Электронная библиотека » Марио Ливио » » онлайн чтение - страница 11


  • Текст добавлен: 1 июня 2016, 13:20


Автор книги: Марио Ливио


Жанр: Зарубежная образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 11 (всего у книги 20 страниц)

Шрифт:
- 100% +
Факты и прогнозы

Стремясь разобраться в эволюции Вселенной, ученые обычно подходят к этой проблеме с обеих сторон. Одни начинают с тончайших колебаний ткани мироздания в первичной Вселенной, другие изучают все подробности нынешнего состояния Вселенной. Первые разрабатывают масштабные компьютерные модели, которые показывают, как Вселенная развивалась с течением времени. Вторые занимаются детективной работой – пытаются дедуктивно вычислить прошлое Вселенной по множеству характеристик ее нынешнего состояния. Примерно таковы и отношения между теорией вероятности и статистикой. В теории вероятности заданы переменные и первоначальное состояние, и ее цель – предсказать наиболее вероятный конечный результат. В статистике известен результат, но не определены причины, которые к нему привели.

Рассмотрим простой пример того, как эти две области встречаются, так сказать, посередине и дополняют друг друга. Начнем с того факта, что статистические исследования показывают, что измерения самых разных физических величин и даже человеческих черт распределяются согласно кривой нормального распределения. Но на самом деле кривая нормального распределения – это не какая-то одна кривая, а целое семейство кривых, описываемых одной и той же общей функцией, и все они полностью характеризуются всего двумя математическими величинами. Первая из них – среднее значение – это центральное значение, относительно которого распределение симметрично. Эта величина зависит, разумеется, от того, какую именно переменную измеряют (рост, вес, IQ и так далее). Среднее значение одной и той же переменной может быть разным в разных популяциях. Например, средний рост шведов, скорее всего, отличается от среднего роста перуанцев. Вторая величина, определяющая кривую нормального распределения, называется стандартным отклонением. Это мера того, насколько тесно данные сосредоточены вокруг среднего значения. На рис. 36 у кривой нормального распределения (а) самое большое стандартное отклонение, поскольку значения рассеяны шире. Однако тут мы сталкиваемся с интересным фактом. Если с помощью интегрирования сосчитать площадь под кривой, легко математически доказать, что независимо от среднего значения и величины стандартного отклонения, 68,2 % измерений лежат в области, ограниченной одним стандартным отклонением по обе стороны от среднего значения (рис. 37). Иначе говоря, если среднее значение IQ в определенной (крупной) популяции равно 100, а стандартное отклонение равно 15, то 68,2 % людей в этой популяции обладают IQ между 85 и 115. Более того, для всех кривых нормального распределения 95,4 % всех случаев лежат в пределах двух стандартных отклонений от среднего, а 99,7 % данных попадают в пределы трех стандартных отклонений по обе стороны от среднего (рис. 37). Из этого следует, что в вышеприведенном примере 95,4 % популяции обладают IQ между 70 и 130, а 99,7 % – между 55 и 145.

Теперь предположим, что мы хотим предсказать, какова вероятность, что у случайно выбранного человека из этой популяции IQ окажется между 85 и 100. Рис. 37 подсказывает нам, что эта вероятность – 0,341 (или 34,1 %), поскольку по законам теории вероятности вероятность – это количество желаемых результатов, деленное на общее количество возможностей. А если нам интересно выяснить, какова вероятность, что кто-то (случайно выбранный) из этой популяции обладает IQ выше 130, то взгляд на рис. 37 покажет, что эта вероятность равна примерно 0,022, то есть 2,2 %. Примерно так же, опираясь на свойства нормального распределения и на метод интегрального исчисления (для вычисления площади под кривой), можно вычислить вероятность, что значение IQ попадет в тот или иной заданный диапазон. Иными словами, ответы нам дают теория вероятности и ее половинка-помощница статистика – в сочетании.

Как я уже не раз подчеркивал, вероятность и статистика обретают смысл, если имеешь дело с большим количеством событий, но не с отдельными событиями. Этой фундаментальной оговоркой, известной как закон больших чисел, мы обязаны Якобу Бернулли, который сформулировал ее в виде теоремы в своей книге «Ars Conjectandi» («Искусство предположений»; на рис. 38 приведен титульный лист)[95]95
  Великолепный перевод на английский – Bernoulli 1713b.


[Закрыть]
. В переводе на обыденный язык теорема гласит, что если вероятность, что событие случится, равна p, то p – это самое вероятное соотношение количества случаев, когда это событие происходит, к общему числу попыток. Если же общее число попыток приближается к бесконечности, то доля успешных попыток становится в точности равна p. Вот как Бернулли формулирует закон больших чисел в «Искусстве предположений»: «Еще предстоит выяснить, увеличиваем ли мы при увеличении числа наблюдений и вероятность, что регистрируемое соотношение желаемых случаев к нежелательным приблизится к подлинному значению, и тогда эта вероятность в конце концов превзойдет всякую желаемую точность». Затем он пояснил это на конкретном примере[96]96
  Приводится в Newman 1956.


[Закрыть]
.


Рис. 36


Рис. 37


У нас есть урна с 3000 белых и 2000 черных камешков, и мы хотим эмпирически определить соотношение количества белых и черных камешков – а мы его не знаем, – доставая из урны по одному камешку и записывая, когда нам попадается белый камешек, а когда черный (напоминаю, что при этом процессе должно соблюдаться важное требование: каждый камешек, отметив его цвет, следует положить обратно в урну и лишь затем доставать следующий, чтобы количество камешков оставалось постоянным). А теперь мы спрашиваем, возможно ли, увеличив число попыток, добиться, чтобы стало в 10, 100, 1000 раз вероятнее (а в конечном итоге прийти к «совершенной уверенности»), что соотношение количества извлечений белого камешка к количеству извлечений черного камешка приобретет точно такое же значение (3:2), что и подлинное соотношение черных и белых камешков в урне, а не какое-то другое значение? Если ответ отрицательный, то я признаю, что наша попытка оценить посредством наблюдения соотношение результатов в каждом конкретном случае (например, соотношение количества белых и черных камешков) обречена на провал. Но если это так, то мы наконец-то можем при помощи этого метода приблизиться к совершенной уверенности [в следующей главе «Искусства предположений» Якоб Бернулли доказывает, что так и есть] … и мы можем определять количество случаев a posteriori почти с той же огромной точностью, как если бы оно было известно нам a priori.


Рис. 38


Оттачиванию этой теоремы Бернулли посвятил двадцать лет, и она стала с тех пор одним из столпов статистики. В заключение он отметил, что убежден в существовании законов, которые управляют всем, – даже в тех областях, которые на первый взгляд представляются случайными.

Если бы удалось непрерывно пронаблюдать все события с этой минуты и на протяжении вечности (посредством чего вероятность превратилась бы в конечном итоге в уверенность), оказалось бы, что все в мире, даже то, что кажется нам совершенно случайным, происходит по определенным причинам и в определенном соответствии с законом, и что мы, следовательно, вынуждены предположить наличие определенной необходимости – если угодно, предопределения. Насколько я знаю, именно это имел в виду Платон, когда выдвигал доктрину вселенской цикличности и утверждал, что по истечении бесчисленных веков все вернется к первоначальному состоянию.

Мораль этой истории о науке неопределенности очень проста: можно применить математику даже к относительно «ненаучным» областям нашей жизни, в том числе и к тем, которые, как нам кажется, управляются чистой случайностью. Поэтому при попытках объяснить «непостижимую эффективность» математики мы не можем ограничиваться в дискуссии одними лишь законами физики. Рано или поздно нам все равно придется разбираться, что делает математику столь вездесущей.

Невероятное могущество математики не ускользнуло и от знаменитого драматурга и эссеиста Джорджа Бернарда Шоу (1856–1950). Несмотря на то, что прославился он отнюдь не математическими достижениями, Шоу написал очень глубокую статью о статистике и теории вероятности под названием «Напасть игры и благодать страховки» («The Vice of Gambling and the Virtue of Insurance»)[97]97
  Статья «The Vice of Gambling and the Virtue of Insurance» приведена в Newman 1956.


[Закрыть]
. В этой статье Шоу признает, что в его глазах страховка «основана на фактах, которые невозможно объяснить, и на рисках, которые способны вычислить лишь профессиональные математики». Однако далее он делает следующее проницательное замечание.

А теперь представьте себе деловую беседу между купцом, который жаждет торговать за границей, но отчаянно боится потерпеть кораблекрушение или быть сожранным дикарями, и шкипером, который жаждет заполучить грузы и пассажиров. Капитан уверяет купца, что его товары в полнейшей безопасности, как и он сам, буде он пожелает их сопровождать. Однако купец, голова у которого забита приключениями Ионы, Св. Павла, Одиссея и Робинзона Крузо, на это не отваживается. Разговор у них пойдет примерно так.

Капитан: В путь! Спорим на целую гору фунтов, что если ты поплывешь со мною, то в этот же день через год будешь жив и здоров!

Купец: Но если я приму эти условия, то должен буду поспорить с тобой на ту же сумму, что в течение года погибну.

Капитан: Почему бы и нет, если ты все равно наверняка проиграешь?

Купец: Но если я потону, то и ты потонешь, и что тогда станется с нашим спором?

Капитан: И то верно. Тогда я найду тебе какого-нибудь сухопутного жителя, который заключит этот спор с твоей женой и домочадцами.

Купец: Это меняет дело, но как же груз?

Капитан: Ха! Можем включить и его в условия спора. Или пусть у нас будет два пари – одно на твою жизнь, другое на груз. Уверяю тебя, все будет цело. Ничего не случится, а ты насмотришься на заграничные диковины!

Купец: Но если путешествие окончится благополучно и для меня, и для моих товаров, мне придется выплатить тебе сумму, на которую мы спорим. Если я не потону, то разорюсь.

Капитан: И это тоже истинная правда. Но здесь для меня гораздо меньше выгоды, чем ты думаешь. Если ты утонешь, то я тем более утону, ведь я буду последним, кто покинет тонущее судно. И все же позволь убедить тебя набраться отваги и отправиться в путь. Я ставлю десять к одному. Тебя это не соблазняет?

Купец: А, ну, в таком случае…


Капитан открыл страхование – как ювелиры открыли банковское дело.

Для тех, кто вслед за Шоу жалуется, что за все время обучения «не было сказано ни слова о смысле или практическом применении математики», этот юмористический рассказ об «истории» математики страхования будет очень полезен.

До сих пор, если не считать статьи Шоу, мы изучали развитие разных отраслей математики более или менее с точки зрения практикующих математиков. Для них, как и для многих философов-рационалистов вроде Спинозы, платонизм был очевиден. Не было никаких сомнений, что математические истины существуют в своем собственном мире и что человеческий разум способен получить доступ к этим сущностям безо всяких наблюдений – исключительно путем логических рассуждений. Первые признаки потенциальных расхождений между восприятием евклидовой геометрии как собрания вселенских истин и другими областями математики обнаружил ирландский философ Джордж Беркли, епископ Клойнский (1685–1753). В памфлете под названием «Аналитик, или Рассуждение, адресованное неверующему математику» («The Analyst; Or a Discourse Addressed to An Infidel Mathematician») – этим математиком, как полагают, был Эдмонд Галлей – Беркли критикует самые основы интегрального и дифференциального исчисления в том виде, в каком их предлагают Ньютон в «Началах» и Лейбниц[98]98
  Памфлет написан в 1734 году. Версия под редакцией Дэвида Уилкинса доступна в Интернете, см. Berkeley 1734.


[Закрыть]
. В частности, Беркли показал, что «флюксии» – производные в ньютоновском понимании, то есть мгновенные скорости изменений, определены совсем не строго, а это, с точки зрения Беркли, было основанием усомниться во всей научной дисциплине.

Метод флюксий является тем общим ключом, с помощью которого новейшие математики открывают секреты геометрии и, следовательно, природы. И поскольку именно он позволил им столь замечательно превзойти древних в открытии теорем и решении задач, его развитие и применение стало главным, если не единственным занятием всех тех, кто в наше время считается глубоким, основательным геометром. Но является ли этот метод ясным или же туманным, последовательным или противоречивым, убедительным или необоснованным? Я исследую это с величайшей беспристрастностью и представляю мое исследование на ваш суд и на суд каждого непредубежденного читателя. (Пер. Е. Лагутина.)

Несомненно, Беркли верно выявил суть проблемы – и в самом деле, непротиворечивая теория математического анализа сформировалась лишь к концу 1960 годов. Однако в XIX веке математике предстояло пережить еще более значительный кризис.

Глава 6
Геометры: шок будущего

В своей знаменитой книге «Шок будущего» (Toffler 1970) Элвин Тоффлер определяет заглавный термин как «разрушительный стресс и дезориентацию, которые вызывают у индивидов слишком большие перемены, происходящие за слишком короткое время» (пер. Е. Рудневой). Именно такой шок ожидал математиков, физиков и философов в XIX веке. В сущности, вера в то, что математика предлагает вечные незыблемые истины, вера, державшаяся тысячелетиями, рассыпалась в прах. Этот внезапный интеллектуальный переворот был вызван появлением новых типов геометрий – так называемых неевклидовых геометрий. Хотя большинство неспециалистов о них, наверное, и не слышали, масштаб этой революции в мышлении, которую вызвало появление этих новых отраслей математики, сравнивают с теорией эволюции Дарвина.

Чтобы вполне оценить природу этого колоссального мировоззренческого переворота, придется сделать краткий экскурс в историю математики.

Евклидова «Истина»

До начала ХIX века, если какую-то отрасль знаний и считали апофеозом истинности и несомненности, это была евклидова геометрия, та самая традиционная геометрия, которой учат в школе. Поэтому не приходится удивляться, что великий голландско-еврейский философ Барух Спиноза (1632–1677) назвал свой труд, где предпринял смелую попытку объединить науку, религию, этику и логику «Этика, доказанная в геометрическом порядке». Более того, несмотря на четкие различия между идеальным платоновским миром математических форм и физической реальностью, большинство ученых считали объекты евклидовой геометрии просто дистиллированными абстрактными соответствиями реальных физических предметов. Даже убежденные эмпирики вроде Дэвида Юма (1711–1776), который настаивал, что самые основы науки гораздо более сомнительны, чем можно заподозрить, были убеждены, что евклидова геометрия надежна, как Гибралтарская скала. В «Трактате о человеческом разумении» («An Enquiry Concerning Human Understanding») Юм определяет «истины» двух типов (Hume 1748).

Все объекты, доступные человеческому разуму или исследованию, по природе своей могут быть разделены на два вида, а именно: на отношения между идеями и факты. К первому виду относятся… вообще всякое суждение, достоверность которого или интуитивна, или демонстративна. …К такого рода суждениям можно прийти благодаря одной только мыслительной деятельности, независимо от того, что существует где бы то ни было во Вселенной. Пусть в природе никогда бы не существовало ни одного круга или треугольника, и все-таки истины, доказанные Евклидом, навсегда сохранили бы свою достоверность и очевидность.

Факты, составляющие второй вид объектов человеческого разума, удостоверяются иным способом, и, как бы велика ни была для нас очевидность их истины, она иного рода, чем предыдущая. Противоположность всякого факта всегда возможна, потому что она никогда не может заключать в себе противоречия… Суждение «Солнце завтра не взойдет» столь же ясно и столь же мало заключает в себе противоречие, как и утверждение, что оно взойдет, поэтому мы напрасно старались бы обосновать его ложность демонстративным путем (пер. С. Церетели).

Иначе говоря, хотя Юм, как и все эмпирики, полагал, что любое знание коренится в наблюдении, геометрия и ее «истины» по-прежнему занимали в его представлении привилегированное положение.

Величайший немецкий философ Иммануил Кант (1724–1804) не во всем был согласен с Юмом, однако тоже превозносил евклидову геометрию, приписывая ей и абсолютную точность, и бесспорную достоверность. В своем знаменитом труде «Критика чистого разума» Кант сделал попытку в некотором смысле обратить отношения между сознанием и физическим миром. Кант отошел от представления о том, что физическая реальность накладывает отпечаток на сознание, остающееся, в сущности, пассивным, Кант наделил сознание активной функцией «конструирования» или «переработки» воспринимаемой Вселенной. Он направил внимание вовнутрь и задался вопросом не о том, что мы можем познать, но о том, как именно мы можем познать то, что можем познать[99]99
  По Канту, одна из основных задач философии – объяснить возможность синтетического априорного знания математических понятий. Среди прочих работ на эту тему хотелось бы отметить Höffe 1994 и Kuehn 2001. Хороший обзор представлений о применении математики можно найти в Trudeau 1987.


[Закрыть]
. Он объяснил, что хотя наши глаза регистрируют частички света, эти частички не формируют образ в нашем сознании, пока мозг не переработает и не упорядочит информацию. Ключевая роль в этом процессе переработки приписывалась интуитивному или синтетическому априорному представлению о пространстве, которое, в свою очередь, как полагал Кант, основано на евклидовой геометрии. Кант был убежден, что евклидова геометрия – это единственный путь к переработке и концептуализации пространства, и это интуитивное универсальное знание о пространстве и лежит в основе нашего восприятия мира природы. Вот как об этом пишет сам Кант (Kant 1781).

Пространство не есть эмпирическое понятие, выводимое из внешнего опыта… Пространство есть необходимое априорное представление, лежащее в основе всех внешних созерцаний… На этой априорной необходимости основывается аподиктическая достоверность всех геометрических основоположений и возможность их априорных построений. Если бы это представление о пространстве было a posteriori приобретенным понятием, почерпнутым из общего внешнего опыта, то первые основоположения математического определения были бы только восприятием. Следовательно, на них была бы печать случайности, свойственной восприятию, и суждение, что между двумя точками возможна лишь одна прямая линия, не было бы необходимым; всякий раз этому учил бы нас опыт (пер. Н. Лосского).

Проще говоря, по Канту, если мы воспринимаем какой-то предмет, этот предмет непременно пространственный и евклидовский.

Идеи Юма и Канта выдвинули на первый план два разных, но одинаково важных аспекта, традиционно приписываемых евклидовой геометрии. Первое – утверждение, что евклидова геометрия дает единственно возможное точное описание физического пространства. Второе – отождествление евклидовой геометрии с жесткой, не подлежащей сомнению и непогрешимой дедуктивной структурой. В совокупности эти два предполагаемых качества предоставляли математикам, физикам и философам неоспоримые доказательства, что существуют незыблемые и конкретные истины, описывающие вселенную. До XIX века подобные утверждения воспринимались как данность. Но верны ли они на самом деле?

Основы евклидовой геометрии заложил греческий математик Евклид Александрийский примерно в 300 году до нашей эры. Он создал монументальный тринадцатитомный труд под названием «Начала», где попытался воздвигнуть геометрию на хорошо определенной логической основе. Начал он с девяти аксиом, которые, как предполагалось, несомненно истинны, и четырех постулатов, а затем на основе этих аксиом и постулатов исключительно логическими рассуждениями доказал огромное количество теорем.

Первые четыре постулата Евклида крайне просты и на удивление лаконичны[100]100
  Относительно щадящее введение в евклидову и неевклидовы геометрии см. у Greenberg 1974.


[Закрыть]
. Первый из них, к примеру, гласит, что «от всякой точки до всякой точки можно провести прямую линию» (здесь и далее цитаты из «Начал» Евклида даны в пер. Д. Мордухай-Болтовского). Четвертый – что «все прямые углы равны между собой». А вот пятый постулат – «постулат о параллельности» – сформулирован уже сложнее и значительно менее очевиден: «Если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то эти две прямые, продолженные неограниченно, встретятся с той стороны, где углы меньше двух прямых». На рис. 39 приведен чертеж, иллюстрирующий этот постулат. В истинности этого утверждения никто не сомневался, однако ему явно не хватает краткости и убедительности остальных постулатов. Все указывает на то, что пятый постулат не очень нравился и самому Евклиду: он не прибегает к нему при доказательстве первых двадцати восьми теорем в «Началах»[101]101
  Теоремы, доказанные без пятого постулата, анализируются в Trudeau 1987.


[Закрыть]
. Эквивалентный вариант «пятого постулата», который чаще всего цитируется в наши дни, впервые появился в комментариях греческого математика Прокла в V веке, однако широко известен как «аксиома Плейфэра» в честь шотландского математика Джона Плейфэра (1748–1819). Он гласит: «если дана линия и точка, лежащая вне ее, через эту точку возможно провести одну и только одну линию, параллельную данной» (см. рис. 40). Два варианта постулата эквивалентны в том смысле, что аксиома Плейфэра (вместе с другими аксиомами) требует первоначального пятого постулата Евклида или наоборот.

С течением веков недовольство пятым постулатом росло, и это привело к целому ряду неудачных попыток все-таки доказать его на основании остальных постулатов и аксиом или заменить его каким-то более очевидным постулатом. Когда эти попытки провалились, другие геометры попытались ответить на интересный вопрос из серии «А что, если»: а что, если пятый постулат на самом деле неверен? Размышления в этом направлении порождали неприятные сомнения в том, так ли уж самоочевидны евклидовы аксиомы – может быть, они просто основаны на повседневном опыте?[102]102
  Прекрасное описание всех попыток, которые в конце концов привели к разработке неевклидовой геометрии, можно найти в Bonola 1955.


[Закрыть]
А окончательный – и крайне неожиданный – вердикт был вынесен в XIX веке: можно создать новые виды геометрий, если произвольно выбрать постулат, отличающийся от пятого постулата Евклида. Более того, эти «неевклидовы» геометрии в принципе способны описывать физическое пространство с той же точностью, что и евклидова!


Рис. 39


Рис. 40


Позвольте мне сделать здесь небольшую паузу, чтобы уяснить значение выражения «произвольно выбрать». В течение тысячелетий евклидова геометрия считалась уникальной и неизбежной – единственно верным описанием пространства. А когда стало ясно, что можно выбирать постулаты произвольно и получать при этом не менее логичное описание пространства, вся концепция перевернулась с ног на голову. Надежная, тщательно выстроенная дедуктивная схема вдруг стала больше похожа на игру, в которой постулаты играли роль правил и не более того. Возьмешь другие постулаты – сыграешь в другую игру. Это открытие имело поистине сокрушительные последствия для понимания природы математики.

Почву для решительной атаки на евклидову геометрию подготовили сразу несколько математиков, обладавших широким мировоззрением. Особенно выделялись среди них иезуит Джироламо Саккери (1667–1733), исследовавший то, к каким последствиям может привести замена пятого постулата каким-то другим утверждением, и немецкие математики Георг Клюгель (1739–1812) и Иоганн Генрих Ламберт (1728–1777), которые первыми поняли, что могут существовать и другие геометрии, альтернативные евклидовой. И все же нужен был кто-то, кто забил бы последний гвоздь в крышку гроба представлений о том, что единственное возможное описание пространства – это евклидова геометрия. Заслуга принадлежит троим математикам – из России, Венгрии и Германии.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации