Текст книги "Технология редакционно-издательского процесса"
Автор книги: Нина Рябинина
Жанр: Техническая литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 7 (всего у книги 17 страниц)
Глава 4
РЕДАКТИРОВАНИЕ ФОРМУЛ
4.1. Математические формулы
Современные научные издания насыщены математическими методами доказательств. Ученые вводят в текст большое число формул, символов. Отличительные особенности математических формул – большая смысловая концентрация, высокая степень абстрактности заключенного в них материала, специфичность математического языка. Это в известной степени осложняет восприятие читателем текста и ставит перед редактором немало проблем.
Математической формулой называется символическая запись какого-либо утверждения (предложения, суждения). Формулы помогают заменить в тексте сложные словесные выкладки, различные операции с количественными показателями. Для этого используют специальные обозначения – символы, которые можно разделить на три группы:
– условные буквенные обозначения математических и физико-технических величин;
– условные обозначения единиц измерения величин;
– математические знаки.
Существует мнение, что редактору работать с текстом, в котором много формул, намного проще, чем с текстом без формул. Это неверно, ибо формулы в еще большей степени, чем текст, могут претерпевать преобразования и иметь различные формы записи, причем для каждой конкретной формулы в каждом конкретном издании должен быть выбран оптимальный вид. При этом учитываются круг читателей, на который рассчитана данная книга, и особенности каждой формулы, чтобы избежать ошибок, неясностей или неудобочитаемости. Проследим это на примере записи одной формулы.
1. Эксплуатационная скорость автомобиля
vэ=L/Tн,
где L – путь, пройденный автомобилем за время в наряде (на работе);
Tн – время в наряде.
В таком виде формула удобна, например, для вузовского учебника.
2. Эксплуатационная скорость автомобиля
vэ=L/Tн,
где L – путь, пройденный автомобилем за время в наряде (на работе);
Tн – время в наряде.
Такая запись вполне приемлема, например, для учебного пособия по курсовому проектированию, читатель которого уже несколько подготовлен, а этот фрагмент – часть некоторой методики расчета.
3. Эта же формула в производственных изданиях для инженерно-технических работников вполне может быть набрана в подбор.
Эксплуатационная скорость автомобиля vэ=L/Tн, , где L – пробег; Tн – время в наряде.
4. В учебнике для школьников, учащихся ПТУ эта формула должна иметь другой вид.
Эксплуатационная скорость, которую принято обозначать характеризует условную среднюю скорость подвижного состава за все время пребывания его в наряде (на работе) и определяется отношением пробега ко времени в наряде, т.е.
где L – путь, пройденный автомобилем за время в наряде;
Tн – время в наряде.
Такая запись позволяет учащемуся наглядно увидеть, как влияют исходные параметры на результат, т.е. понять, какие параметры влияют на конечный результат прямо пропорционально, а какие наоборот, легко запомнить формулу и усвоить «классическую» форму математической записи физической зависимости.
5. В научно-популярной литературе для массового читателя, где на всю книгу встречаются одна-две формулы, запись в математической форме выглядит неуместной. Поэтому лучше сделать так.
«Эксплуатационная скорость автомобиля как один из важнейших показателей его работы определяется расчетным путем:
6. В научных изданиях, где, например, эта формула необходима читателю лишь для напоминания с целью объяснения каких-то явлений, не имеющих прямого отношения к расчету показателей использования автомобиля, формула в традиционном виде может быть опущена вообще, а смысл ее просто передан словами: «Эксплуатационная скорость автомобиля, определяемая как частное от деления пробега на время в наряде, – один из важнейших показателей, которые приходится учитывать при формировании оптимальной структуры парка транспортного объединения».
Если теперь оценить приведенные варианты, нетрудно увидеть, что они заметно различаются по удобству восприятия, компактности построения и трудоемкости издания. В понятие «трудоемкость издания» здесь будем условно включать трудоемкость редактирования, перепечатки формульных оригиналов, считки. Каждый вариант имеет свои, отличные от других, показатели восприятия, компактности и трудоемкости.
Рассмотрены варианты написания простейшей формулы, но если она окажется более сложной, то легко представить, что появятся и другие варианты, связанные с возможностью варьирования формой записи индексов, выделением в формуле функциональных групп параметров, расчленением одной сложной формулы на несколько простых и наоборот изменением «этажности» формулы в целом и ее составных элементов.
Прежде чем продолжить рассуждения о редактировании математических формул, надо оговорить, что считать незыблемым в формулах, а что – допускающим варианты. В специальной литературе сказано ясно и недвусмысленно: в математических формулах должны применяться такие символы, которые установлены стандартом или являются общепринятыми в отрасли.
Это, безусловно, верно, но заметим, что стандартами регламентируется лишь незначительная часть символов, а «общепринятые» символы при анализе специальной литературы на одну тему чаще всего оказываются «общепринятыми» не в отрасли, а в пределах одной организации. Особенно это характерно для индексов.
Многие величины, необходимые только в одной отрасли науки, должны иметь свои собственные обозначения, отличающиеся от обозначений сходных величин в других отраслях науки. Чтобы решить эту проблему, т.е. индивидуализировать символ, применяют индексы. К основному буквенному обозначению добавляют индекс, указывающий на частное значение. Так, латинской буквой L или l чаще всего обозначают длину, интервал, протяженность, дальность, период и т.п. Если же необходимо обозначить конкретизированное понятие длины, то к общему символу добавляют уточняющий индекс. Например:
Lк – длина кормовой части лодки;
Lпр – расстояние пробега;
lэ – размах элерона;
lск – длина участка скалывания.
Основным материалом для составления индексов являются строчные буквы русского алфавита. Значительно реже применяются буквы латинского алфавита, очень редко – греческие и тем более готические. Довольно часто в индексах используются арабские цифры и математические знаки. По местоположению при буквенном обозначении индексы подразделяют на нижние и верхние, причем нижние предпочтительнее. Верхний индекс справа лучше не использовать, так как это место показателя степени. Наиболее часто в качестве верхних индексов применяют штрихи: h′; h′′.
Иногда индексы могут быть расположены вверху слева, если необходимо различить обозначения, имеющие совершенно одинаковый вид, и если обозначение уже снабжено какими-либо индексами и степенями. Например, имеется обозначение углов поворота стержня Q, которые в зависимости от точек приложения силы снабжаются нижними индексами 1, 2, 3, а также штрихами ′, ′′, ′′′ ... – в зависимости от кратности приложения силы (так, Q1′ первое приложение силы в точке 1; Q1′′ – второе приложение силы в точке 1 и т.д.). Если нужно выделить еще и угол поворота (слева или справа от узла стержня), применяют левые верхние индексы: π – для обозначения угла слева от узла; п – для обозначения угла справа от узла. Таким образом, буквенное обозначение с индексом πQ1 – первое приложение силы в точке 1 при левом повороте узла.
Ноль в качестве индекса придает буквенному обозначению значение «расчетный», «начальный», «исходный», относящийся к центру тяжести и т.п., а также может употребляться в значении «стандартное состояние вещества», например, l0 – расчетная длина, t0 – начальная температура.
Индексы, состоящие из нескольких слов, сокращают по начальным и характерным буквам. При этом, если индекс представляет собой два или три сокращенных слова, после каждого из них, кроме последнего, ставят точку, например Sрв – площадь руля высоты.
Теперь непосредственно о восприятии формул. Принято считать, что хорошо воспринимаемая формула – это такая, которую легко понять и запомнить. Добавим два дополнительных требования.
1. При прочих равных условиях предпочтение следует отдавать таким символам в формулах, которые легко и однозначно воспроизводятся на письме (от руки). В первую очередь это относится к учебникам, формулы из которых преподаватель пишет на доске, учащийся – в конспекте и т.д. Трудности здесь возникают обычно в связи со сходным начертанием букв разных алфавитов и из-за неоправданной усложненности индексов. Так, Rг.ц легко и записать, и потом прочитать. А теперь попытаемся прочитать запись ρe.g. Для этой, казалось бы, выразительной записи существуют свыше 100 (!) вариантов прочтения, ибо есть шесть вариантов для с («ро» строчная и прописная; «пэ» строчная и прописная; «эр» строчная и прописная); четыре варианта для е («е» и «эль», на строке и в индексе); шесть вариантов для g («дэ» и «жэ»; на строке, в индексах первой и второй ступени). Кроме того, всю запись можно прочитать и как «ρ логарифмическое».
2. Формула должна иметь хороший графический рисунок. Плохо воспринимаются, например, цифры в середине сомножителей (их лучше ставить спереди), сложные показатели степени и индексы, многоступенчатые индексы, сложные формулы, приведенные к компактному виду.
Особой разновидностью искажений графики, еще больше ухудшающих «внешний вид» формулы, являются нарушения правил набора. Желая упростить его, иногда смещают верхние индексы относительно нижних (Kавткм). Точки в индексах часто оказываются не на месте и выглядят знаком умножения (ДБ.П ). Запятые после формул неопытные наборщики набирают в индексах (А =ВСк). Не соблюдаются правила выбора кегля для подключек, в результате чего формула и экспликация становятся не похожими друг на друга. Если в индексах встречаются буквы разных алфавитов, часто они плохо выравниваются («пляшут»). Знак деления «косая черта» по высоте часто ниже (меньше кегль) делимого и делителя.
Из сказанного можно сформулировать рекомендации по улучшению воспроизводимости и графики формул.
Что касается главного условия хорошей воспринимаемости формул – облегчения их понимания и запоминания, – необходимо учитывать следующие рекомендации:
– при прочих равных условиях русские символы, являющиеся первой буквой зашифрованного слова, воспринимаются, т.е. понимаются и запоминаются, лучше, чем латинские или греческие;
– в качестве символов нежелательно использовать аббревиатуры, так как они воспринимаются как произведение;
– индекс по возможности должен яснее отражать зашифрованное в нем слово или словосочетание;
–легко понимается и запоминается формула, в которой наглядно отражена зависимость результата вычисления от характера изменения параметров.
Единицы физических величин следует помещать только после подстановки в формулу числовых значений величин и проведения промежуточных вычислений – при получении конечного результата. Например:
неправильно:
с = КТм/с = 1,4 · 290 · 300 м/с = 350 м/с;
правильно:
с = КТ = 1,4 · 290 · 300 = 350 м/с.
Математические знаки определяют как символы, служащие для записи математических понятий, предложений и вычислений. Так, «отношение длины окружности к длине ее диаметра» записывается в виде знака щ.
Математические знаки подразделяются на три группы:
1) знаки математических объектов (точки, прямые, плоскости) обычно обозначаются соответственно буквами (А, В, С…; а, b, с…; α, β, γ...);
2) знаки операций сложения (+) и вычитания (-); возведения в степень а2 , а3 и т.д.; корня V; знаки тригонометрических функций log, sin, cos, tg и др.; факториала !; дифференциала и интеграла dx, ddx,…, ∫ydx, модуля | х |;
3) знаки отношений (= – равенство, > – больше, < – меньше, || – параллельность, ⊥ – перпендикулярность, ≡ – тождественность, ≅ – приблизительное равенство).
Все эти знаки, кроме знаков объектов, применяются только в формулах, использовать их в тексте вместо слов соответствующего значения запрещается. Знаки объектов в тексте могут применяться со словами: в точке А, на плоскости а, из угла х.
Часто после формулы идет экспликация – расшифровка входящих в формулу символов. Элементы ее располагаются в той последовательности, в которой условные обозначения прочитываются в формуле. Одни и те же буквы с разными индексами рекомендуется группировать вместе. При расшифровке дробных формульных выражений сначала поясняют буквенные обозначения числителя, а затем знаменателя.
Если необходимо расшифровать значение символа, стоящего в левой части уравнения, это рекомендуется делать в предшествующей формуле части предложения. К сожалению, эта рекомендация не всегда выполняется.
Приведем примеры из журнала «Военно-экономический вестник» (2002. № 12).
Расчет затрат на перевозки вооружения и техники осуществляются по формуле
Зп.в.т = Вп.в.т × Сп.в.т × Дп (29)
где Зп.в.т – затраты на перевозки однотипного вооружения и техники, руб.; Вп.в.т – количество перевозимого вооружения (техники) данного типа, ед.; Сп.в.т – стоимость перевозки 1 единицы вооружения (техники) на 1 км в руб.; Дп – дальность перевозки вооружения (техники), км.
Расчет производится по каждому виду вооружения (техники) в отдельности.
Кроме того, для крепления перевозимого вооружения и техники на платформе используется крепежный материал – проволока, гвозди, скобы, брус деревянный или специальные крепежные приспособления. Для их приобретения также требуются денежные средства. Расчет затрат на приобретение крепежного материала производится по формуле
Зк.м = Вп.в.т × Цк.к.м, (30)
где Зк.м – затраты на приобретение крепежного материала, руб.; Вп.в.т – количество перевозимого вооружения и техники, ед.; Цк.к.м – цена 1 комплекта крепежного материала (на единицу техники), руб.
Затраты на приобретение крепежного материала (крепежных приспособлений) рассчитываются отдельно только в том случае, если они не входят в расценки на перевозки вооружения и техники.
Затраты на перевозки личного состава на учениях различными видами транспорта определяются по формуле
Зп.л.с = Вл.с × Сп.ч × Дп, (31)
где Зп.л.с – затраты на перевозки личного состава на конкретном виде транспорта, руб.; Вл.с – количество перевозимого личного состава на конкретном виде транспорта, ед.; Сп.ч – стоимость перевозки одного человека на 1 км конкретным видом транспорта, руб.; Дп – дальность перевозки личного состава, км.
И в первой, и во второй, и в третьей формулах символ, стоящий в левой части уравнений, следовало бы расшифровать в предшествующем формуле тексте. Символ В везде обозначает количество перевозимого вооружения или личного состава, ед. Символ С – стоимость перевозки 1 человека, 1 единицы вооружения на 1 км; Д – дальность перевозки вооружения, личного состава, км. Следовало бы дать расшифровку символов один раз, не повторяя ее после каждой формулы.
После формулы перед экспликацией ставят запятую, а экспликация начинается словом где, за ним следуют обозначение первой величины и ее расшифровка и т.д. В конце каждой расшифровки рекомендуется ставить точку с запятой, в конце последней – точку. Обозначения единиц физических величин в расшифровках отделяют от текста запятой. Например:
Индуктивность многослойной катушки определяется по формуле
где ω – число витков; D – средний диаметр намотки, мм; l – длина намотки, мм; h – высота намотки, мм.
Экспликация к формулам не стандартна. В научной литературе можно найти различные ее варианты – от самого простого до сложного, относящегося к одной формуле и к нескольким. Если формулы в предложении разделены текстом, общую экспликацию к ним лучше выделить в самостоятельное предложение. Например:
В векторной форме эти уравнения можно представить в следующем виде: уравнение движения центра масс
и уравнение движения летательного аппарата относительно центра масс
В этих уравнениях приняты следующие обозначения: V – вектор скорости движения летательного аппарата относительно инерциального пространства;
R – вектор внешних сил, действующих на летательный аппарат; G – вектор сил тяжести;
М – вектор момента внешних сил относительно центра масс летательного аппарата.
В научных, справочных, энциклопедических изданиях в целях более экономного использования бумаги экспликацию можно располагать в подбор.
Тщательная проверка и правильная обработка встречающихся в тексте формул и символов требует большого внимания редактора. Необходимо не только удостовериться в правильности и точности всех обозначений и числовых показателей, но и добиться наибольшей наглядности и доходчивости в оформлении, не допускать неясностей или возможности различного истолкования.
Принято считать, что за правильность приведенных данных полностью отвечает автор, однако редактор издательства обязан производить сплошную или выборочную контрольную проверку формул. Сплошной проверке подвергаются задачи в учебниках и учебных пособиях. Контрольно могут быть проверены равенства путем подстановки соответствующих величин.
Чтобы грамотно отредактировать формульный текст, недостаточно одних только знаний о математическом построении формулы, об использовании условных обозначений и т.п. Необходимо знать и полиграфические требования к формулам, так как их соблюдение помогает сделать формулы понятными, выразительными, компактными.
Редактор должен знать, как лучше расположить формулу, как ее перенести, если она не умещается на одной строке, какие формулы надо нумеровать и т.д.
Существует два вида расположения формул: внутри текстовых строк и отдельными строками посередине формата набора. Размещение формул в подбор способствует большой экономии площади. Поэтому, если короткие несложные формулы не имеют самостоятельного значения и не пронумерованы, но выключены в отдельные строки, их можно расположить в подбор с текстом. Например:
Из условия неразрывности находим
Этот текст можно расположить так:
Такой прием особенно эффективен при большом формате набора (он позволяет экономить до 70—80% площади), однако этот прием не рекомендуется использовать в том случае, когда формулы многострочные или многоэтажные.
Несколько размещенных подряд формул, в которых вычисляют однотипные или аналогичные величины, выравнивают или по знаку равенства:
рхx = −р + λdivν + 2με1;
рyy = −р + λdivν + 2με2;
рzz = −р + λdivν + 2με3;
или по величине, которая является основой сравнения:
0° ≤ β ≤30°;
150°≤ β ≤210°;
330° ≤ β ≤360°.
Если производится преобразование формулы, а сама формула многострочная, промежуточные группы должны быть размещены одна под другой, чтобы лучше был виден ход преобразований. Например:
Нумерация формул. Очень часто оперировать формулами приходится не только там, где они расположены, но и в предыдущем или в последующем изложении. Чтобы каждый раз, ссылаясь на формулу, не приводить ее полностью, формулы нумеруют. Обычно применяется сквозная нумерация ограниченного числа наиболее важных формул. Нумерация всех формул подряд загромождает книгу.
В больших работах (учебники, монографии) иногда применяется порядковая нумерация формул по главам, так называемая двойная нумерация. В этом случае первая цифра нумерованной формулы должна соответствовать номеру главы, вторая – порядковому номеру формулы внутри главы, например: 12-я по порядку формула в главе 2 нумеруется (2.12), 5-я формула в главе 3 – (3.5) и т.д. В исключительных случаях, когда очередная формула является разновидностью приведенной ранее основной, допускается литерная нумерация формул арабской цифрой и строчной прямой буквой русского алфавита. Цифру и букву пишут слитно и не отделяют запятой, например: 17а, 17б и т.д.
Порядковые номера всех формул должны быть написаны арабскими цифрами в круглых скобках (римские цифры для нумерации формул не применяют) у правого края страницы без отточия от формулы к ее номеру.
В тексте ссылку на порядковый номер формулы также указывают в круглых скобках. Например:
в формуле (4.15) приведены…
В случае нумерации группы формул или системы уравнений одним порядковым номером этот номер, заключенный в круглые скобки, ставят на уровне середины объединенной группы формул или системы уравнений у правого края страницы. В этом случае применяют парантез (фигурная скобка).
Порядковый номер формулы при переносе ставят у последней строки. Например:
Проинтегрировав уравнение (2.17) один раз, получим
Знак умножения в формулах. Коэффициенты и символы в формулах, как правило, не разделяют никакими знаками, а пишут слитно. Точка как знак умножения на среднюю линию не ставится перед буквенными символами и между ними, перед скобками и между сомножителями в скобках, перед дробными выражениями, написанными через горизонтальную черту, и после нее. Например:
Точка на среднюю линию как знак умножения ставится только в исключительных случаях:
– между числовыми сомножителями: 18 · 242,5 · 8;
– когда вслед за аргументом тригонометрической функции стоит буквенное обозначение: Jtg в · a sin б;
– для отделения сомножителей от выражений, относящихся
к знакам радикала, интеграла, логарифма и т.п.:
Вообще же выражение cos ωt ⋅ ту или
обычно представляют в виде ту cos ωt или
, если не преследуется специальная цель написания сомножителей в определенной последовательности, чтобы не нарушать стройность предыдущего вывода или математического анализа.
Косой крест (×) как знак умножения применяется в формулах:
– при указании размеров: площадь комнаты 4 × 3 м;
– при записи векторного произведения векторов: а × b;
– при переносе формулы с одной строки на другую на знаке умножения.
Перенос формул. Если приводимая в рукописи формула настолько длинна, что не помещается в одной строке на странице издания (без переноса), обычно требуют, чтобы автор наметил возможные места переноса. Предпочтительнее перенос делать в первую очередь на знаках математических соотношений: = ≠, ≈, ≡,≤, ≥, >, <, >> и т.д.
Если на этих знаках разделить формулу на строки не удается, ее следует делить на знаках операций + или —. Менее желательно, хотя и допустимо, деление формул на строки на знаках ± и умножения. Не принято делить строку на знаке деления (две точки). Если формулу делят на знаке умножения, его показывают не точкой, а косым крестом (×).
Особенно внимательно подходят к вопросу о переносе уравнений, правая или левая часть которых представлена в виде дробей с длинными числителями и знаменателями или с громоздкими подкоренными выражениями. Такие уравнения необходимо преобразовывать, приводя их к виду, удобному для переноса.
Дроби с длинным числителем и коротким знаменателем целесообразно представлять так, чтобы числитель был записан в виде многочлена в скобках, а единица, деленная на знаменатель, вынесена за скобки. Например, уравнение
легко приводится к виду
При коротком числителе и длинном знаменателе рекомендуется заменять отдельные сложные элементы упрощенными обозначениями. Например: вместо
надо
Если в формулу входит дробь с длинным числителем и длинным знаменателем, то для переноса либо используют оба рекомендованных приема преобразования, либо заменяют горизонтальную дробную черту знаком деления (две точки). В последнем случае формула будет иметь вид
(a1x + a2y + ... + aih) : (b1x + b2y + ... + bih).
Подкоренное выражение рекомендуется преобразовать путем возведения его в степень 1/и. Например, формулу
можно записать так:
(a1x + b1x2 + ... + nxn)1/2.
Знаки, на которых делают перенос, ставят два раза: в конце первой строки и в начале перенесенной части. Например:
Если формулу прерывают на отточии, его также повторяют в начале следующей строки. Если знак равенства стоит перед знаком минус, перенос делают на знаке равенства. Если формула имеет в своем составе несколько выражений в скобках, перенос рекомендуется делать на знаке + или –, стоящем перед скобками.
Несмотря на все старания редакторов и корректоров, погрешности в тексте с формулами все же остаются. Типичная ошибка при переносе формул – отрыв аргумента от функции. Например:
Конечно, нельзя требовать от наборщика, чтобы он дифференцированно оценивал запись типа f(x – y): без контекста невозможно сказать, что она означает: произведение двух функций f и (х – у) или зависимость функции f от аргумента (х – у). Однако известно, что тригонометрические функции без аргумента не имеют смысла, поэтому без них не употребляются. И помещать знак умножения между функцией и ее аргументом – грубейшая ошибка.
В приведенном примере редактор не мог предусмотреть допущенных ошибок. В первом случае перенос формулы вызван недосмотром наборщика при разбивке ее на две строки, во втором формула была в самом тексте, и предвидеть ее перенос в этом месте при редактировании было практически невозможно. Но в верстке редактор обязан был исправить эту ошибку.
Емкость печатного листа с формулами в 2—3 раза меньше емкости печатного листа текста, что увеличивает себестоимость издания. Издательская практика располагает рациональными приемами подачи формул, дающими ощутимый экономический эффект. Формулы, как правило, набирают в красную строку с отбивкой сверху и снизу. Это ведет к увеличению расхода бумаги, удорожанию набора и монтажа формул.
Выключка формул посередине формата целесообразна в двух случаях: а) формула нуждается в акценте; б) из-за сложности и громоздкости формула не может быть набрана вместе с текстом. Формулы, на которые необходимо обратить внимание, как правило, нумеруются. Однако часто формулы выключают без всякой необходимости.
Например, текст
вполне можно разместить в одной строке.
Существенного уплотнения набора можно добиться и тогда, когда этому, казалось бы, препятствует нумерация формул. Например:
При таком расположении формул найти ее номер не составляет труда.
Иногда авторы помещают одну под другой несколько однотипных формул, каждой давая номер.
В подобном случае все формулы можно поместить в одной строке под одним номером:
Изменение ссылок на них не вызывает затруднений. Если, например, нужно сослаться на формулу для выражения координаты, можно написать: «по второй из формул (3)».
Методы преобразования, заложенные в природе самой формулы, позволяют практически любую формулу любой сложности представить в виде, удобном для набора. Простейшая дробь
оказывается неудобной для набора. Но ее можно записать или через косую черту 1/2, или десятичной дробью 0,5, или в виде степени 2-1 . Все варианты равноправны, однако наибольшее распространение получил первый.
Считается, что в изданиях произведений научной литературы можно любые дроби преобразовать в однострочные выражения типа: (а + в)/с; (А + В)/(с + d) и т.д. Здесь явная выгода в расходе бумаги. Особенно целесообразно преобразование многоэтажных дробей. Например, дробь
можно преобразовать в вид (a/b + c/d)/(e/f + g/h)-1 .
В целях экономии бумаги такой ее компактности уделяется большое внимание. Однако здесь не обошлось без перебора: в печати стали появляться огромные невоспринимаемые формулы и формулы двусмысленного толкования.
Невоспринимаемые формулы – результат порой бездумного перевода сложных двух– и трехэтажных формул в однострочные с помощью знака «косая черта» и отрицательных показателей степеней.
Формулы двусмысленного толкования получаются в тех случаях, когда в знаменателе после косой черты оказывается произведение.
Яркий пример неосторожного обращения со знаком «косая черта» – в приложении 1 к ОСТу 29.115—88 «Оригиналы авторские и текстовые издательские. Общие технические требования». Авторы стандарта считают возможным формулу
преобразовать так:
Это неверно, ибо становится непонятным, какие символы находятся в числителе, а какие – в знаменателе. Если эту неоднозначность устранить (с помощью дополнительных скобок), формула получится еще менее воспринимаемой. Такой вариант станет, может быть, пригодным лишь для какого-то особого компактного издания, в котором формула дается лишь для того, чтобы, не задумываясь над ее смыслом, подставить цифры и получить результат.
Рассмотрим еще один «учебный» пример:
Если просто заменить горизонтальную дробную черту на косую, получим
А = В/СХ и А = В/СХ,
т.е. разные формулы стали одинаковыми.
Чтобы такого не произошло, в первой формуле надо произведение в знаменателе поставить в скобках, а во второй перенести X вперед или В/С записать в скобках:
А = В/(СХ) и А = XB/C = (B/С) X.
Многие считают, что вторую формулу в варианте А = В/ СХ можно оставить без изменения, ибо по правилам арифметики здесь действия будут выполняться в порядке расположения знаков. С этим нельзя согласиться, поскольку в технической литературе издавна сложился стереотип восприятия выражения за косой чертой как единого целого. Например, удельный расход топлива всегда обозначали так: г/кВтч, где «ч (ас)» на самом деле находится в знаменателе, хотя по правилам арифметики он стоит в числителе.
Если в выражении А = В/ СХ косую черту заменить знаком деления (две точки), это тоже нехорошо, ибо С и Xбудут набраны без пробела и многими будут приняты за произведение (А = В : СХ).
Как и было условлено, в трудоемкость формул (экономичность) будем включать трудоемкость не только набора, но и редактирования, перепечатки формульного оригинала, считки. Справедливости ради сюда следовало бы включить и трудоемкость проверки формул автором в верстке, когда ему приходится порой часами проверять формулы, ставшие неузнаваемыми после редактирования. Очевидно, например, насколько труднее проверить вторую формулу, чем первую:
до преобразования
после преобразования α = 4(A/C):[(1+A/C)2+B2/C(ω/ωr−ωr /ω)2].
Конечно, то, что трудоемкость формул обычно сводится лишь к стоимости набора, в какой-то мере понятно: стоимость набора – это количественный и внешний показатель подготовки издательского оригинала. Остальные показатели трудоемкости не подсчи-тываются и являются для издательства внутренними.
Чтобы сделать трудоемкость редактирования минимальной, надо добиться того, чтобы авторы представляли материал, в котором соблюдены следующие требования:
– формулы вписаны от руки печатными буквами, аккуратно и ясно (если автор не смог осуществить компьютерный набор);
– знаки деления в сложных формулах имеют вид горизонтальной черты. Такие формулы легко проверить, проанализировать и принять решение, согласовав, естественно, с автором целесообразность придания формуле более компактного вида;
– формулы размечены;
– сделаны необходимые уточнения на полях («е» – не «эль» и т.д.);
– число букв и знаков, требующих дополнительного разъяснения на полях, сведено в формулах к минимуму.
Много лишней бумаги уходит на подробные представления математических действий и выкладок. В таких случаях число формул можно сократить – далеко не всегда необходимо приводить все промежуточные преобразования, если они элементарны по характеру. Например, вместо целого ряда преобразований формулы
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.