователи неведомых земель, они могут лишь открыть математические истины, но не изобрести их. Америка существовала задолго до того, как ее открыл Колумб (или Лейф Эриксон), – так и математические теоремы существовали в платоновском мире задолго до того, как вавилоняне приступили к математическим изысканиям. Для Платона подлинно, в полной мере существуют лишь эти абстрактные математические формы и идеи, поскольку лишь в математике, по его мнению, можно обрести совершенно точные и объективные познания. Следовательно, по Платону, математика тесно связана с божественным (подробнее об этом см. Mueller 2005). В диалоге «Тимей» бог-творец формирует мир при помощи математики, а в «Государстве» знание математики становится главным шагом на пути к познанию божественных форм. Платон не применяет математику для формулировки некоторых законов природы, которые можно проверить экспериментально. Для него математический характер мира – всего лишь следствие того, что «Бог всегда остается геометром».
Платон распространил идеи «истинных форм» и на другие дисциплины, в особенности на астрономию. Он считал, что при изучении подлинной астрономии «мы должны оставить небеса в покое»[20]20
Платон рассуждает об астрономии и движении планет в «Государстве» (Plato ок. 360 до н. э.), в «Тимее» и в «Законах». Следствия точки зрения Платона обсуждаются в Vlostos 1975 и Mueller 1992.
[Закрыть] и не пытаться рассчитывать взаимное положение и видимое движение звезд. Платон полагал, что истинная астрономия – это наука, изучающая законы движения в некоем идеальном математическом мире, движения, для которого наблюдаемые небеса – лишь иллюстрация (в том же смысле, в каком геометрические фигуры, начерченные на папирусе, лишь иллюстрируют истинные фигуры).
Представления Платона об астрономических исследованиях казались противоречивыми даже некоторым самым убежденным платоникам. Сторонники его идей утверждали, что на самом деле Платон считает не что подлинная астрономия должна заниматься какими-то идеальными небесами, не имеющими отношения к наблюдаемым, но что ее задача – изучать реальное движение небесных тел, а не искаженное, какое мы наблюдаем с Земли. Однако многие мыслители указывают, что, если понимать максиму Платона слишком буквально, это сильно затруднило бы развитие наблюдательной астрономии как науки. Впрочем, как бы мы ни толковали отношение Платона к астрономии, во всем, что касается основ математики, платонизм играет ведущую роль.
Но существует ли платоновский мир математики на самом деле? И если да, то, собственно, где? И что это за «объективно истинные» утверждения, которые населяют этот мир? Или же математики, которые придерживаются платонизма, просто выражают те же романтические представления, каких, как говорят, придерживался великий художник Возрождения Микеланджело? Согласно легенде, Микеланджело был убежден, что его великолепные скульптуры уже существуют в глубине мраморных глыб, а его задача – лишь стесать все лишнее.
Современные платоники (да-да, они есть, и их представления мы подробно опишем в следующих главах) настаивают, что платоновский мир математических форм совершенно реален, и предлагают конкретные, по их мнению, примеры объективно истинных математических утверждений, которые обитают в этом мире.
Рассмотрим следующее простое и понятное утверждение. Каждое четное целое число больше двух можно представить в виде суммы двух простых чисел (делящихся только на себя и единицу). Это несложное на первый взгляд утверждение называется проблемой Гольдбаха, поскольку именно в такой формулировке обнаружено в письме прусского математика-любителя Кристиана Гольдбаха (1690–1764) Леонарду Эйлеру от 7 июня 1742 года. Убедиться в верности этого утверждения для первых нескольких четных чисел совсем не трудно: 4 = 2 + 2; 6 = 3 + 3; 8 = 3 + 5; 10 = 3 + 7 (или 5 + 5); 12 = 5 + 7; 14 = 3 + 11 (или 7 + 7); 16 = 5 + 11 (или 3 + 13) и так далее. Утверждение это до того просто, что британский математик Г. Г. Харди объявил, что «любой дурак мог бы догадаться». Более того, французский математик и философ Рене Декарт высказал это предположение еще до Гольдбаха. Однако выяснилось, что сформулировать проблему легко, а вот доказать – совсем другое дело. В 1966 году китайский математик Чэнь Цзинжунь сделал существенный шаг по пути к доказательству. Он сумел показать, что всякое достаточно большое четное число представляет собой сумму двух чисел, одно из которых простое, а второе имеет не более двух простых делителей. К концу 2005 года португальский ученый Томаш Оливейра э Сильва показал, что это утверждение верно для чисел, не превышающих 3 × 1017 (до трехсот тысяч триллионов). И все же, несмотря на колоссальные усилия многих талантливых математиков, на сегодняшний день, когда я пишу эти строки, общее доказательство так и не удалось найти. К желаемому результату не привел даже дополнительный стимул в виде миллиона долларов, которые предложили в виде награды всякому, кто найдет доказательство в срок с 20 марта 2000 года по 20 марта 2002 года (в рамках рекламной кампании романа А. К. Доксиадиса «Дядюшка Петрос и проблема Гольдбаха» [Doxiadis 2000]).
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.