Электронная библиотека » Мерлин Шелдрейк » » онлайн чтение - страница 5


  • Текст добавлен: 18 апреля 2022, 06:38


Автор книги: Мерлин Шелдрейк


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 5 (всего у книги 28 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

Разные виды мицелия. Рисунок воспроизведен по изданию Fries, 1943


Большинство многоклеточных организмов растут, образуя новые клеточные слои поверх старых. Клетки делятся, чтобы получить новые клетки, которые затем делятся снова. Печень получается, когда клетки печени наслаиваются на существующие клетки печени. Так же происходит с клетками мышц или моркови. Гифы ведут себя по-другому: они растут в длину. При благоприятных условиях они могут достигать невероятных размеров.

На молекулярном уровне всякая клеточная деятельность, грибов ли, других ли существ, – это смешение множества быстрых действий. Так, рост клеток щупалец-гиф – это хаотичное движение, более оживленное, чем на стадионе, где скачут баскетбольные мячи. Гифы некоторых видов растут настолько быстро, что это можно наблюдать в реальном времени. «Щупальца» удлиняются, тем самым продвигаясь вперед. Маленькие пузырьки, наполненные клеточным строительным материалом, подбираются к самому кончику и сливаются с ним со скоростью до 600 пузырьков в секунду.

В 1995 году художник Франсис Алис ходил по Сан-Паулу с банкой синей краски. В дне банки была проделана дыра. Он гулял по городу много дней, и тонкий синий ручеек струился на землю, отмечая его маршрут. След краски нарисовал карту его путешествий, портрет времени. Перформанс Алиса иллюстрировал, как растут гифы. Сам Алис – это растущее щупальце. Извивающийся след, который он оставляет за собой, – это тело гифы. Рост происходит на кончике гифы; если бы кто-нибудь остановил Алиса во время его хождения с банкой краски, линия перестала бы расти. Это похоже на течение жизни. Растущее щупальце – это настоящее, жизненный опыт, который вы приобрели к настоящему моменту, вгрызающийся в будущее по мере того, как он растет. История вашей жизни – это оставшаяся часть гифы, путаные синие линии, которые вы оставили за собой. Грибница – это карта прошлой жизни гриба, и она является полезным напоминанием о том, что все формы жизни на самом деле процессы, а не объекты. «Вы», каким вы были пять лет назад, составлены из другого вещества, отличного от составляющего «вас» теперешнего. Природа – это событие, которое никогда не прекращается. Как сказал Уильям Бэтсон, создатель термина «генетика», «мы привыкли думать о животных и растениях как о веществе, а они на самом деле являются системами, через которые постоянно течет вещество». Видя какой-нибудь организм, от гриба до сосны, мы улавливаем лишь момент в его постоянном развитии.

Мицелий обычно имеет вид тонких ветвящихся гиф, но не всегда. Когда гифы соединяются, чтобы создать плодовое тело гриба, они быстро разбухают от воды, которую должны поглощать из окружающей среды, – вот почему грибы появляются после дождя.

Рост грибов может создавать взрывную силу. Когда гриб-гастеромицет семейства веселковых, увеличиваясь в размере, ломает дорожный асфальт, он делает это с силой, достаточной, чтобы поднять объект весом 130 килограммов. В популярной книге о грибах, изданной в 1860-х годах, Мордекай Кук (Mordecai Cooke) писал, что «несколько лет назад улицы [английского] города Басингстока выложили каменными плитами, а потом, несколько месяцев спустя, люди заметили, что тротуары почему-то стали неровными. Вскоре загадка разрешилась: некоторые тяжелые плиты были вытолкнуты из своих гнезд обильно разросшимися поганками. Одна из плит была размером 22 × 21 дюйм и весила 83 фунта[13]13
  55,88 × 53,34 см и 37,6482 кг.


[Закрыть]
».

Когда я размышляю над ростом грибов более минуты, то иной раз чувствую, что мой мозг начинает разбухать и вытягиваться.

В середине 1980-х годов американский музыковед Луи Сарно записал музыку народа ака, живущего в лесах Центральноафриканской Республики. Одна из песен называется «Собирательницы грибов». Бродя в лесу в поисках грибов, двигаясь вдоль грибниц, спрятанных под землей, женщины поют свою песню в окружении голосов лесных зверей. Каждая женщина ведет свою мелодию, каждый голос рассказывает свою музыкальную историю. Многочисленные мелодии переплетаются, но это все еще многоголосье, а не единый звук. Голоса оплетают другие голоса, вливаясь один в другой и существуя бок о бок.

«Собирательницы грибов» – пример музыкальной полифонии. Полифония – это одновременное исполнение более чем одной музыкальной партии, изложение более чем одной истории. В отличие от гармоний парикмахерского квартета, голоса женщин никогда не сливаются в единую мелодию. Ни один голос не теряет своей индивидуальности. Ни один голос не крадет нот чужого. Нет солистки, задающей мелодию. Если эту запись проиграть 10 разным людям и попросить их напеть то, что они услышали, воспроизведенные каждым из них мелодии будут сильно отличаться друг от друга.

Мицелий – это полифония в телесной форме. Голос каждой женщины – это кончик гифы, самостоятельно исследующий звуковое пространство. Хотя каждый голос свободен в своих блужданиях и эти блуждания нельзя отделить друг от друга. Нет солирующего голоса. Нет главной мелодии. Нет плана музыкальной конструкции. И тем не менее возникает форма.

Всякий раз, когда я слушаю «Собирательниц грибов», я вхожу в эту музыку, выбрав один из голосов и следуя его мелодии, как если бы в лесу я мог подойти к одной из женщин и находиться возле нее. Трудно одновременно отслеживать более чем одну линию. Это как пытаться одновременно слушать много разговоров, не переключаясь с одного на другой. В уме смешиваются несколько потоков сознания. Внимание полностью расфокусировано и распределено между несколькими объектами. У меня не получается услышать несколько мелодий одновременно, но всякий раз, когда я перестаю вслушиваться, происходит что-то совершенно особенное. Много песен сливаются в одну, не существующую ни в одном из этих отдельных голосов. Возникает новая песня, которую я не могу опознать, распутывая музыку на отдельные волокна мелодий.

Мицелий – это то, что получается, когда гифы грибов – потоки вещества, а не потоки сознания, – смешиваются. Однако как напомнил мне Алан Рейнер, миколог, специализирующийся на развитии мицелия, «мицелий нельзя рассматривать как аморфный кусок ваты». Гифы могут взаимодействовать для образования сложных структур.

Когда вы смотрите на грибы, вы смотрите на плоды. Представьте себе, что на месте грибов из-под земли растут виноградные гроздья. А теперь вообразите себе виноградную лозу, которая породила их, извивающуюся и ветвящуюся под землей. Ягоды и лоза составлены из разных видов клеток. Срежьте гриб, и вы убедитесь, что он составлен из того же типа клеток, что и мицелий: из клеток гиф.

Гифы вырастают не только в плодовые тела, но и в другие образования. Многие виды грибов формируют сплетения гиф – шнуровидные отростки, известные как ризоморфы. Они сильно отличаются по размеру, от тончайших нитей до волокон толщиной в несколько миллиметров и в сотни метров длиной. И если принять во внимание, что отдельные гифы – это трубы, а не нити – а ведь так легко забыть о том, что внутри гифы заполнены жидкостью, – то получается, что ризоморфы – это большие трубы, сформированные из многих мелких трубочек. Они могут переместить поток жидкости в тысячи раз быстрее, чем одна гифа, – почти 1,5 метра в час, как было установлено в одном из исследований. Так грибницы способны передавать питательные вещества и воду на большие расстояния.

Олссон рассказывал мне, что в одном шведском лесу он обнаружил большую грибницу опенка обыкновенного, Armillaria, расположившуюся на площади в два футбольных поля. По этому участку проходил ручей, через который был переброшен маленький мостик. «Я пригляделся к мостику, – вспоминал он, – и увидел, что гриб уже начал загибать свои шнуровидные отростки под мост. Фактически гриб перебирался через ручей с помощью моста». Как грибы координируют рост этих образований, до сих пор неясно.


Плодовые тела, как и мицелий, состоят из гиф


Шнуровидные образования и ризоморфы являются хорошим напоминанием о том, что грибницы – это транспортные сети. Мицелиальная дорожная карта Бодди также иллюстрирует это утверждение. Еще одно подтверждение – рост плодового тела. Чтобы пробиться через асфальт, плодовое тело должно быть насыщено водой. А чтобы это произошло, вода должна быстро перемещаться по грибнице и направляться в растущее плодовое тело толчкообразно.

На короткие расстояния вещества могут переноситься через мицелий с помощью сети микротрубочек – траспортных артерий из белков, своеобразных переходов между строительными лесами и эскалаторами. Однако перемещение с помощью микротрубочковых «моторов» энергетически затратно, и на большие расстояния содержимое гифы переносится рекой клеточной жидкости. Между тем обоими способами можно преодолеть мицелиевые изгибы достаточно быстро. Эффективное перемещение веществ позволяет разным частям сети грибницы заниматься разной деятельностью. При реставрации английского имения Хэддон-Холл в старой каменной печи нашли домовый гриб, или серпулу (Serpula). Отростки его мицелия прошли через восемь метров каменной кладки и проросли в гниющий пол во всем здании. Пол представлял собой питательную среду, а печь оказалась тем местом, где выросли плодовые тела.

Лучший способ оценить интенсивность движения жидкости внутри мицелия – наблюдать за тем, как она курсирует по сети. В 2013 году группа исследователей Калифорнийского университета в Лос-Анджелесе обработала мицелий, и ученые могли видеть клеточные структуры внутри гиф. Видеозапись показала полчища прибывающих клеточных ядер. В некоторых гифах они перемещаются быстрее, чем в других, где-то и вовсе двигаются разнонаправленно. Иногда образуются пробки, и ядра перенаправляются в другие отростки. Потоки ядер сливаются друг с другом; ритмичные толчки заставляют их двигаться с большой скоростью, разветвляться на перекрестках и устремляться в боковые проходы. Как иронично заметил один из исследователей, это «анархия клеточных ядер» как есть.

Поток помогает объяснить циркуляцию веществ в грибнице, но не может объяснить, почему грибы растут в одном направлении, а не в другом. Гифы чувствительны к стимулам, и в каждый отдельный момент времени они сталкиваются с огромным количеством возможностей. Вместо того чтобы расти по прямой линии с постоянной скоростью, гифы направляются в привлекательные места из непривлекательных. Как?

В 1950-е годы нобелевский лауреат, биофизик Макс Дельбрюк заинтересовался сенсорным поведением. В качестве модельного организма он выбрал фикомицес Блексли, Phycomyces blakesleeanus. Дельбрюк был очарован замечательными перцептивными способностями этой «особи». Его спороносные структуры (на деле – гигантские вертикальные гифы) чувствительны к свету примерно настолько же, что и человеческий глаз, и, подобно ему, адаптируются к его интенсивности. Они способны уловить слабый свет, исходящий от всего лишь одной звезды, и могут быть «ослеплены» ярким дневным солнечным светом. Растения реагируют на уровень освещения в сотни раз интенсивнее.

В конце научной карьеры Дельбрюк выражал убеждение, что этот фикомицес – «самый умный» из более простых многоклеточных[14]14
  Гифы фикомицесов не имеют перегородок. То есть их мицелий – одна многоядерная клетка, считать его многоклеточным ошибочно. – Прим. науч. ред.


[Закрыть]
организмов. Кроме своей великолепной чувствительности к прикосновению – фикомицес предпочитает расти, когда скорость ветра не превышает 1 см/с, или 0,036 км/ч, – этот гриб способен улавливать присутствие объектов поблизости. Это явление называется реакцией избегания. Несмотря на десятилетия кропотливых исследований, механизм такого поведения остается загадкой. Объекты, находящиеся в пределах нескольких миллиметров от фикомицеса, заставляют спороносные структуры гриба отклоняться, хотя и не касаются его. Каков бы ни был объект – прозрачный или матовый, гладкий или шероховатый, – спорангиеносец фикомицеса начинает уходить от него примерно через две минуты после обнаружения. Воздействие электромагнитных полей, влажности, механических факторов и температуры ученые исключили. Некоторые исследователи предполагают, что фикомицес использует летучий химический сигнал, отклоняющийся и обходящий препятствие под воздействием слабых воздушных потоков, но это еще предстоит доказать.

Хотя фикомицесы – чрезвычайно чувствительный вид, есть еще много грибов, способных чувствовать и реагировать на свет (его направление, силу или цвет), температуру, влажность, запас питательных веществ, токсины и электрические поля. Подобно растениям, грибы могут «видеть» цвета всего спектра с помощью рецепторов, чувствительных к синему свету и, в отличие от растений, к красному свету; у грибов также имеются опсины (светочувствительные пигменты), присутствующие в колбочках и палочках глаз животных. Гифы могут также ощущать текстуру поверхностей: по данным исследования, молодые гифы грибка, вызывающего ржавчину фасоли, умеют «нащупывать» канавки глубиной в половину микрометра (это в три раза мельче углубления между лазерными дорожками компакт-диска) на искусственных поверхностях. Когда гифы соединяются, чтобы образовать плодовое тело гриба, они обретают чрезвычайную чувствительность к силе тяжести. И, как мы уже убедились, грибы используют бесчисленное множество каналов химической связи с другими организмами и друг с другом: когда они соединяются или вступают в половые связи, гифы отличают «себя» от «других», а также от разновидностей «других».

Грибы «варятся» в океане сенсорной информации. И каким-то образом гифы – направляемые кончиками – способны интегрировать многочисленные потоки данных и определять подходящую траекторию для роста. Люди, подобно большинству животных, используют мозг для интеграции сенсорных данных и принятия оптимальных решений. Стало быть, нам итересно локализовать такую интеграцию в организме. Мы хотим ответить на вопрос «где?», но если мы имеем дело с растениями и грибами, этот вопрос, вернее всего, останется без ответа. Грибницы и растения состоят из разных частей, но среди них нет уникальных. Там всего понемногу. Но как же тогда потоки сенсорной информации сливаются внутри грибницы? Как организмы, не имеющие мозга, сочетают ощущение и действие?

Ботаники пытались решить этот вопрос больше ста лет. В 1880 году Чарлз Дарвин и его сын Френсис опубликовали книгу «Движения растений». В заключительном разделе авторы предполагают, что так как кончики корней определяют траекторию роста, именно там интегрируются сигналы от разных частей организма. Кончики корней, писали отец и сын Дарвины, ведут себя «как мозг какого-нибудь низшего животного, <…> принимая сигналы от сенсорных органов и управляя несколькими движениями». Предположение Дарвинов вошло в обиход, но оно, мягко говоря, противоречиво. Не потому, что их наблюдения когда-либо оспаривались: понятно, что кончики действительно направляют движение корней, так же как верхушки растений направляют движение ростков над землей. Но что смущает ботаников, так это использование слова мозг. Некоторые из них считают, что такая постановка вопроса может привести нас к более полному пониманию жизни растений. Другим кажется нелепостью предполагать, что растения могут обладать органом, хоть сколько-то напоминающим мозг.

В каком-то смысле слово «мозг» не совсем точное. Основная идея отца и сына Дарвинов состояла в том, что кончики – которые направляют корни под землей и ростки растений над ней – должны быть средоточием потоков информации, местом интеграции сенсорики и моторики, где определяется подходящее направление роста. То же применимо к гифам грибов. Кончики гиф – это части мицелия, которые растут, меняют направление, ветвятся и сливаются друг с другом. Они делают бóльшую часть работы. И они многочисленны. Отдельная грибница может иметь от сотен до миллиардов кончиков гиф, взаимодействующих друг с другом и обрабатывающих информацию одновременно и в больших количествах.



На кончиках гиф и вправду могут соединяться потоки данных ради определения скорости и направления роста. Но как кончики гиф в одной части мицелия «узнают», что делают их «коллеги» с противоположной стороны грибницы? Мы вынуждены снова вернуться к головоломке Олссона. Его панеллюс (Panellus) мог координировать поведение разнесенных в пространстве частей за срок столь короткий, что невероятным было предположение о токе химических веществ от точки А до точки В как причине перемены. Мицелий некоторых видов грибов образует так называемые ведьмины круги: сеть охватом в сотни метров и возрастом в сотни лет вдруг провоцирует одновременное появление замкнутой цепочки плодовых тел. В экспериментах Бодди с мицелием грибов, вызывающих гниение древесины, только одна часть грибницы обнаружила кусок дерева, но вся она изменила поведение, притом очень быстро. Как устроена коммуникация внутри сети мицелия? Каким образом происходит быстрый перенос информации по сети грибницы?

Есть несколько возможностей. Некоторые исследователи предполагают, что сети мицелия могут передавать сигналы о развитии, используя изменения в давлении или интенсивности потока. Ведь мицелий по сути есть замкнутая гидравлическая система, подобная тормозной системе автомобиля: внезапное изменение давления в одной части может, в принципе, быстро проявиться в другой. Некоторые ученые заметили, что метаболическая деятельность, например накопление и выделение химических соединений внутри гиф, может иметь форму последовательных импульсов, которые могут помогать синхронизировать поведение всей сети. Что касается Олссона, то он обратил внимание на одну из других немногих возможностей, а именно электричество.

Давно известно, что животные используют электрические импульсы, или потенциалы действия, для связи между разными частями своих тел. Нейроны – удлиненные нервные клетки, передающие информацию посредством электрических импульсов, которые координируют поведение животных, – изучает отдельная наука, нейробиология. Хотя так называемое животное электричество – прерогатива не только животных, не они одни умеют генерировать потенциалы действия. Это под силу еще растениям, в том числе водорослям, а в 1970-е годы стало известно, что и некоторым видам грибов. Бактерии тоже проводят электричество. Кабельные бактерии образуют длинные электропроводные нити – нитевидные нанокристаллы. В 2015 году установили, что колонии бактерий могут координировать свою деятельность, используя для этого волны электрической активности, подобные потенциалам действия. Однако немногие микологи допускают, что это явление может играть важную роль в жизни грибов.

В середине 1990-х годов на том же факультете Лундского университета в Швеции, на котором работал Олссон, группа ученых вела исследование в области нейробиологии насекомых. Они проводили эксперименты по измерению активности нейронов, вводя тонкие стеклянные микроэлектроды в мозг моли. Олссон с их разрешения воспользовался их оборудованием, чтобы ответить на простой вопрос: что произойдет, если заменить в эксперименте мозг моли на грибной мицелий? Нейробиологи были заинтригованы. В принципе, грибные гифы должны быть хорошо приспособлены к проведению электрических импульсов. Они покрыты белками, которые изолируют их: электроволны в теории могут перемещаться на большие расстояния, не рассеиваясь. Нервные клетки животных имеют аналогичную защиту. Более того, клетки мицелия последовательно соединены друг с другом, что, возможно, позволило бы импульсам, возникшим в одной части сети, достигать другой ее части без сбоев.

Для своего эксперимента Олссон тщательно отобрал виды грибов. Он пришел к выводу, что если у грибов действительно существуют системы электрической связи, то обнаружить их будет легче у тех видов, которым приходится координировать поведение частей сети на далеких расстояниях. Чтобы эксперимент удался с большей вероятностью, он выбрал опенок, Armillaria, грибница которого – рекордсмен по протяженности (она покрывает километры) и по возрасту (растет тысячи лет). Когда Олссон вставил микроэлектроды в гифы гриба Armillaria, он обнаружил регулярные импульсы, схожие с потенциалами действия, которые выстреливали со скоростью, очень близкой к скорости сенсорных нейронов животных – приблизительно четыре импульса в секунду, – и которые перемещались вдоль гифы со скоростью как минимум полмиллиметра в секунду, что примерно в 10 раз быстрее, чем самая высокая скорость жидкости, измеренная в гифах грибов. Это заинтересовало его, хотя данные наблюдений и не доказывали, что электрические импульсы – основа системы быстрой передачи сигналов. Электрическая активность может играть в ней роль, только если она чувствительна к стимуляции. Олссон решил измерить реакцию гриба на куски дерева, которое служит пищей для этого вида. Он установил оборудование для проведения эксперимента и поместил кусок древесины на мицелий в нескольких сантиметрах от электродов. И обнаружил нечто невероятное. Когда дерево пришло в контакт с мицелием, интесивность импульсов удвоилась. Когда он убрал дерево, интенсивность пришла в норму. Чтобы убедиться, что грибы реагировали не на вес груза, он поместил на мицелий кусок несъедобного пластика такого же размера. Гриб не отреагировал.

Олссон продолжил эксперимент с разными видами грибов, включая микоризные, растущие на корневой системе растений, Pleurotus (вешенкой обыкновенной) и Serpula (серпулой плачущей, или домовым грибом, обнаруженном в печи Хэддон-Холла). Все они производили импульсы, подобные потенциалам действия, и откликались на большое количество раздражителей. Олссон выдвинул гипотезу: электрические сигналы для многих грибов – способ пересылать сообщения между различными частями мицелия «об источниках пищи, повреждениях, состояниях гриба или присутствии других существ вокруг него».

Многие нейробиологи, с которыми работал Олссон, очень воодушевились, осознав, что сети мицелия могут вести себя подобно мозгу. «Первыми отреагировали эти ребята, работавшие с насекомыми, – вспоминал Олссон. – Они стали фантазировать об этих огромных лесных грибницах, распространяющих электрические сигналы вокруг себя. Они вообразили, что грибница – это большой мозг, лежащий в лесу под землей». Признаюсь, я тоже не мог не заметить это бросающееся в глаза сходство. Выводы Олссона предполагали, что мицелий может образовывать фантастически сложные сети электрически возбудимых клеток. Мозг тоже является фантастически сложной сетью электрически возбудимых клеток.

«Я не думаю, что мицелий – это мозг, – объяснил мне Олссон. – Мне пришлось воздержаться от аналогий с ним. Как только произносят слово “мозг”, люди представляют себе мозг человека, который формирует речь и обрабатывает мысли, принимает решения». Его осторожность весьма обоснованна. «Мозг» – это ключевое слово, обремененное смыслами, по большей части относящимися к животному миру. «Когда мы говорим “мозг”, – продолжал Олссон, – мы думаем о мозге животных». Кроме того, он подчеркнул, что мозг ведет себя как таковой из-за того, как он устроен.

Архитектура мозга животных сильно отличается от архитектуры грибниц. В первом случае нейроны стыкуются с другими нейронами в синапсах, и там сигналы объединяются с другими сигналами. Молекулы-нейромедиаторы проходят через синапсы и позволяют различным нейронам вести себя по-разному – некоторые возбуждают нейроны, некоторые подавляют их. Сети мицелия не обладают такими особенностями.

Но если бы грибы не использовали электроволны для передачи сигналов по сети мицелия, разве мы не стали бы думать о мицелии как своеобразном прототипе мозга? По мнению Олссона, могут быть и другие способы регулирования электрических импульсов в сети мицелия, чтобы создать «электрические цепи, приемники сигнала и генераторы, подобные тем, что существуют в мозгу». У некоторых грибов гифы разделяются на отсеки септами с порами, проницаемость которых в точности регулируется. Когда пóра открывается или закрывается, изменяется сила сигнала, проходящего от одного отсека к другому, будь то химический или электрический сигнал или сигнал об изменении давления. Если внезапное изменение электрического заряда могло бы открыть или закрыть пору, размышлял Олссон, то всплеск частоты импульсов мог бы изменить путь прохождения через гифу последовательных сигналов, и так мицелий «запомнил» новый алгоритм. Более того, гифы ветвятся. Если два импульса сошлись бы в одном месте, оба влияли бы на проводимость пор, интегрируя сигналы из различных ветвей. «Не нужно хорошо разбираться в работе компьютеров, чтобы понять, что такие системы могут создавать точки принятия решений, – сказал мне Олссон. – Если соединить эти системы в гибкую и подвижную сеть, появляется возможность создать “мозг”, который способен учиться и запоминать». Он держался от слова «мозг» на безопасном расстоянии, заключая его в кавычки и подчеркивая тем самым, что использовал его в качестве метафоры.

То, что грибы могут использовать электрические сигналы как основу для быстрой коммуникации, не укрылось от взора Андрея Адамацкого, директора Лаборатории нетрадиционных компьютерных исследований. В 2018 году он внедрил электроды в плодовые тела вешенки, растущие гроздьями из участков мицелия, и обнаружил спонтанные волны электрической активности. Когда он поднес пламя к плодовому телу, другие плодовые тела той же грозди отреагировали резким скачком напряжения. Вскоре после этого он опубликовал статью Towards fungal computer («Изобретая грибной компьютер»). В ней он предположил, что сети мицелия «обрабатывают» информацию, закодированную в пиках электрической активности. Если бы мы знали, как сеть мицелия будет реагировать на такой стимул, считает Адамацкий, мы могли бы рассматривать ее как живую микросхему. Стимулируя мицелий, например с помощью пламени или химических веществ, мы, суть, вводили бы данные в грибной компьютер.

Как бы фантастически ни звучало словосочетание «грибной компьютер», но биокомпьютерные технологии – это стремительно развивающаяся область. Адамацкий потратил несколько лет на разработку способов применения слизевиков в качестве датчиков и «компьютеров». Его прототипы биокомпьютеров используют слизевиков для решения ряда геометрических задач. «Сети»[15]15
  Дело в том, что у слизевиков, не являющихся грибами, нет грибницы. Их вегетативное тело – плазмодий с псевдоподиями. – Прим. науч. ред.


[Закрыть]
слизевиков могут модифицироваться, например путем отсечения связи, чтобы изменить набор «логических функций», которые выполняются в конкретной сети. «Грибной компьютер» Адамацкого – это прикладная технология обработки информации слизевиками к другим «сетевым» организмам. По наблюдениям Адамацкого, есть грибницы более приспособленные для информационных технологий, чем «сеть» слизевиков. Это старые грибницы, которые не спешат принимать новые формы. К тому же они крупнее, у них больше связей между гифами. Именно в местах этих соединений, которые Олссон назвал «схемами принятия решений» (decision gates), а Адамацкий описывает как «элементарные процессоры», взаимодействуют и объединяются сигналы, идущие от различных ветвей сети. Адамацкий подсчитал, что грибница опенка, покрывающая более 15 гектаров, содержит приблизительно триллион таких «процессоров».

Для Адамацкого предназначение грибных компьютеров не в том, чтобы заменить микросхемы, – они для того слишком неторопливы. Скорее, как он считает, можно было бы использовать мицелий, развивающийся в какой-либо экосистеме, как «большой датчик, отражающий состояние окружающей среды». Грибницы, согласно его рассуждениям, отслеживают большое число потоков данных, и это составляет часть их повседневной жизни. Если бы мы могли подключиться к сетям мицелия и объяснить сигналы, которые они используют для обработки информации, мы могли бы больше узнать о том, что происходит в экосистеме. Грибы могли бы рассказать о качестве почвы, чистоте воды, экологическом загрязнении и других параметрах окружающей среды, к которым они чувствительны.

Но мы несколько отклонились от темы. Обработка информации с помощью живых «сетевых» организмов – совсем новая область, и на многие вопросы еще предстоит ответить. Олссон и Адамацкий показали, что мицелий может реагировать на электрический сигнал, но не смогли провести черты между стимулом и реакцией. Это как если бы вы укололи булавкой большой палец ноги, заметили, как нервный импульс прошел по всему телу, но не смогли измерить реакцию на болевое ощущение.

Все это предстоит выяснить в будущем. За 23 года, что прошли между исследованием мицелия Олссона и исследованием вёшенок Адамацкого, никто больше не отважился на изучение электрических сигналов в грибнице. Если бы у Олссона были ресурсы для продолжения научных разработок, то, как он сказал мне, он бы попытался продемонстрировать явную физиологическую реакцию на изменения в электрической активности и раскодировать образцы электрических импульсов. Его мечта – «связать гриб с компьютером и осуществить коммуникацию с ним», использовать электрические сигналы, чтобы заставить гриб изменить свое поведение. «Какие удивительные и потрясающие эксперименты можно будет поставить, если это окажется правильным».

Эти исследования вызывают тучу вопросов. Обладают ли «сетевые» формы жизни – такие, как грибы или слизевики, – познавательными способностями? Можем ли мы считать их поведение разумным? Если разум этих организмов оказался бы непохож на наш разум, то каким он мог бы быть? Заметили бы мы его?

Мнения биологов разделились. Традиционно разум и познание пытались определить с человеческих позиций – как что-то, что требует по крайней мере наличия мозга или скорее сознания. Когнитивистика возникла в процессе изучения людей, и поэтому, разумеется, центральное место в науке занимает разум человека. Без сознания классические проявления когнитивных процессов – язык, логика, система доказательств, узнавание себя в зеркале – кажутся невозможными. Все они задействуют сложные ментальные функции. Но как мы определяем разум и сознание – вопрос вкуса. Для многих концепция, в центре которой находится мозг, слишком ограниченна. Представление о том, что можно провести четкую линию между человеком и всеми остальными, у кого нет «настоящего мозга» и «настоящего сознания», было резко отвергнуто философом Даниэлом Деннетом как «архаичный миф».

Мозг не выдумал многих своих «трюков» с нуля, и многие его характерные особенности отражают древние процессы, протекавшие задолго до того, как мозг стал таким, каким мы его знаем.

Чарлз Дарвин в 1817 году стал на прагматическую точку зрения. «Разум – это то, насколько эффективно биологические виды делают то, что необходимо для их выживания». Этой точке зрения вторят многие современные биологи и философы. Латинские корни, из которых сложено английское intelligence («ум, разум, интеллект»), означают в совокупности «делать различие между». Многие виды организмов, не имеющих мозга, – растения, грибы и слизевики – гибко реагируют на окружающую среду, решают проблемы и делают выбор в пользу какой-либо альтернативы. Очевидно, обработка сложной информации может быть «поручена» не только мозгу. Чтобы описать поведение не имеющих мозга систем при решении задач, некоторые исследователи используют термин «роевой интеллект». Другие склонны приписывать наклонности этих «сетевых» форм жизни «минимальному», или «базальному», сознанию. Они аргументируют это тем, что вопрос, который мы должны задавать, вовсе не в том, обладает ли организм способностью к познанию; вместо того мы должны оценить степень, до которой организм может считаться познающим. Все эти теории подразумевают, что разумное поведение возможно и без мозга. Все, что нужно, – это подвижная и восприимчивая сетевая структура.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации