Электронная библиотека » Николай Курдюмов » » онлайн чтение - страница 2


  • Текст добавлен: 26 марта 2019, 11:40


Автор книги: Николай Курдюмов


Жанр: Сад и Огород, Дом и Семья


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 2 (всего у книги 16 страниц) [доступный отрывок для чтения: 5 страниц]

Шрифт:
- 100% +
Снабженцы: ризосфера[1]1
  РИЗОСФЕРА – буквально: «корнесфера». Поверхность всех юных активных корешков, густо населённая микробами-симбионтами. Все корешки «очехлены», одеты слоями ризосферных микробов.


[Закрыть]
и микориза[2]2
  МИКОРИЗА – буквально: «грибокорень». Симбиоз растений с грибами. Многие грибы присасываются или даже врастают в клетки корешков, плотно обмениваясь с ними разными продуктами. У некоторых растений, например у орхидных, грибы прямо живут в корнях, как клубеньковые бактерии у бобовых.


[Закрыть]

Как поешь, так и покормишь!

Второй закон природы

Факты, наблюдаемые уже лет сто, показывают: полноценное питание растений в природе опосредованно. Его обеспечивают две группы «снабженцев». Первая – прикорневые, или ризосферные микробы. Вторая – грибы, образующие микоризу.

Активно стремясь выжить, растения реагируют, «думают» не столько кроной, сколько корнями. Точнее, их юными растущими кончиками и корневыми волосками. Именно волоски – активная зона обмена. Обмена, а не только всасывания! Корни постоянно выделяют разные БАВ, сахара и даже аминокислоты. В почву уходит до 40 % всех продуктов фотосинтеза. Вдумаемся: природа не расходует зря ни одной молекулы, а тут – почти половина всей энергии! Для чего? Так растения целенаправленно привлекают и разводят нужных микробов и грибы. Корешки растут буквально в чулке из симбиотических колоний.


МИКРОБЫ РИЗОСФЕРЫ изучены весьма детально. Это разные сапрофиты – любители сахаров и прочей легкодоступной пищи. Кто-то из них фиксирует азот воздуха, кто-то переводит его в простые соли, кто-то растворяет фосфор и калий, кто-то поставляет микроэлементы, кто-то ферментативно разлагает прочные гуминовые соединения. И все как зеницу ока берегут своих кормильцев – растения – от нападения патогенов, выделяя целые комплексы фитонцидов и антибиотиков. Например, сапрофитный гриб триходерма производит до 60, псевдомонада – до 40, а сенная палочка – около 80 «лекарств»! В природе растения почти не страдают от корневых гнилей – в отличие от «интенсивных» полей.

И вот самое важное: ассоциация ризосферных микробов тонко управляется самим растением. Выделяя то или это, растение буквально заказывает, что ему сейчас нужно. Например, нужен азот – выделяет углеводы и сигнальные вещества для азотофиксаторов. Те съели всю свою порцию, дали пайку азота – и сошли со сцены: ужались, растворились, окуклились в цисты. Теперь нужен фосфор, и растение чем-то кормит фосфомобилизаторов. Псевдомонадам – защитникам от гнилей – нужен азот, и выделяются аминокислоты. И так весь сезон: корни растут, и вокруг них всё время «дышит» состав и «качается» численность обслуги. Иначе говоря, ризосфера – не просто поставщик, но и дозатор.

Многие растения, первыми из коих были изучены бобовые, поселяют симбионтов прямо в своих корнях. Прорастающее семечко «ловит» нужных бактерий в почве, быстро прикармливает, поселяет и начинает «доить». Иначе всходы развиваются крайне медленно и хило.

Многие идеализируют азотофиксацию, считая её чуть ли не единственным источником азота. На деле её возможности ограничены: плата азотофиксаторам очень недёшева! Посему в природе используется более простое и малозатратное азотное питание: прямое всасывание органических растворов. Высокий белковый обмен почвы может давать на порядок больше, чем все азотофиксаторы. В том числе и органического азота типа аминов и аминокислот. Как же их не заметили? Да просто: такой азот агрохимическим анализом не определяется.


МИКОРИЗНЫЕ ГРИБЫ. Факт: одна ризосфера вряд ли помогла бы растительному царству завоевать все уголки планеты. Крохотным бактериям и микрогрибкам, хоть их и триллионы, не доступен большой окружающий объём. Сравните с ними шляпочный гриб: центнеры его грибницы могут пронизывать сотни кубометров почвы. И представьте, вся эта живая масса напрямую подключена к корням растений!

В добывании почвенных растворов и воды грибам, видимо, нет равных. Всасывающая поверхность грибниц в сотни раз больше, чем у корней. Некоторые грибницы расползаются на сотни метров и весят по нескольку тонн! И если растения могут усваивать только «юный», подвижный гумус, то сапрофитные грибы с их ферментным аппаратом – почти всё: и фосфориты, и прочные гуматы, и клетчатку с лигнином, а уж органику мульчи «глотают, не жуя».

По разным данным, до 95 % всех наземных растений могут создавать микоризу с дружественными грибами. Их совместная эволюция закреплена генетически: у растений давно найдены «микоризные» гены, а у грибов – «растительные». Фактически, правильнее говорить о микоризе, как об особой форме питания растений.

Для природных почв микориза – не исключение, а основное правило. А вот в пахотных почвах эти грибы жить не могут: не выдерживают разрушения. Немногие опыты показывают: микориза может значительно увеличивать урожайность.

В отличие от микробного симбиоза, микориза – очень плотный контакт, почти срастание. Грибница может оплетать корни, присасываясь, а может врастать своими выростами прямо в клетки корневых тканей. Здесь тот же взаимовыгодный обмен: растения грибам – сахара, а грибы растениям – воду и свои растворы, как минеральные, так и органические. Причём, судя по всему, в огромных количествах: подключившись к грибу, многие растения даже перестают выращивать корневые волоски! Фактически, образуется единый организм: грибо-растение.

Факт: почти все растительные семейства – микоризники. Некоторые вообще без грибов жить не могут. Вспомните хотя бы вересковые, брусничные, облепиху, орхидеи, лещину – те без своего гриба даже не прорастают.

Если ризосферные микробы – специализированные магазины, то микориза – гипермаркет. Видимо, обмен продуктами и питание она увеличивает многократно. И прежде всего снабжение водой. Микориза – настоящий насос. В природе она фактически исключает водный дефицит, усиливая подачу воды часто на порядок. И вода это не простая – растворы минералов, витаминов и других важных БАВ.

Особо важна поставка калия (К) и фосфора (Р), без которых нет нормального развития и плодоношения. Их запасы в почве огромны, но калий быстро вымывается, а фосфор, наоборот, очень трудно растворить. Фактически, частый дефицит Р и К – результат отсутствия микоризных грибов.



Однако прямой дефицит Р и К – только часть проблемы. Это простой «стройматериал». А есть ещё и сами «строители»: гормоны развития. Закладкой плодовых органов руководят именно они. И тут открывается ещё одна, возможно, главная роль микоризы. Оказывается, сам гриб может стимулировать свои растения, поставляя корням определённые гормоны. Например, гиббереллины, растительные гормоны роста.

Основное питание – динамическое, за счёт почвенного пищеварения. Дополнительное, запасное – гумусное. Как первое, так и второе в норме – симбиотическое, и лишь при невозможности симбиоза – автономное.

И вот недавнее открытие: грибы создают «коммуникационные сети». Опыты с использованием меченых атомов показали: гриб подключается не к одному, а сразу ко многим растениям, связывая их в единую систему. Фактически, с помощью микоризы растения и кормят, и стимулируют друг друга. Как видим, сверхорганизм биоценоза – не метафора, а буквальность. Он имеет даже «кровеносную систему»! Не потому ли растительные сообщества так устойчивы?

Нам важно следствие этого общения: гриб интенсивно забирает «лишнюю» глюкозу, давая растению всё для её нового синтеза. Фактически, микориза стимулирует усиление фотосинтеза.

Страшно подумать: в копаных и паханых почвах все эти древние природные механизмы убиты. Полезным грибам тут не выжить, фауны крайне мало, а микрофлора наполовину патогенная. И вот это – «агрокультура»! Может, потому и живут наши растения, как одинокие путники в пустыне: страдают, болеют и плодоносят не каждый год?


Итак, вырисовывается более ясная картина растительного питания.

Основное питание – динамическое, за счёт почвенного пищеварения. Дополнительное, запасное – гумусное. Как первое, так и второе в норме – симбиотическое, и лишь при невозможности симбиоза – автономное.

Иначе: растения питаются органикой так же, как и минералами – при возможности. Но научная агрономия почему-то выбрала только минеральную агрохимию.

Углеродное питание: воздух или почва?.

Менделеев жил в эпоху, когда людям ещё снились периодические таблицы…


Можно ли вообще сомневаться в классических азах ботаники? Например, в том, что растения поглощают углекислый газ из воздуха? Это же ещё Тимирязев блестяще доказал! Однако современная агрономия ставит это под большое сомнение. Поступление углерода в растение идёт, видимо, разными путями.

Мы с коллегами продолжаем обсуждать этот вечный вопрос, и вот что есть на сегодня.

Агрономия очень много говорит о минеральном питании. И создаётся иллюзия, будто бы оно – главное. Но рассмотрим сухую массу растений. Половина растительной ткани – углерод. Ещё 20 % – кислород, 15 % – азот, 8 % – водород. Итого – около 90 %, собственно, воздуха и воды. Ведь большая часть почвенного азота – тоже из воздуха. И только 5–7 % растения – зола, минералы: фосфор, калий, кальций и магний. Микроэлементов – сотые доли процента.

Налицо факт: самая важная часть растительного питания – углерод. А его единственным источником классика Тимирязева считает углекислый газ, СО2.

Растения лепят органику из СО2 и воды. Мы окисляем её обратно до СО2 и воды. Так и обмениваемся: мы – все едоки органики – даём растениям углекислый газ, а они нам – органику и кислород. Таков взгляд классики.

Но вот проблема: углекислого газа в воздухе катастрофически мало – всего 0,035 %. Культурным растениям, с их явно завышенной продуктивностью, его не должно хватать. Летом, в солнечный и безветренный день, вокруг листьев быстро создаётся «вакуум» углекислого газа, и чем выше от земли, тем больше его дефицит. В теплице, уже через шесть недель после внесения навоза, уровень СО2 падает до 0,01 %! Установлено: при такой концентрации СО2фотосинтез резко падает, а при ещё меньшей почти замирает.

Всё это как-то не вяжется с буйным процветанием растительного царства. Разве могли растения миллионы лет так рисковать своим выживанием?.. Например, высоко в горах, или на Крайнем Севере? Не поспешил ли Климент Аркадьевич[3]3
  Тимирязев.


[Закрыть]
, приписав поглощение СО2 только листьям?.. Если не листьями – как добывают растения столько углерода?

Вот осмысленные мною рассуждения А.И. Кузнецова и ещё нескольких опытников.

Углерод – да. Но откуда?

Пройдемся по графику, посмотрим, куда кривая вывезет…


Прежде всего: откуда берётся углекислый газ воздуха?

Энергия биомассы земных растений почти на два порядка больше, чем дают сейчас все виды топлива. Людей ещё и в помине не было, а 0,03 %, и даже в разы больше СО2 в воздухе уже были. Выходит, вовсе не наши костры, не машины и ТЭЦ поставляют углекислый газ в атмосферу. Такую прорву СО2 способны «выдохнуть» только те, кто съел, окислил всю растительную биомассу – обитатели почв и океанов.

Расклад такой. Треть углекислого газа дают океаны, остальное – органическая мульча суши. Тундры его выделяют до 20 кг/га/сутки, лесные почвы – до 300 кг, перегнойные луга и чернозёмы – до 600 кг. И это – только в приземном воздухе. В самой же почве ещё на порядок больше СО2, а в перегнойной грядке – максимум. До 80 % этого углекислого газа дают микробы и грибы, и до 20 % – почвенная фауна.

Итак, источник СО2почва. Главный резервуар, хранитель – почвенная мульча. Будь вы на месте растений, где бы вы стали добывать СО2: там, где его почти нет, или там, где он сконцентрирован?

Давайте немного порассуждаем.

Ночью листья выделяют СО2 – «дышат». Но днём, вместе с кислородом, растения также выделяют углекислый газ, хотя он нужен для фотосинтеза. Не говорит ли это просто об избытке СО2 в тканевой жидкости?..

Физически, обмен газов определяется их парциальным давлением (ПД), а в жидкостях – их насыщением. Газ переходит оттуда, где его больше, туда, где его меньше. Устьица не умеют вентилировать активно. Кроме того, донести СО2 до хлоропластов можно, только растворив его в воде. Но если он выделяется, значит, его насыщение в цитоплазме клеток избыточно. Как же он может при этом поглощаться?.. Кстати, в инете не нашлось никаких исследований на эту тему.

Идём далее, и находим небессмысленную аналогию. Азот – химический сосед, почти что родич углерода. В воздухе его – не доли процента, а целых три четверти. Казалось бы – бери, поглощай листьями! Но поглощается он только в виде растворов солевых форм – аммония, нитратов, аминокислот. Тогда логично предположить: углерод также усваивается в виде растворов. И действительно, почва просто пропитана его растворами! Это сам растворённый СО2, угольная кислота, карбонаты, простые сахара и всевозможные кислоты. И корни, разумеется, поглощают СО2 и угольную кислоту – этот факт отражён ещё в энциклопедии 60-х. Вопрос вот в чём: основной ли это способ добычи углерода?

По Тимирязеву, огромная площадь листьев нужна только и именно для поглощения углекислого газа из воздуха. Но ведь листовое испарение выкачивает почвенный раствор, добывая таким образом минералы. Значит, испаряющая площадь листьев добывает из почвы и углекислые растворы. Чем больше испарил и прокачал, тем больше СО2 добыл. Никакого конфликта! Наоборот. Охлаждение листьев, добыча минералов, воды и углерода одновременно, сразу, одним усилием, с минимальными затратами – вот рациональность, свойственная природе! Именно так растения и должны жить.

Хорошо. Но остаётся вопрос: сколько в почвенной воде СО2? Хватит ли его для фотосинтеза? Хватит, потому что не существует прохладной воды, не насыщенной газами. Дождевые капли, ещё не долетев до земли, превращаются в слабые растворы. Выпаренная дистиллировка[4]4
  ДИСТИЛЛИРОВАННАЯ ВОДА – химически чистая вода. Получается в дистилляторах путём простой конденсации пара на холодную поверхность.


[Закрыть]
, оставленная открыто, уже через пару часов – раствор. А растворимость СО2в 70 раз больше чем у азота, и в 150 – чем у кислорода. На два порядка! Угадайте, каким газом насыщена вода больше всего?

И насыщенность эта тем выше, чем вода холоднее и чем больше в воздухе углекислого газа. Расчёт показывает: в воздушных полостях луговой почвы может накапливаться до 3 % СО2, и в раствор перейдёт до 100 мг/л – это очень много. Конечно, такая концентрация опасна для корней и микробов, и при этом почвенный раствор кислеет. Но одновременно он нейтрализуется – угольная кислота освобождает минералы из почвенных карбонатов, силикатов и гумуса. Это детально исследовали ещё до Овсинского.

Есть и ещё аргументы в пользу углеродно-почвенной гипотезы.

Известно: добавка углекислого газа в воздух теплиц увеличивает урожаи. Об этом защищена масса диссертаций, и вот что они сообщают. Рост содержания СО2 вчетверо, до 0,12 %, усиливает фотосинтез вдвое и прибавляет четверть урожая. Подъём до 0,3 % – в десять раз – позволяет собрать полтора урожая. Дальнейшее насыщение воздуха СО2 до 1 % урожай не увеличивает. А выше 1,5–2% урожай начинает резко падать: фотосинтез прекращается.



В чём тут дело? По-моему, всё логично. Пока углекислый газ растёт до 0,3 %, он, с одной стороны, больше насыщает почвенную воду, а с другой – ещё не мешает удалению СО2 из клеток. Поэтому, защищая огород от ветра, ставя бродящие бочки или добавляя органику, мы помогаем растениям. Но после критического уровня (1,5 %) доля СО2 в воздухе уже такова, что вообще не даёт ему выходить из цитоплазмы – растение отравляется своим СО2. И тогда оно блокирует всасывание и прокачку растворов – замирает, пережидая стресс.

Итого. Судя по всему, в богатых и живых почвах, при избытке почвенного СО2, растения получают основную часть углерода из почвенного раствора. И только на «культурных» почвах, когда почвенный раствор вместо углерода перенасыщен солями, они включают запасной, «пожарный» механизм – поглощение СО2 из воздуха. Видимо, это и наблюдал Тимирязев. Но, Господи, как же мало углекислого газа должно быть в этих несчастных листьях, чтобы начать всасывать его воздушный мизер!

Вода – тоже пища!

«Чай не пьёшь – откуда сила?..»

Восточная мудрость

О воде говорят всё что угодно: растворитель, плазма клеток, электролит, проводник, среда биохимии и жизни, средство охлаждения и терморегуляции, даже носитель информации… Но ещё одна важнейшая роль воды необъяснимо замалчивается. Её чётко обозначил учёный-агроном из Ново-Воронежа В.И. Каревский. Вода – питательное вещество. Причём одно из основных!

Вдумаемся: абсолютно сухая органика распадается на СО2 и Н2О. А сахара так и называются: «углеводы», и доля воды в них даже больше, чем доля углерода. Возьмите в руки кусок сахара или пряник: в них две трети «воды»!

Вода – единственный источник водорода для всех органических молекул. А водорода в сухой биомассе – 8 %. Значит, в килограмме зерна 80 г водорода, на который переработано 640 мл химически активной воды. Воды, как питательного вещества! Буквально, как если бы это был сахар или нитрофоска, усвоенные целиком.

Кислорода в сухой биомассе – 20 %. Углеводы получают свой кислород из СО2. А вот тот кислород, которым мы дышим – «водяной». И поставляют его не столько растения, сколько сами молекулы воды, распадаясь в атмосфере.

Добавим сюда фотолиз воды и получение протонов для самого синтеза глюкозы, а также для синтеза энергетических молекул АТФ. Вот теперь картина стала полной! Главное питание растений – три элемента: углерод, водород, кислород. Точнее – СО2, растворенный в Н2О. А вода – не просто «универсальный растворитель». Это один из трёх китов фотосинтеза и одна из трёх составляющих органики.

Кстати, разлагая органику, сапрофиты возвращают почве её воду, и среда вокруг них увлажняется. Конечно, воды осадков в сотни раз больше. Но мы ещё не знаем: может быть, «органическая вода» – особая, и играет особую роль в жизни растений.


Итак, проблема питания растений заметно проясняется. Но у нас же книжка про здоровые растения? В этом смысле живая почва – первый и главный универсальный санитар.

Почвенная вакцинация и иммунитет

Самый эффективный способ применения стимуляторов: берём плодородную почву и устойчивый сорт…


Иммунные реакции растений ещё более разнообразны, чем наши. Подавить патогена ядами – один способ. Другой: сначала стимулировать, расслабить, накормить его – и потом прихлопнуть. Третий, крайний способ – растворить, умертвить всю ткань вокруг патогена. Смотришь, на здоровом листе мёртвое пятнышко. А это лист запер грибка: лопай, но тут и подохни!

Но вот что важно: начало любого иммуннитета – встреча с патогеном. Пока не столкнёшься, иммунные реакции не включатся. Столкнулся, переболел – всё, дальше этот микроб уже не страшен. Классика детства: переболел ветрянкой, корью – ура, больше не заболеешь. Так же и у растений. Сейчас выясняется: механизм узнавания чужаков у нас с ними во многом одинаков. И даже основные сигнальные вещества одни и те же. То есть жизнь ещё на растения и животных не разделилась, а иммунитет уже был!

Можно ли включить иммунитет у растений? Конечно. Метод направленной иммуномодуляции развивается уже давно. Изучаются сигнальные вещества-включатели, и на их основе разрабатываются биопрепараты – индукторы иммунитета, или иммуномодуляторы (ИМ). Это напоминает вакцинацию.

Заболеваемость, действительно, снижается. Но возникает немало побочных эффектов. Ведь биохимия экосистемы – одна на всех! Например, многие вредители «защищают» растение – подавляют его болезнь. А многие ИМ, подавляя болезнь, привлекают вредителей! При этом разные сорта по-разному реагируют на разные препараты. Часто итог неясен, и общий эффект может уйти в глубокий минус.

Но в природе и иммуномодуляция давно отлажена. Кузнецов уверен: природные растения получают отличную комплексную «вакцинацию», и обеспечивают её именно сапрофиты.

Вспомним про десятки антибиотиков, выделяемых сапрофитами и корневыми симбионтами. Что тут происходит с патогенами? Они ослабевают. И растения получают контакт с ослабленными возбудителями болезней – полноценную, универсальную природную вакцину. Ослабленные паразиты создают постоянный «напряжённый иммунитет» – и растения бодро сопротивляются болезням.

Так в природе постоянно поддерживается баланс, равновесие между болезнями-паразитами и защитниками-сапрофитами. Болезни нужны для естественного отбора, эволюции, совершенствования иммунитета. Но растения, общие кормильцы, должны быть целы – и сапрофиты охраняют их от гибели, а болезни стараются не особо им мешать.



Природа не «убивает врагов» – она усиливает иммунитет и даёт полноценное питание. Люди действуют наоборот – и результат обратный. «Окультуренные» почвы – это сильные и закалённые патогены при дефиците, а то и отсутствии сапрофитов. Не получив вакцины, «раскормленные» растения сначала бурно растут, но потом массово выбаливают и чахнут от любого стресса.

Усиливаем гумификацию: микробные препараты

Чем, по сути, занята микробиология?

Она пытается понять то, до чего давно додумались микробы и грибы.


Чтобы растущая почва лучше кормила растения, в ней должны работать оба блока микробов: и гумификаторы-накопители, и симбионты-снабженцы. Многие микробные препараты и тех, и этих есть в продаже. Всё это – взятая из почв дружественная микрофлора, весьма полезная в качестве живой закваски.

Рассмотрим биопрепараты в ракурсе их работы и применения.


1. СИСТЕМА ПРИГОТОВЛЕНИЯ ПИЩИ – гумификаторы. Здесь три сапрофитных группы: микробы, грибы и черви.

Из микробов могу назвать известные «ЭМ»: ушедший в прошлое «Кюссей-ЭМ», его современные улучшенные аналоги «Фитостим» и «Стимикс», агрономически полезные микробы «Сияние», производимые в Новосибирске фирмой «ЭМ-Биотех», и разные их «родичи» вроде «Байкала-ЭМ1» и «Стимулина».

Рассматривать отдельные препараты вряд ли стоит: качество их партий, мягко говоря, очень разное. Да и применяют их настолько по-разному, что сравнивать результаты нет никакой возможности. Тут ведь важен опыт: понять микробов, приспособиться к ним – и дать им время обжиться на вашем участке. Лично я сейчас уверен только в «Стимиксах», «Фитостимах» и «Сиянии», но наши фермеры успешно применяли и «Байкал-ЭМ1», и биоактивный препарат «Биовита-агро».

Определённо можно сказать о качестве жидких препаратов: хранятся они недолго, а подделываются слишком часто. Если концентрат (пробирку) можно хранить до года, то разведённый препарат (бутылка) портится за пару недель: в растворе одни микробы быстро вытесняют других. В сладких растворах ЭМ всё заканчивается молочнокислым, а потом и уксусным закисанием. Поэтому не тратьте деньги, видя в продаже бутылку с «готовым ЭМ»!

Гораздо надёжнее в этом смысле препараты «Сияние»: они сухие. Специально отобранные микробы отлично хранятся на сухих отрубях. Можно вносить их россыпью, а можно делать жидкие препараты.

Есть и специальные препараты для анаэробной ферментации органики: выгребных ям, трубопроводов, отстойников. Например, я успешно использовал «Санэкс». Но, по моим ощущениям, заметно лучше показали себя биоактиваторы бельгийской фирмы «AGROSTAR». Эти препараты – возможность сделать уличный туалет вполне экологичным, а его содержимое – применимым. Разумно ли выбрасывать в реки ценнейший источник азотной органики!

Из грибных сапрофитных препаратов у нас широко выпускается, пожалуй, только триходермин. «Аппетит» триходермы используют даже для быстрого «съедания» нижних листьев злаков, поражённых пятнистостью: это останавливает болезнь. Неисправимый пока недостаток живого препарата: хранится всего две недели. Вывод тот же: лучше иметь свою триходерму – в мульче.


К сапрофитным относятся и защитные препараты.

«Фитоспорин-М» и «Бактофит» – препараты сенной палочки; «Планриз», «Псевдобактерин» и «Агат-25К» – препараты на основе ризосферных псевдомонад – неплохо защищают от корневых гнилей. Только не нужно переоценивать защитный эффект микробов. Никакой биопрепарат не спасёт огурцы от пероноспоры или помидоры от фитофторы в дождливое лето: такой вал инфекции на два порядка выше их возможностей! У микробов иная задача: общее оздоровление ценоза и активация почвы.

Как правильно применять живых микробов? В активе Кузнецова – несколько лет вдумчивых наблюдений.

Прежде всего все микробы – не удобрения и не лекарства. Это всего лишь живые ускорители, закваска для раскрутки круговорота. Крутят они именно органику, нужны именно для её распада. И органики им надо побольше! И обязательно влажной: без воды микробной жизни нет. Кстати, это чётко прописано во всех инструкциях к ЭМ. Забавно было наблюдать, как на заре нашей «ЭМ-эпохи» дачники послушно вносили в грядки органику, а эффект наивно приписывали исключительно ЭМ-препарату.

И ещё одно важное наблюдение: в первые годы, пока своя микрофлора не наросла, эффект микробов определяется не концентрацией, а регулярностью внесения. Лучше всего – раз в 8–10 дней. Чтобы перестроить микробное сообщество, нужно время и терпение: «старожилы» всегда сопротивляются «новосёлам». А внесёшь сразу на порядок больше – лишние всё равно не выживут.

Итого.

1. Нету в почве пищи и воды – лейте хоть концентрат, никакого толку не будет.

2. Внесли всего пару раз – не ждите никакого результата: сообщество не изменилось.

3. Природные концентраты микробов – не хуже, просто медленнее.

4. Отдельные виды – хорошо, но ещё лучше готовые ассоциации микробов. Слой свежего навоза, настой компоста и травы, особенно с добавкой любых сахаров – естественные микробные ассоциаты.

О червях скажу главное. Возможно, «породистые» черви действительно продуктивнее «диких». Но для улучшения почв определённо разумнее разводить местных червей, и вряд ли нужно усложнять эту проблему. Сам автор породистого «Старателя» профессор Игонин писал, что если создать любому дикому червю идеальные условия, он сам становится «культурным» – увеличивает прожорливость и плодовитость на порядок.


Страницы книги >> Предыдущая | 1 2 3 4 5 | Следующая
  • 3.6 Оценок: 5

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации