Автор книги: Митио Каку
Жанр: Зарубежная образовательная литература, Наука и Образование
Возрастные ограничения: +16
сообщить о неприемлемом содержимом
Текущая страница: 9 (всего у книги 30 страниц) [доступный отрывок для чтения: 10 страниц]
Когда наши астронавты решат фундаментальные проблемы выживания, они смогут насладиться другими, эстетически приятными сторонами Красной планеты.
Благодаря слабому тяготению, разреженной атмосфере и отсутствию жидкой воды, горы на Марсе могут вырастать до поистине величественных размеров в сравнении с земными горами. Марсианская гора Олимп – крупнейший известный вулкан Солнечной системы. Эта гора примерно в 2,5 раза выше Эвереста и так велика у основания, что если бы можно было поместить ее в Северную Америку, то она протянулась бы от Нью-Йорка до канадского Монреаля. Слабое гравитационное поле означает также, что туго набитые рюкзаки не будут в тягость альпинистам и скалолазам и горовосходители на Марсе смогут демонстрировать те же чудеса выносливости, что и на Луне.
К горе Олимп примыкают три меньших вулкана, выстроившиеся практически по прямой линии. Их наличие и расположение указывают на то, что в древние времена на Марсе шла активная тектоническая деятельность. Удачной аналогией им здесь, на Земле, могут служить Гавайские острова. Внизу, под ложем Тихого океана, плещется постоянное озеро магмы, и при движении тектонической плиты над ним давление магмы периодически прорывается через кору, образуя очередной остров Гавайской гряды. Но тектоническая активность на Марсе, судя по всему, давно завершилась, что свидетельствует об остывании ядра планеты.
Крупнейший каньон на Марсе и, вероятно, во всей Солнечной системе – Долины Маринера – настолько велик, что, если поместить его в Северную Америку, он протянулся бы от Нью-Йорка до Лос-Анджелеса. Туристы, видевшие Большой каньон на Земле, были бы поражены такой сетью инопланетных каньонов. Но, в отличие от Большого каньона, по дну Долин Маринера не протекает река. Согласно новейшей теории, каньон, растянувшийся примерно на 5000 км, представляет собой стык двух древних тектонических плит, примерно как известный разлом Сан-Андреас на Земле.
Первоклассными приманками для туристов станут две гигантские полярные ледовые шапки Красной планеты. Они отличаются от земных, будучи образованными из льда двух типов. Ледовая шапка первого типа состоит из замерзшей воды. Это постоянная деталь ландшафта, которая большую часть марсианского года остается практически неизменной. Вторая разновидность состоит из сухого льда или замерзшего углекислого газа. Такие шапки расширяются и сжимаются в зависимости от времени года. Летом сухой лед испаряется и исчезает, оставляя только шапки из настоящего водяного льда. В результате вид полярных ледовых шапок на протяжении года меняется довольно сильно.
Если поверхность Земли постоянно меняется, то основные топографические объекты Марса остаются почти неизменными уже миллиарды лет. Поэтому многие черты Красной планеты не имеют аналогов в земной топологии. Здесь, к примеру, можно назвать остатки тысяч гигантских метеоритных кратеров, образовавшихся в разные времена. На Земле тоже когда-то были гигантские метеоритные кратеры, но водная эрозия буквально стерла многие из них с лица нашей планеты. Более того, значительная часть поверхности Земли обновляется каждые несколько сотен миллионов лет благодаря тектонической активности, так что все древние кратеры со временем трансформировались в совершенно новый ландшафт. На Марсе мы видим ландшафт, как бы замерший во времени.
Во многих отношениях о поверхности Марса мы знаем больше, чем о поверхности Земли. Около трех четвертей земной поверхности покрыто океанами, тогда как на Марсе океанов нет. Наши космические аппараты на орбите Марса сфотографировали каждый квадратный метр его поверхности и снабдили нас подробной картой рельефа. Сочетание льда, снега, пыли и песчаных дюн рождает на Марсе диковинные геологические формации, которых на Земле не увидишь. Прогуляться по Марсу – мечта любого туриста.
Единственным очевидным препятствием для превращения Марса в туристическую планету могли бы стать чудовищные пылевые вихри, которые там очень часты. Их следы можно видеть в пустыне чуть ли не ежедневно. Иногда они поднимаются выше Эвереста; земные аналоги, которые поднимаются в воздух не более чем на несколько сотен метров, по сравнению с ними показались бы карликами. Кроме того, там бывают свирепые песчаные бури, иногда на несколько недель укутывающие весь Марс песчаным покрывалом. Однако, благодаря низкому атмосферному давлению на Красной планете, они не особенно разрушительны. Бешеные ветры со скоростями свыше 150 км/ч астронавты будут ощущать как легкий бриз. Конечно, они могут оказаться серьезной помехой – пылинки, попадая в скафандры, машины и приборы, способны вызывать отказы и поломки, но повалить дом или другую постройку они не сумеют.
Из-за большой разреженности воздуха самолетам для полета на Марсе будут нужны крылья значительно большего размера, чем на Земле. Летательному аппарату на солнечной энергии потребуется огромная несущая поверхность, и потому он окажется слишком дорогим, чтобы использовать его для отдыха или спорта. Вероятно, мы не увидим туристов, летающих над марсианскими каньонами, как они это делают над Большим каньоном на Земле. А вот воздушные шары и полумягкие дирижабли могут оказаться вполне рентабельным средством передвижения, несмотря на низкие температуры и разреженный воздух. Они позволят исследовать марсианский рельеф с гораздо более близкого расстояния, чем это делают орбитальные аппараты, и при этом охватить значительные площади поверхности. Возможно, флотилии воздушных шаров и дирижаблей когда-нибудь станут привычным зрелищем в небе Марса.
Марс: райский садЧтобы обеспечить долговременное присутствие человека на Красной планете, необходимо найти способ вырастить в ее негостеприимных условиях настоящий райский сад.
Роберт Зубрин – аэрокосмический инженер, работавший в компаниях Martin Marietta и Lockheed Martin, – основал Марсианское общество и уже много лет является одним из самых активных пропагандистов колонизации Красной планеты. Цель Зубрина – убедить общество профинансировать пилотируемую экспедицию. Когда-то его голос был чуть ли не единственным и он готов был убеждать каждого, кто согласится слушать, а теперь за советом к нему обращаются крупные компании и правительства.
Я несколько раз брал у Зубрина интервью, и каждый раз его энтузиазм, энергия и преданность делу бросались в глаза. На вопрос о том, что послужило толчком к такой одержимости космосом, он рассказал, что началось все еще в детстве с чтения фантастики. Кроме того, он был буквально околдован, когда в 1952 г. фон Браун показал, что экспедиция из десяти космических кораблей, собранных на орбите, могла бы доставить экипаж из 70 астронавтов на Марс.
Я спросил доктора Зубрина, как увлеченность фантастикой трансформировалась в дело его жизни – борьбу за экспедицию к Марсу. «Все дело в советском “Спутнике-1”, – ответил он. – На взрослых он нагонял ужас, но я тогда испытал настоящий восторг»[23]23
Интервью для радиостанции Science Fantastic, июнь 2017.
[Закрыть]. В 1957 г. Зубрина покорил запуск первого в мире искусственного спутника, потому что это означало: все, о чем он читал в фантастических романах, может сбыться на самом деле. Он твердо верил, что когда-нибудь научная фантастика превратится в научный факт.
Доктор Зубрин принадлежит к поколению, своими глазами видевшему, как Соединенные Штаты начинают с нуля и становятся величайшей космической державой планеты. Позже общее внимание американцев полностью захватили Вьетнамская война и внутренние неурядицы, и работа астронавтов на Луне стала казаться чем-то далеким и неважным. Бюджеты резали по живому. Программы закрывались. Хотя общественное мнение обернулось против космической программы, доктор Зубрин сохранил убежденность в том, что следующим пунктом в повестке дня должен стать Марс. В 1989 г. президент Джордж Буш-старший возбудил воображение публики, упомянув о планах добраться до Марса к 2020 г. Впрочем, возбуждение длилось недолго: уже на следующий год стало ясно, что стоимость проекта составила бы около $450 млрд. Американцы испытали шок от такой цены, и планы марсианской экспедиции были вновь положены на полку.
Зубрин годами мотался по миру, пытаясь заручиться поддержкой для своих амбициозных планов. Понимая, что общество не поддержит схемы, которые выходили бы за рамки бюджета, он предложил немало новаторских и одновременно реалистичных подходов к колонизации Красной планеты. До развернутой им активной деятельности большинство людей не воспринимали всерьез проблему финансирования будущих космических экспедиций.
В 1990 г. Зубрин предложил снизить стоимость экспедиции, разбив ее на две части. Согласно проекту Mars Direct, на Марс сначала предполагалось послать автоматический космический корабль Earth Return Vehicle. Она несет небольшое количество водорода, всего 8 т, но на месте, используя неограниченные запасы углекислого газа, содержащегося в марсианской атмосфере, получает до 112 т метана и кислорода – достаточное количество ракетного топлива для последующего обратного путешествия. Как только топливо изготовлено, астронавты стартуют с Земли в корабле Mars Habitat Unit, заправленном небольшим количеством топлива – только на полет до Марса. После посадки на Марс они проводят научные эксперименты, покидают Mars Habitat Unit и переходят в Earth Return Vehicle, заправленный под завязку вновь произведенным ракетным топливом. Этот корабль должен доставить экипаж обратно на Землю.
Критики порой приходят в ужас, когда слышат, что Зубрин предлагает выписать астронавтам билет на Марс в один конец, как будто заранее рассчитывая на их гибель на Красной планете. Он же терпеливо объясняет, что топливо на обратный полет можно произвести на Марсе, но при этом добавляет: «Жизнь вообще путь в один конец, и один из способов прожить ее – отправиться на Марс и положить там начало новой ветви человеческой цивилизации». Зубрин уверен, что через 500 лет историки, возможно, даже не вспомнят все мелкие войны и конфликты XXI столетия, а вот основание поселений на Марсе человечество будет отмечать обязательно.
НАСА взяло на вооружение некоторые элементы стратегии Mars Direct, но изменило философию марсианской программы: ее приоритетами стали стоимость, эффективность и максимальное использование местных ресурсов. Кроме того, Марсианское общество Зубрина построило на Земле прототип марсианской базы Mars Desert Research Station (MDRS). Для этого выбран штат Юта, природа которого лучше всего имитирует условия Красной планеты: холодная, пустынная, безжизненная земля, почти лишенная растительности и животного мира. Сердце MDRS – жилой модуль, двухэтажное цилиндрическое здание, способное вместить семерых членов экипажа. Кроме того, на базе имеется большая обсерватория для наблюдения за звездами. MDRS принимает добровольцев, которые подписываются на двух– или трехнедельное пребывание на станции. Их учат исполнять обязанности будущих астронавтов на марсианской базе: проводить научные эксперименты и наблюдения, осуществлять обслуживание станции. Организаторы MDRS пытаются сделать опыт пребывания на станции как можно более реалистичным и используют работу групп для оценки психологических аспектов длительной изоляции на Марсе в компании людей, по сути малознакомых. С основания станции в 2001 г. через нее прошло более тысячи человек.
Тяга людей к Марсу так сильна, что идея его покорения вызвала к жизни несколько предприятий сомнительной ценности. К примеру, MDRS не следует путать с программой Mars One, предлагающей билет на Марс в один конец всякому, кто пройдет некий набор тестов. Поданы сотни заявлений, притом что на самом деле у этой программы нет никаких конкретных способов добраться до Марса. Реклама утверждает, что ракета будет оплачена за счет добровольных пожертвований и проката фильма, снятого о будущей экспедиции. Скептики обвиняют организаторов программы Mars One в том, что они лучше умеют заговаривать зубы прессе, чем привлекать к работе над своей программой реальные научные кадры.
Еще одной диковинной попыткой сформировать изолированную колонию, подобную тем, что мы создали бы на Марсе, стал проект «Биосфера-2» (Biosphere 2)[24]24
Cм.: R. Reider, Dreaming the Biosphere (Albuquerque: University of New Mexico Press, 2010).
[Закрыть]. На его реализацию выделило $150 млн семейство Бассов. В Аризонской пустыне был воздвигнут комплекс в виде купола из стекла и стали площадью около 1,2 га. Это замкнутое пространство может вместить восемь человек и 3000 видов растений и животных. С его помощью предполагалось выяснить, могут ли люди выжить в контролируемой изолированной среде, напоминающей то, что мы, возможно, создадим на другой планете. С самого старта в 1991 г. эксперимент преследовали всевозможные неудачи, споры, скандалы и отказы техники. Он часто попадал в заголовки новостей, но давал мало реальных научных результатов. К счастью, к 2011 г. все оборудование и сооружения были переданы Университету Аризоны; и теперь в пустыне действует солидный исследовательский центр.
Основываясь на опыте MDRS и на других данных, доктор Зубрин предсказывает, что колонизация Марса будет проходить в предсказуемой последовательности. По его мнению, первым приоритетом будет устройство на поверхности Марса базы примерно для 20–50 астронавтов. Кто-то из них поработает на базе несколько месяцев и вернется на Землю, кто-то поселится там навсегда и сделает базу своим постоянным домом. Со временем люди на Марсе начнут считать себя не столько астронавтами, сколько поселенцами.
Первое время большую часть припасов необходимо будет доставлять с Земли. На втором этапе население Марса вырастет до нескольких тысяч человек и колония сможет более успешно использовать полезные ископаемые планеты. Красноватый оттенок песков Марса объясняется содержанием в них оксида железа (ржавчины), так что поселенцы смогут получать железо и сталь для строительства. Электричество должны вырабатывать большие солнечные станции, собирающие энергию Солнца. Углекислый газ из атмосферы можно будет использовать для выращивания растений. Постепенно марсианское поселение будет становиться самодостаточным и устойчивым.
Но самым трудным станет следующий шаг. В конце концов колонистам придется найти способ медленно нагреть атмосферу Марса, чтобы по поверхности Красной планеты вновь, впервые за 3 млрд лет, потекла вода. Это сделает возможным сельское хозяйство и, со временем, возникновение крупных городов. В этот момент начнется третий этап, и на Марсе расцветет новая цивилизация.
Приблизительные расчеты показывают, что в наше время терраформирование Марса было бы неприемлемо дорогостоящей задачей и на него уйдет не одно столетие. Однако энтузиастов вдохновляет уже то, что когда-то на Марсе, по географическим данным, жидкой воды было в избытке – на поверхности планеты имеются речные долины, русла и даже очертания древнего океана размером с Соединенные Штаты. Миллиарды лет назад Марс остыл быстрее Земли, и, когда расплавленная Земля еще не успела затвердеть, на нем уже установился тропический климат. Сочетание мягкого климата и обилия воды заставляет некоторых ученых предположить, что ДНК впервые образовалась на Марсе. Согласно этому сценарию, столкновение Марса с гигантским метеоритом выбросило в открытый космос громадное количество обломков, некоторые из них долетели до Земли и упали на поверхность, засеяв ее марсианской ДНК. Если эта теория верна, тогда все, что вам нужно сделать, чтобы увидеть марсианина, – это посмотреть в зеркало.
Зубрин указывает, что терраформирование вовсе не новый невиданный процесс. В конце концов, молекула ДНК постоянно терраформирует Землю. Жизнь перевернула экологию Земли целиком, во всех ее аспектах, начиная с состава атмосферы и топографии земной поверхности и заканчивая компонентным составом океанов. Так что, начав терраформировать Марс, мы будем следовать самой Природе.
Как начать прогревать МарсЧтобы запустить процесс терраформирования, мы могли бы «впрыснуть» в атмосферу Марса метан и водяной пар, чтобы вызвать искусственный парниковый эффект. Парниковые газы поглощали бы солнечный свет и медленно, но верно поднимали температуру ледовых шапок Марса. По мере таяния лед насыщал бы атмосферу Красной планеты водяным паром и углекислым газом.
Мы могли бы также вывести на орбиту Марса спутники-отражатели, которые направляли бы концентрированный солнечный свет прямо на ледовые шапки. Спутники можно синхронизировать таким образом, чтобы они висели над планетой в фиксированной точке и направляли энергию в полярные области Марса. На Земле мы направляем тарелки спутникового телевидения на аналогичные геостационарные спутники, висящие на высоте около 40 000 км над поверхностью. Они кажутся нам неподвижными, так как делают полный оборот вокруг Земли за 24 часа. (Геостационарные спутники находятся на экваториальной орбите, то есть «висят» над экватором. Это означает, что энергия с таких спутников будет приходить к полюсу под острым углом или ее нужно будет передавать отвесно вниз на экватор и уже потом транспортировать к полюсам. К сожалению, и в том и в другом варианте не обойтись без потерь энергии.)
По такой схеме марсианские солнечные спутники должны будут развернуть гигантские многокилометровые в поперечнике полотнища, на которых поместится огромное количество зеркал или солнечных панелей. Солнечный свет можно будет либо фокусировать и затем направлять на ледовые шапки, либо превращать в другой вид энергии при помощи солнечных элементов и направлять вниз в виде микроволн. Это один из наиболее эффективных, хотя и дорогостоящих, вариантов терраформирования: он безопасен, не загрязняет окружающую среду и гарантирует минимальные разрушения на поверхности Марса.
Предлагаются и другие стратегии. Можно, например, изучить перспективы использования богатого метаном Титана – одной из лун Юпитера – и возможность переброски метана оттуда на Марс. Это могло бы усилить желаемый парниковый эффект: метан, да будет вам известно, в 20 раз эффективнее поглощает тепло, чем углекислый газ. Еще один возможный метод предусматривает использование оказавшихся неподалеку комет или астероидов. Как мы уже говорили, кометы состоят в основном изо льда, а астероиды, насколько нам известно, содержат аммиак, являющийся парниковым газом. Пролетающие мимо кометы и астероиды можно слегка отклонить, чтобы вывести на околомарсианскую орбиту, затем перенаправить еще раз, чтобы вывести на очень медленную спираль падения на Марс. При входе в марсианскую атмосферу трение нагреет их и в конце концов разрушит, высвободив водяной пар или аммиак. При наблюдении с поверхности Марса астероид на такой траектории представлял бы собой великолепное зрелище. В каком-то смысле проект НАСА под названием Asteroid Redirect Mission (ARM) можно рассматривать как пробный шар для подобного предприятия. Напомню, что ARM – планируемая экспедиция НАСА, целью которой будет либо доставить на Землю образцы грунта с астероида или кометы, либо слегка изменить их траекторию. Разумеется, технологию для этого придется отлаживать и точно настраивать, иначе мы рискуем направить гигантский астероид на поверхность Марса и разнести колонию вдребезги.
Еще более неортодоксальная идея, которую предлагает Илон Маск, состоит в том, чтобы растопить ледовые шапки, взорвав на большой высоте над ними водородные бомбы. В принципе, это возможно уже сейчас, все необходимые технологии отработаны. Водородные бомбы, хотя и охраняются очень серьезно, относительно недороги в производстве, и мы, конечно, найдем способ, чтобы взрывать их десятками над ледовыми шапками с помощью современных ракет. Однако никто не знает, насколько стабильны ледовые шапки и какие у этой процедуры могут быть долгосрочные последствия. Многих ученых беспокоит риск незапланированных и неприятных изменений.
Если бы ледовые шапки Марса удалось полностью растопить, то получившейся воды, по некоторым оценкам, хватило бы, чтобы всю планету покрыл океан глубиной от 5 до 10 м.
Переломный моментВсе эти проекты и предложения имеют одну цель – довести марсианскую атмосферу до того критического момента, когда процесс потепления станет самоподдерживающимся. Чтобы запустить процесс таяния льдов, достаточно было бы поднять температуру на 6 °C. Парниковые газы, высвободившиеся из ледовых шапок, разогрели бы атмосферу. Углекислый газ, поглощенный пустыней целую вечность назад, также высвободился бы и внес свой вклад в разогрев планеты, вызвав дальнейшее таяние. Таким образом, разогрев Марса продолжался бы без дальнейшего вмешательства извне. Чем теплее становилось бы на планете, тем больше водяного пара и углекислого газа высвобождалось в атмосферу – а это, в свою очередь, еще сильнее разогревало бы планету. Этот процесс мог бы идти почти до бесконечности, при этом повышая атмосферное давление на Марсе.
Как только вода наполнит древние русла Марса, поселенцы смогут всерьез развивать масштабное сельское хозяйство. Растения обожают углекислый газ, так что даже в открытом грунте, возможно, удастся вырастить первые урожаи, а отходы растений можно будет использовать для формирования почвенного слоя. Кроме того, можно запустить еще одну положительную обратную связь: чем больше выращивается растений, тем больше перегноя для почвы, на которой, в свою очередь, будут расти новые урожаи. Кстати говоря, в верхних слоях марсианского грунта содержатся магний, натрий, калий и хлор – ценные питательные вещества, которые помогут развитию растений. А растения, размножаясь, начнут вырабатывать кислород – один из важнейших элементов терраформирования Марса.
Ученые уже создали теплицы, в которых смоделированы жесткие условия Марса, чтобы посмотреть, смогут ли там выжить растения и бактерии. В 2014 г. Институт передовых идей НАСА объединился с компанией Techshot для строительства биокуполов с контролируемой средой, в которых предполагалось выращивать производящие кислород цианобактерии и водоросли. Предварительные эксперименты показывают, что некоторые формы жизни вполне способны процветать в таких условиях. В 2012 г. ученые Лаборатории моделирования Марса при немецком Аэрокосмическом центре обнаружили, что лишайники – формы жизни, схожие со мхами, – способны прожить в таких условиях по крайней мере месяц. В 2015 г. исследователи из Университета Арканзаса доказали, что четыре вида метанопродуцентов – микроорганизмов, вырабатывающих метан, – могут выжить в условиях обитания, напоминающих марсианскую экосреду.
Еще более амбициозен проект НАСА под названием Mars Ecopoiesis Test Bed, в рамках которого предполагается отправить на Марс на борту марсохода особенно живучие бактерии и растения, такие как экстремофильные фотосинтезирующие водоросли и цианобактерии. Эти формы земной жизни предполагается поместить в емкости с водой, которые марсоход ввинтит прямо в марсианский грунт. Ученые намерены таким образом отследить появление кислорода в емкостях, что должно указывать на активный процесс фотосинтеза. Если этот эксперимент окажется успешным, Марс, возможно, когда-нибудь покроется сетью ферм подобного рода, которые станут вырабатывать кислород и пищу.
Весьма вероятно, что к началу XXII в. технологии четвертой волны – нано– и биотехнологии, а также искусственный интеллект – будут достаточно развиты, чтобы оказать глубокое влияние на процесс терраформирования Марса.
Некоторые биологи утверждают, что методы генной инженерии, возможно, позволят создать новые виды водорослей для жизни на Марсе – в грунте конкретного химического состава или в заново образовавшихся озерах. Эти водоросли будут прекрасно себя чувствовать в холодной разреженной, богатой углекислым газом атмосфере и начнут вырабатывать значительное количество кислорода в качестве побочного продукта или даже отходов жизнедеятельности. Кроме того, они будут съедобны, а при помощи биоинженерных технологий им придадут вкус каких-нибудь земных продуктов. Вдобавок биоинженеры позаботятся о том, чтобы из этих организмов получалось идеальное удобрение.
В фильме «Звездный путь II: Гнев Хана» было показано действие фантастической новой технологии, которая называлась «Устройство творения». Это устройство способно было почти мгновенно терраформировать мертвые планеты в пышные, пригодные для жизни миры. Оно взрывалось, как бомба, разбрасывая сильно переработанную генетиками ДНК. Всюду, куда попадала эта «супер-ДНК», тут же укоренялись клетки и возникали густые джунгли. В результате планета терраформировалась за несколько дней.
В 2016 г. Клаудиус Грос, профессор Университета им. Гёте во Франкфурте, опубликовал статью в журнале Astrophysics and Space Science, в которой подробно описал, как могло бы выглядеть «Устройство творения». Он предсказывает, что создание примитивной версии такого устройства возможно уже через 50–100 лет. Первым делом ученые на Земле должны тщательно проанализировать экологию безжизненной планеты. По температуре, химическому составу грунта и атмосферы можно будет определить, какого типа ДНК следует заносить на эту планету. После этого туда отправят целые флотилии роботизированных дронов, которые доставят миллионы наноразмерных десантируемых капсул с целой линейкой различных вариантов ДНК. Когда содержимое высвободится из капсул, ДНК, разработанная и изготовленная специально для характерной для этой планеты среды, окажется на грунте и начнет размножаться. Содержимое капсул будет разработано таким образом, чтобы воспроизводить себя, создавая семена и споры и используя при этом минералы, которые удастся обнаружить. В результате на безжизненной планете возникнет растительность.
Доктор Грос уверен, что жизнь на свежезасеянной планете должна будет развиваться добрым старым способом – путем эволюции. Он предупреждает, что, если мы попытаемся чрезмерно ускорить этот процесс, могут произойти «экологические катастрофы глобального масштаба», особенно если какие-то однотипные формы жизни вдруг начнут размножаться так стремительно, что вытеснят из экосистемы все остальные жизненные формы.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?