Электронная библиотека » Майкл Фоссел » » онлайн чтение - страница 4


  • Текст добавлен: 11 ноября 2017, 19:40


Автор книги: Майкл Фоссел


Жанр: Здоровье, Дом и Семья


Возрастные ограничения: +16

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 18 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Теломеры, теломераза и клеточное старение

Теломеры впервые обнаружил и назвал американский генетик Герман Меллер в 1938 году; он образовал название от греческих слов теХод («конец») и церод («часть»). Через два года цитогенетик Барбара Мак-Клинток описала функцию теломер: они защищают концы хромосом в некоторых клетках многоклеточных организмов. Позже за свою работу Мак-Клинток получила Нобелевскую премию.

Теломеры – это последние несколько тысяч пар оснований (нуклеотидов)[8]8
  Эти основания, или нуклеотиды, являются генетическими «буквами», которыми записываются гены в наших хромосомах. В ДНК всего четыре «буквы» – Т, A, G и С, – но их достаточно, чтобы записать абсолютно все наши гены.


[Закрыть]
на концах хромосом. Их часто сравнивают с пистончиками, твердыми пластиковыми наконечниками шнурков на обуви. Все теломеры состоят из специфической повторяющейся последовательности оснований: TTAGGG (тимин, тимин, аденин, гуанин, гуанин, гуанин), которая лишь тривиальным образом отличается (если отличается вообще) у разных биологических видов. Поскольку эти последовательности не кодируют белков, их часто считают «мусорной ДНК». Но это ошибочное отношение к их важнейшей функции. Теломера представляет собой лишь малую часть хромосомы, но ее роль ни в коем случае нельзя недооценивать.

Хотя тогда этого никто не понимал, но следующий важнейший теоретический шаг к пониманию роли теломер сделал российский ученый Алексей Оловников в 1971 году. Оловников, который жил (и до сих пор живет) в небольшой квартире в Москве, однажды ехал на метро, и его поразило сходство между хромосомами и поездами метро. Он задумался о том, как копируются хромосомы во время деления клетки, и понял, что там есть определенная проблема.



Клетка использует ферменты, называемые ДНК-полимеразами, чтобы копировать ДНК, из которой состоит хромосома. Но этим ферментам приходится «держаться» за часть старой хромосомы, когда она начинает копировать гены, так что ДНК-полимераза не может воссоздать часть хромосомы, которая находится прямо «под» ней: точно так же с помощью вагона метро можно прокладывать новые рельсы в туннеле, но вот прямо под собой он рельсы положить не может.

Представьте, что кто-то с помощью переносного сканера пытается скопировать вас. Он крепко хватает вас за руку, потом начинает водить сканером от головы до пяток. Но вот если он попытается скопировать вашу руку, то ему придется вас отпустить, и вы сбежите. Если ДНК-полимераза «отпускает» часть хромосомы, за которую схватилась, чтобы скопировать ее, хромосома просто уйдет.

Поскольку ДНК-полимераза может копировать только в одном направлении и должна всегда держаться за маленькую часть хромосомы, она не может вернуться и скопировать пропущенные нуклеотиды.

Внезапное озарение Оловникова оказалось абсолютно верным. Во время репликации копируется большая часть хромосомы, но не вся: маленькая часть всегда теряется. Каждый раз при копировании хромосома становится чуть короче. Как оказалось, фермент при копировании хромосомы как раз держится за теломеру. Поскольку часть теломеры, за которую «держится» ДНК-полимераза, невозможно скопировать, новая теломера становится чуть короче исходной. Когда вы молоды – точнее, когда ваши клетки молоды, – длина теломеры составляет примерно 15 тыс. спаренных оснований. Когда клетки теряют способность делиться, длина теломеры сокращается примерно до 8 тыс. оснований. Оловников предположил, что укорочение теломер – это механизм, благодаря которому существует лимит Хейфлика.

В то же время Оловников знал, что некоторые клетки никогда не стареют. В их числе – одноклеточные организмы, гаметы и большинство раковых клеток. Значит, все-таки существует какой-то способ «вернуться назад» и скопировать конец хромосомы, который в первый раз пропустили. Фермент, который помогает клетке «вернуться» и заново удлинить теломеру, называется теломеразой. Он позволяет некоторым типам клеток восстановить первоначальную длину теломер, чтобы эти клетки могли и дальше ремонтировать себя и размножаться бесконечно. Они укорачиваются с каждым делением только в клетках, не выделяющих теломеразу (то есть в большинстве соматических клеток).

Доказательство существования теломеразы нашли в 80-х годах (тогда же фермент получил свое название). Ученые из Калифорнийского университета в Беркли Элизабет Блэкберн и Кэрол Грейдер изолировали фермент в ресничной инфузории тетрахимене – организме, похожем на очень маленькую и хрупкую медузу[9]9
  Takubo, К. et at. – «Telomere Lengths Are Characteristic in Each Human Individual.» Experimental Gerontology 37,120021: 523-31.


[Закрыть]
.

ОЛОВНИКОВ В МИЧИГАНЕ

Алексей Оловников родился в 1936 году. В советское время за пределы страны он выезжал всего один раз – ездил в короткую командировку в ГДР. В конце 90-х он полетел из Москвы в Нью-Йорк, а потом в Мичиган, где я пригласил его на ужин к себе домой. Я встретил Алексея в аэропорту; по пути мы заехали в супермаркет, где его потрясло изобилие и разнообразие. Наш дом нельзя назвать шикарным, но мы чувствовали себя немного виноватыми из-за того, что американский образ жизни выглядел сравнительно роскошным. Когда я жарил мясо на гриле, началась гроза, и в доме внезапно отключили свет и воду. Пока я искал и зажигал свечи, а моя жена отчаянно пыталась в темноте спасти наш ужин, Алексей взглянул на меня из-за стола и сказал с сильным русским акцентом: «Знаешь, Майкл, не так у вас тут все и отличается от Москвы…»

Вместе с профессором из Гарвардской школы медицины Джеком Шостаком они в 2009 году получили Нобелевскую премию по медицине и физиологии за свои работы по теломеразе. Оловников в число лауреатов не попал.

Несмотря на очевидную корреляцию между длиной теломер и старением клеток, вопрос о причинно-следственной связи оставался открытым до 1999 года, когда в лаборатории удалось показать, что удлинение теломер останавливает старение клеток[10]10
  Shetton, D.N. et al. “Microarray Analysis of Replicative Senescence." 939—45.


[Закрыть]
. До этого все предположения, что теломеры играют главную роль в развитии возрастных болезней, немедленно отметались. Отчасти – потому, что данных, доказывающих причинно-следственную связь, было мало, отчасти – потому, что связь между укорочением теломер и старением клеток еще плохо понимали, отчасти – потому, что даже ученым бывает трудно принять радикально новую идею. В случае со старением нам пришлось медленно пересматривать все, что мы знали до этого.

СОМАТИЧЕСКИЕ КЛЕТКИ И ГАМЕТЫ

Все ткани животных и растений состоят из соматических клеток, за исключением половых клеток – гамет. У людей это сперматозоиды (у мужчин) и яйцеклетки (у женщин). Большинство соматических клеток не производят теломеразу, так что с каждым делением их теломеры укорачиваются. Исключение составляют стволовые и раковые клетки: они производят теломеразу, которая поддерживает длину теломер, несмотря на постоянное деление клеток.

Экспрессия генов влияет на то, как в клетках с помощью хромосом производятся белки и другие ключевые молекулы. У молодых клеток – «молодой» паттерн экспрессии генов, а у старых клеток – «старый» паттерн. Каждое укорочение теломер замедляет скорость экспрессии генов. В результате скорость ремонта ДНК и восстановления молекул замедляется, так что ДНК и другие молекулы – белки, молекулы липидных мембран и прочие «строительные материалы», благодаря которым молодые клетки работают так хорошо, – получают все больше повреждений. В конце концов клетки одновременно теряют свои функции и способность к делению. Они не могут ни выполнять специализированную работу, ни восстанавливать отмирающие вокруг них клетки в тканях. Неудивительно, что когда мы стареем, наша кожа истончается, а оболочки суставов изнашиваются[11]11
  Shelton, D.N. et at. “Microarray Analysis of Replicative Senescence." 939—45.


[Закрыть]
[12]12
  Hayflick, L. “Intracellular Determinants of Cell Aging.” Mechanisms of Ageing Development 28 (1984): 177-85.


[Закрыть]
[13]13
  Hayflick, L. Cell aging. Chapter 2 in EisdorferC. (Ed). Annual Review of Gerontology and Geriatrics, Volume 1. Springer Publishing, 1980.


[Закрыть]
[14]14
  West, M.D. et.al. “Altered Expression of Plasminogen and Plasminogen Activator Inhibitor During Cellular Senescence.” Experimental Gerontology 31 (1996): 175—93.


[Закрыть]
[15]15
  Helton, D.N. et at. “Microarray Analysis of Replicative Senescence. ” 939—45.


[Закрыть]
[16]16
  Rogues, C.N., Boyer, J.C., Färber, R.A. “Microsatellite Mutation Rates Are Eguivalent in Normal and Telomerase-immortalized Human Fibroblasts. ” Cancer Research 61 (2001): 8405—07.


[Закрыть]
.

Клетки с теломеразой могут поддерживать себя вечно. Клетки без теломеразы постепенно катятся под гору: они не могут отремонтировать повреждения, не могут восстановить молекулы и в конце концов утрачивают даже способность делиться. Неважно, умирают они или просто становятся неподвижными и неэффективными – результат один: поражение тканей и болезнь.

Теломерная теория старения

Каждый человек начинает свою жизнь как оплодотворенная яйцеклетка, союз двух половых клеток. Яйцеклетка быстро делится, и новые зародышевые стволовые клетки дифференцируются в клетки всевозможных типов, из которых состоит тело. Стволовые клетки производят теломеразу, так что могут делиться сколько угодно, не старея. У новорожденных младенцев несколько триллионов клеток, причем все они молодые и здоровые.

ТЕЛОМЕРАЗА И РАК

Теломераза не вызывает рак, но, возможно, необходима для деления раковых клеток. Поскольку раковые клетки производят теломеразу, они могут делиться бесконечно – отчасти именно поэтому они так опасны. В 1951 году ученые взяли образец клеток рака шейки матки у Генриетты Лаке, чернокожей женщины из Виргинии. Так называемые клетки HeLa используются для самых разнообразных научных исследований в течение десятилетий. Клеток HeLa удалось вырастить около 20 тонн – убедительная демонстрация того, что раковые клетки (и другие клетки, способные производить теломеразу) не стареют. История Генриетты Лаке и клеток HeLa увековечена в книге Ребекки Склут The Immortal Life of Henrietta Lacks («Бессмертная жизнь Генриетты Лаке»),

Большинство из них – соматические клетки, которые вскоре, с каждым новым делением, начинают стареть. Сравнительно малое число клеток, может быть, меньше, чем одна на 100 тыс., – это так называемые «взрослые» стволовые клетки, которые тоже могут делиться сколько угодно, создавая молодые клетки, но лишь определенных типов. Когда стволовая клетка делится, одна из новых клеток остается стволовой, а другая становится соматической. У молодых соматических клеток длинные теломеры, которые с каждым делением укорачиваются, а сама стволовая клетка с каждым делением восстанавливает теломеры и создает все новые соматические клетки. Однако процесс чаще всего идет неидеально, так что даже стволовые клетки постепенно теряют свои теломеры. В результате, когда мы стареем, наши стволовые клетки теряют способность восстанавливать недостающие соматические клетки. Стволовые клетки столетнего человека, например, все еще производят новые кровяные тельца, но уже не так хорошо и не так быстро, как в молодости.

Теперь теломерная теория старения становится понятнее. Большинство наших клеток не производит теломеразу, так что их теломеры укорачиваются после каждого деления. Укороченные теломеры изменяют экспрессию генов – к худшему, – и клетки начинают отказывать. Симптомы старения, которые у нас наблюдаются – от морщин до повышенного риска развития рака и болезни Альцгеймера, – отражают старение этих клеток. Все настолько просто – и настолько же сложно.

Что происходит, когда укорачиваются теломеры

Когда теломеры укорачиваются, страдает экспрессия генов, и клетка стареет. Чтобы разобраться, как это работает, нужно кое-что понимать в функционировании клеток.

В клетках все находится в постоянном движении. В каждый момент времени молекулы в вашей клетке производятся и уничтожаются, накапливаются и уходят, постоянно перерабатываются. Все эти разрушения и перестройки кажутся пустой тратой ресурсов, и да – действительно, энергия на это затрачивается колоссальная. Но благодаря этому большинство молекул в клетке довольно новые и, следовательно, с большей вероятностью будут в хорошей форме и идеально функционировать. Клетка очень прилежно трудится, чтобы гарантировать, что каждая молекула работает именно так, как должна.

Клетки не стареют, потому что повреждаются: они повреждаются, потому что стареют.

Может показаться, что отремонтировать поврежденные молекулы будет эффективнее, чем заменять их, но клетка так не поступает примерно по той же причине, по которой вы обычно не ремонтируете сломанный мобильный телефон. Если повреждения слишком значительные, то дешевле и легче будет просто заменить телефон – или молекулы.

Во многих случаях творческое разрушение направлено в первую очередь на поврежденные молекулы, но не во всех. Ваш организм действительно способен распознать, что молекула повреждена, и пометить ее в качестве приоритетной цели для уничтожения, но рано или поздно в переработку уходят абсолютно все молекулы. Даже совершенно нормальные молекулы постоянно разрушаются и заменяются такими же совершенно нормальными молекулами.

Эта система постоянной переработки очень эффективна, но есть у нее и недостаток: постоянная замена молекул требует немалой энергии. С другой стороны, если процесс переработки замедляется, то поврежденных молекул становится слишком много. Как мы увидим позже, именно в этой проблеме – корень старения. У молодых людей обмен веществ работает быстро, и они постоянно обновляют свои молекулы. У стариков обмен веществ медленнее, и обновление происходит уже недостаточно быстро.

Представьте, что бы получилось, если бы мы заключали контракты с операторами сотовой связи так, что каждый из нас получал бы через месяц новый телефон. Скорее всего, сломанных телефонов бы не было ни у кого. Из случайно выбранной тысячи телефонов в любой день почти все наверняка будут работать, потому что всем им максимум по два месяца. Но это будет невероятно дорого.

А как насчет противоположной ситуации? Если бы контракты с операторами длились по двадцать лет, то рано или поздно у всех людей телефоны бы сломались. Итак, у нас есть две крайности: платить огромные деньги, чтобы гарантировать, что наши телефоны всегда будут работать, или же платить очень мало, но тогда наши телефоны вообще не будут работать.

В случае с живыми клетками примерно то же происходит и с молекулами. Скорость замены молекул определяет уровень функционирования клетки. Молодые клетки заменяют молекулы быстро, и большинство молекул функционируют идеально. Когда теломеры укорачиваются, экспрессия генов меняется, и необходимые молекулы заменяются медленнее. А медленное обновление молекул приводит к медицинской катастрофе. Если молекулы обновляются слишком медленно, то большинство ферментов – «рабочих лошадок» наших клеток – перестают работать. Большинство белков дефективны, из большинства липидов формируются дырявые мембраны, да и в целом все работает плохо.

Вот так выглядит стареющая клетка.

Главная проблема стареющих клеток – не то, что повреждений становится все больше. И не то, что эти повреждения накапливаются просто потому, что «клетки изнашиваются». Проблемы начинаются, когда скорость обновления молекул уменьшается, и повреждения постепенно накапливаются. Клетки все еще работают, но становятся неэффективными и чаще отказывают; то же можно сказать и о клеточных продуктах вроде внутриклеточной структуры (например, коллагена кожи) или костей, в которых развивается остеопороз. А когда клетки и их продукты работают плохо, возрастает вероятность заболевания – до тех пор, пока не отказывает сразу весь организм.

РЕМОНТ ДНК

Ремонтирует ваш организм молекулы лишь одного типа – ДНК. Молекулы ДНК – критически важный и единственный источник молекулярных шаблонов для всех остальных молекул и чертежей всего вашего тела – постоянно проверяются, ремонтируются, а затем проверяются снова. Повреждения недопустимы. Процесс наблюдения за ДНК и ее ремонта сложен и требует больших энергетических затрат, но он необходим. Когда клетка обнаруживает повреждения, она либо исправляет проблему, либо прекращает делиться, чтобы ошибка не передалась дочерним клеткам. Иногда этот механизм безопасности отказывает, и поврежденная ДНК передается дочерним клеткам. Очень часто такие клетки становятся раковыми. Так что ремонт ДНК имеет высочайший приоритет, потому что если ее не отремонтировать, то поплатиться можно смертью всего организма.

Если говорить лаконично, то клетки не стареют, потому что повреждаются: они повреждаются, потому что стареют.

Связь с другими теориями старения

Давайте теперь рассмотрим, что это значит. Клетки не накапливают повреждения пассивно. Скорее, когда клетки стареют, падает скорость их ремонта и обновления. Если мы это четко поймем, то связь между теломерной теорией старения и различными теориями, изложенными в первой главе, станет яснее.

Теория усталости и износа гласит, что клетки стареют, потому что пассивно накапливают повреждения. Но на самом деле все клетки устают и изнашиваются, вне зависимости от возраста. Проблемы начинаются только тогда, когда повреждения недостаточно быстро ремонтируются. Молодые клетки успевают ремонтироваться полностью, старые – уже нет.

Теломерная теория объясняет, почему некоторые клетки остаются молодыми и избегают износа. Мы теперь знаем, что молодые и здоровые клетки могут полностью ремонтировать повреждения, а если они производят теломеразу, то могут делать это сколь угодно долго.

Митохондриальная свободнорадикальная теория тоже во многом верна. Как уже говорилось ранее, при производстве энергии создаются свободные радикалы, которые могут повредить молекулы, в том числе ДНК. Клетки обязаны поддерживать ДНК целой и невредимой, так что если держать ДНК тщательно спрятанной в ядре, а свободные радикалы удерживать в митохондриях, то генетические повреждения значительно уменьшатся.

Свободнорадикальная теория утверждает, что молодые митохондрии работают эффективно и производят мало свободных радикалов, но, старея, митохондрии становятся неэффективными и производят все больше и больше свободных радикалов, которые повреждают клетки

и в конце концов заставляют стареть весь организм. Это объяснение странно, потому что связывает старение организма со старением митохондрий, что вызывает закономерный вопрос: почему тогда стареют сами митохондрии? Кроме того, есть и более серьезная проблема: те же самые митохондрии тысячелетиями без всяких проблем функционируют в половых клетках, потому что гаметы производят теломеразу, поддерживают в себе молодые митохондрии и таким способом остаются молодыми и здоровыми. Как и сами клетки, некоторые митохондрии стареют, а другие остаются вечно молодыми.

Фундаментальная проблема состоит не в стареющих митохондриях, а в «дряхлом» паттерне экспрессии генов, который появляется из-за укорочения теломер; именно он позволяет свободным радикалам разрушать наши клетки.

Теломерная теория объясняет и эти проблемы. У человеческих митохондрий есть свой набор из 37 генов в кольцевой хромосоме – у нее нет ни концов, ни теломер. Почему же тогда некоторые митохондрии стареют? Большинство белков, необходимых для функционирования митохондрий, на самом деле кодируются не генами митохондрий, а генами в ядре клетки и только затем поступают в митохондрии. Так что функции митохондрий зависят от хромосом в ядре; теломеры в ядре постепенно укорачиваются, а паттерны экспрессии генов со временем меняются. Когда клетка стареет, она уже не может поставлять митохондриям все необходимые белки в нужном количестве, работа митохондрий ухудшается, и свободных радикалов становится больше. Кроме того, при старении клетки медленнее заменяются и липиды, из которых состоят мембраны митохондрий и ядра; благодаря этому свободные радикалы «сбегают» из митохондрий, и им легче становится добраться до ДНК. Более того, молекулы-уборщики, которые ловят и уничтожают свободные радикалы, с возрастом тоже начинают работать хуже. Старея, мы производим больше свободных радикалов, им легче вырваться на свободу, а мы не можем достаточно эффективно ловить их и ремонтировать повреждения, нанесенные ими. Все эти проблемы с возрастными повреждениями, которые наносят свободные радикалы, тоже в конечном итоге вызываются теломерами.

Теперь мы можем изложить теломерную теорию старения одним предложением.


Клетки делятся, теломеры укорачиваются, экспрессия генов меняется, ремонт и обновление клеток замедляются, ошибки медленно накапливаются, и клетки погибают.

Заблуждения о теломерной теории старения

Живые клетки были открыты три с половиной века назад Робертом Гуком, британским «натурфилософом», который назвал их «клетками» (по-английски – cells), потому что, впервые увидев клетки растений в микроскопах, он подумал, что они похожи на кельи (по-английски – тоже cells) в монастыре. Именно Гук впервые показал, что крупные формы жизни, например, люди, – не цельные, монолитные организмы: они состоят из бесчисленного множества маленьких клеток.

Это наблюдение стало поворотной точкой и в биологии, и в медицине. До Гука тело считалось неделимым, живым гештальтом или набором различных органов и тканей, обладавших некой таинственной жизненной силой, elan vital Идея существования клеток, однако, привела к совершенно новому взгляду на то, как функционируют живые организмы, который, в свою очередь, заложил основы современной медицины.

В следующие столетия, когда микроскоп позволил людям непосредственно наблюдать клетки, центральный догмат биологии, витализм, постепенно оказался вытеснен клеточной теорией. Биология сосредоточилась на единственном фундаментальном строительном материале живых организмов – клетке. В XXI веке клеточная теория кажется самоочевидной, но, как ни странно, склонность к мышлению в терминах витализма по-прежнему никуда не делась в нашем подходе и к теории, и к клиническому вмешательству.

Лучший пример этого – наши взгляды на старение. Главный отличительный признак медицинской патологии состоит в том, что все болезни – это клеточные заболевания. После того, как мы разбираемся, что за патология действует внутри клетки и какие проблемы она вызывает у соседних клеток, мы начинаем понимать механизм болезни. Но многие люди все равно цепляются за идею, что старение – это не процесс, происходящий внутри клеток, а нечто загадочное и гештальтоподобное, что происходит между клетками, а сами клетки при этом – всего лишь сторонние наблюдатели.

Болезни начинаются в основном внутри клеток и приводят к вторичным проблемам между клетками, а не наоборот.

Чтобы теломерная теория старения стала общепринятой, нужно обязательно справиться с этим заблуждением. Но это лишь одно из многих заблуждений, с которыми предстоит бороться. Я не могу вспомнить ни одной другой теории, которую окружало бы столько ошибочных выводов и путаницы. Давайте рассмотрим хотя бы самые значительные из них.


ЗАБЛУЖДЕНИЕ № 1.

Длина теломер – определяющий параметр для старения

Самое распространенное заблуждение о теломерной теории – то, что длина теломер является определяющим параметром для старения, а то и прямо его вызывает. На самом деле длина теломер в организме практически никак не связана с тем, как долго он живет или как быстро стареет. Как указывают многие ученые, у некоторых животных, например, мышей, теломеры длинные, а живут они недолго, а у других животных, например людей, теломеры намного короче, а живут они гораздо дольше.

Теломерная теория не утверждает, что длина теломер контролирует процесс старения. Для этого она вообще неважна. Старение клеток контролируется изменениями длины теломер. Это наблюдение подтверждается данными исследований. Ключевой вопрос состоит не в том, насколько длинными были ваши теломеры при рождении, а в том, насколько короче они стали. Экспрессия генов меняется именно из-за укорочения теломер.

Наблюдения за изменением длины теломер от рождения до старости у мышей и других организмов ясно показывают, что укорочение теломер – или, если точнее, изменения экспрессии генов, вызванные укорочением теломер, – является основной движущей силой старения организма.

Отчасти именно по этой причине измерение длины теломер имеет довольно ограниченную предсказательную ценность. Лишь в том случае, если вы знаете среднюю длину теломер для конкретного типа клеток у конкретного животного, можно оценить функциональность и патологии организма на основе одной только длины теломер. Например, если мне известно, что средняя длина теломер в лейкоцитах у подростков составляет 8,5 килобаз[17]17
  Килобаза – единица измерения длины ДНК или РНК В генетике равняется 1 тыс. нуклеотидов.


[Закрыть]
, а к восьмидесяти годам этот параметр снижается до 7,0 килобаз, то, увидев, что в ваших лейкоцитах длина теломер составляет всего 6 килобаз, я сразу пойму, что у вас проблемы. Но сама по себе длина в 6 килобаз ни о чем не говорит, пока мы не узнаем контекста. Дело не в длине, а в изменении длины.

Кроме того, важность длины теломер зависит и от типа выбранной клетки. В некоторых клетках теломеры с возрастом становятся короче, в некоторых – нет. Многие клетки – например, клетки стенок артерий, глиальные клетки мозга, клетки крови, кожи, эндотелия желудочно-кишечного тракта и печени – в течение жизни делятся. Но многие другие клетки – например, мышечные и нервные, – обычно перестают делиться еще до рождения, так что длина их теломер остается стабильной в течение всей нашей жизни. Возможно, измерив, насколько уменьшилась длина теломер в ваших коронарных артериях, мы и получим какую-то полезную клиническую информацию, но вот измерение длины теломер в клетках сердечной мышцы будет практически бесполезно. Точно так же полезно следить за тем, как укорачиваются теломеры в микроглиальных клетках, но вот отслеживать длину теломер в обслуживаемых ими мозговых клетках не имеет смысла[18]18
  На самом деле даже у взрослых некоторые нейроны и мышечные клетки делятся, но очень редко.


[Закрыть]
.


ЗАБЛУЖДЕНИЕ № 2.

Клетки умирают, потому что теломеры разматываются

Несмотря на то, что вы, возможно, видели в каких-нибудь телепередачах о здоровье, теломеры не «разматываются». Это распространенное заблуждение непосредственно связано с не менее распространенной аналогией про пистончики. В метафоре подразумевается, что когда вы стареете, пистончик-теломера полностью изнашивается, и нити, из которых состоит ДНК, разматываются, из-за чего ваши хромосомы разваливаются, и стареющая клетка умирает.

Но на самом деле все происходит совсем не так.

(Примечание: я дал разрешение издателям поместить на обложку книги шнурок, потому что пистончик на шнурке – действительно очень легкий для понимания образ, объясняющий, что такое теломера. Но я запретил изображать пистончик потрепанным.)

На самом деле хромосомы вообще никогда не «разматываются», потому что деградация никогда не заходит так далеко. Клеточная дисфункция достигает пика задолго до того, как теломера изнашивается полностью. Только в самых крайних случаях, например у пятого поколения «бестеломерных» мышей (у которых вообще не производится теломераза), клетки теряют абсолютно все свои теломеры. При нормальном старении такого в принципе не бывает.

На самом деле ваши хромосомы останутся в довольно неплохом состоянии, даже если вы доживете до 120 лет. Разваливаются они лишь во время разложения трупа.

Идея, что именно укорочение теломер убивает клетку, обычно тоже неверна. Клетки с короткими теломерами, конечно, работают не очень хорошо, но они вовсе не мертвы.


ЗАБЛУЖДЕНИЕ № 3.

Возрастные заболевания не могут быть связаны с теломерами

Практически в любом случае кто-нибудь обязательно скажет, что теломеры просто не могут вызывать сердечно-сосудистые заболевания или болезнь Альцгеймера. Обычно такие аргументы выдвигают совершенно рациональные ученые, которые великолепно разбираются в биологии, но намного хуже – в клинической патологии.

Если речь заходит о сердечно-сосудистых заболеваниях, они указывают, что клетки сердечной мышцы, кардиомиоциты, практически никогда не делятся, так что болезни сердца просто не могут быть вызваны укорочением теломер.

Но на самом деле патология сложнее. Сказать, что укорочение теломер не может вызывать сердечных приступов, потому что в клетках сердечной мышцы теломеры не укорачиваются, – все равно, что сказать, что холестерин не может вызывать сердечных приступов, потому что в клетках сердечной мышцы холестерин не скапливается.

Сердечно-сосудистые заболевания вызываются изменениями не в кардиомиоцитах, а в коронарных артериях – клетках эндотелия сосудов, – которые и теряют теломеры, и накапливают холестерин. Патология развивается в артериях, а не в мышце. То, что кардиомиоциты не делятся, не имеет никакого значения для патологии сердечно-сосудистых заболеваний.

Такая же критика – с похожим неправильным пониманием патологии – используется и в обсуждениях болезни Альцгеймера: нейроны практически никогда не делятся, так что болезнь Альцгеймера просто не может вызываться укорочением теломер.

Да, верно, взрослые нейроны практически никогда не делятся, но вот микроглиальные клетки, которые окружают и поддерживают эти нейроны, делятся постоянно, а их теломеры с возрастом укорачиваются. Укорочение микроглиальных теломер коррелирует с болезнью Альцгеймера и, похоже, предшествует наступлению нескольких отличительных симптомов деменции, в том числе накоплению ß-амилоидов и образованию τ-белковых клубков.

Полезно будет делать различия между непосредственной и косвенной возрастной патологией. Болезнь Альцгеймера и сердечно-сосудистые заболевания – это примеры косвенной патологии, где нейроны и кардиомиоциты исполняют роль «невинных наблюдателей». Непосредственное старение означает, что стареющие клетки вызывают патологию в своих собственных тканях; при косвенном старении стареющие клетки вызывают патологию в других тканях или клетках другого типа. Это различие окажется особенно полезным, когда мы перейдем к следующим главам, и даже еще полезнее, когда познакомимся с миром врачебного вмешательства с использованием удлинения теломер. В пятой главе я расскажу об укорочении теломер и непосредственных возрастных патологиях, а в шестой – об укорочении теломер и косвенных возрастных патологиях.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации