Текст книги "Создание атомной бомбы"
Автор книги: Ричард Роудс
Жанр: Исторические приключения, Приключения
Возрастные ограничения: +18
сообщить о неприемлемом содержимом
Текущая страница: 21 (всего у книги 79 страниц) [доступный отрывок для чтения: 26 страниц]
Тем временем, через два месяца после Сольвеевского конгресса, Ферми завершил крупнейшую в своей жизни теоретическую работу, основополагающую статью по бета-распаду. Бета-распад, возникновение и испускание из ядра высокоэнергетических электронов в процессе радиоактивных преобразований, нуждался в подробном, численном теоретическом описании, и такое описание полностью разработал Ферми. Он предложил концепцию нового типа сил, «слабого взаимодействия», чем завершил формирование четверки основных сил, существующих в природе, в которую входят гравитация и электромагнитное взаимодействие, действующие на больших расстояниях, и действующие в масштабах ядра сильное и введенное Ферми слабое взаимодействия. Он ввел новую фундаментальную постоянную, которую называют теперь постоянной Ферми, определив ее значение по уже имевшимся экспериментальным данным. «Фантастическая статья, – восхищался ею впоследствии Виктор Вайскопф, – настоящий памятник интуиции Ферми»[921]921
Цит. по: Holton (1974), p. 172.
[Закрыть]. Редакция лондонского журнала Nature отвергла эту статью, посчитав ее слишком далекой от физической реальности[922]922
Segrè (1970), p. 72.
[Закрыть]; Ферми нашел этот отказ досадным, но забавным[923]923
Интервью с Сегре, 29 июня 1983 г.
[Закрыть]. Он напечатал ее в малоизвестном журнале Ricerca Scientifica, еженедельнике итальянского Совета по научным исследованиям, в котором работала жена Амальди Джинестра, а затем – в Zeitschrift für Physik. Теория бета-распада Ферми, лишь с небольшими поправками, до сих пор остается исчерпывающим изложением этой темы.
Журнал Comptes Rendus с отчетом Жолио-Кюри об открытии искусственной радиоактивности пришел в Рим в январе 1934 года, вскоре после возвращения Ферми из Альп, где он катался на лыжах[924]924
По словам Л. Ферми в Badash (1980), p. 89.
[Закрыть]. «Тогда мы еще не нашли для своей работы задач [в области ядерной физики], – вспоминает Амальди. – …И тут появилась статья Жолио, и Ферми немедленно начал искать радиоактивность»[925]925
Цит. по: Holton (1974), p. 173, прим. 81.
[Закрыть]. Как и Сцилард, Ферми понимал преимущества использования нейтронов. И. А. Раби перечислил эти преимущества в одной из своих лекций:
Поскольку нейтрон не имеет заряда, он не испытывает сильного электрического отталкивания, препятствующего его проникновению внутрь ядра. Более того, силы притяжения, обеспечивающие целостность ядра, могут затягивать нейтрон в ядро. Попадание нейтрона в ядро вызывает приблизительно такие же катастрофические последствия, какие вызвало бы столкновение Луны с Землей. Соударение резко сотрясает ядро, особенно если оно приводит к захвату нейтрона. Происходит скачкообразное увеличение энергии, и избыточная энергия должна быть рассеяна, что может происходить несколькими разными способами, все из которых представляют интерес[926]926
Rabi (1970), p. 16.
[Закрыть].
Когда Ферми начал свои эксперименты с бомбардировкой ядер нейтронами, ему было тридцать три года. Он был невысок, мускулист, смугл, с густыми черными волосами, тонким носом и неожиданно серо-голубыми глазами. Он говорил низким голосом и часто улыбался. Женившись на миниатюрной красавице Лауре Капон, дочери офицера итальянского военно-морского флота еврейского происхождения, он обзавелся регулярными привычками: с утра он работал дома в течение нескольких часов, к девяти приходил в Физический институт, работал там до половины первого, обедал дома, возвращался в институт к четырем и продолжал работать до восьми вечера, после чего шел домой ужинать. Кроме того, после женитьбы он прибавил в весе.
Вместе с группой молодых коллег они занимали южное крыло второго этажа института; там же работали Корбино и главный физик римского департамента здравоохранения – Sanita Pubblica – великодушный Дж. Ч. Трабакки, который одалживал мальчикам Корбино некоторые из своих приборов и доставал материалы, необходимые им для экспериментов (чем заслужил их любовь и прозвище «Божественное Провидение»). Антонио Ло Сурдо, вечно недовольный физик старой школы, не допускал эту орду захватчиков в свой кабинет, расположенный в северном крыле того же этажа. Корбино жил со своей семьей на верхнем этаже; его квартира выходила на внутренний дворик с садом, в центре которого был пруд с золотыми рыбками. На первом этаже были студенты; в подвале стояли электрогенераторы и обитый свинцом сейф, в котором хранился принадлежащий Sanita грамм радия, стоивший 670 000 лир – около 34 000 долларов. Именно в этом году ему суждено было войти в историю. Сквозь стенки сейфа были проведены стеклянные трубки, по которым радон, образующийся при распаде радия, выходил из сейфа в компактную экстрационную установку, скромное сооружение из вертикальных стеклянных труб для очистки и сушки радиоактивного газа. Верхний, жилой этаж института был короче нижних, так как в одном его конце была небольшая ротонда с черепичным куполом. «Здание было расположено удобно и в то же время красиво – на холме в небольшом парке, недалеко от центра Рима, – вспоминает Сегре. – В живописно спланированном парке с его пальмами и бамбуковыми рощами почти всегда стояла тишина, и только в сумерках ее нарушали воробьи, облеплявшие деревья. Институт был очень тихим и приятным местом работы»[927]927
Цит. по: Сегре Э. Указ. соч. С. 76.
[Закрыть][928]928
Segrè (1970), p. 53.
[Закрыть]. Дорожка, засыпанная гравием, ярко белевшим под золотым римским солнцем, выводила на виа Панисперна.
Как обычно, Ферми собственноручно проводил эксперименты с нейтронами. В феврале и начале марта он лично собирал примитивные счетчики Гейгера из алюминиевых трубок, которые изготавливали, отрезая дно от баночек с таблетками. На них устанавливали проводку, наполняли их газом, запаивали с концов и подключали к аппаратуре. Эти счетчики были размером чуть меньше пачки мятных леденцов и в сто раз менее эффективными, чем нынешние модели промышленного изготовления, но, когда ими управлял Ферми, они работали[929]929
Ср. Amaldi (1977), p. 301, рис. 3, и Libby (1979), p. 41.
[Закрыть]. Во время изготовления счетчиков Гейгера он попросил Разетти подготовить источник нейтронов, который сделали из полония, нанесенного методом испарения на бериллий. Поскольку полоний испускает сравнительно низкоэнергетические альфа-частицы, получившийся источник выдавал сравнительно небольшое число нейтронов в секунду, и Ферми с Разетти безуспешно пытались облучить им несколько образцов.
В этот момент Разетти, проявив удивительное отсутствие заинтересованности в этом историческом эксперименте, уехал на пасхальные каникулы в Марокко. Ферми пытался найти более мощный источник нейтронов. Основная причина, по которой полоний вообще стали использовать, – не только в Риме, но и в Париже, Кембридже и Берлине, – заключалась в том, что более сильные источники альфа-частиц, например радон, испускают также большое количество бета– и гамма-излучения, что мешает работе приборов и затрудняет измерения. Ферми внезапно понял, что, поскольку он пытается наблюдать запаздывающий эффект, все его измерения все равно будут проводиться уже после удаления источника нейтронов: поэтому бета– и гамма-излучение ему никак не помешает и, следовательно, он может использовать радон. Радона было сколько угодно у Трабакки, и он охотно им делился; поскольку время полураспада этого элемента составляет 3,82 суток, он в любом случае не подлежал длительному хранению, а грамм радия, хранившийся у Трабакки, непрерывно производил все новые и новые порции этого газа.
Итак, в середине марта Ферми, одетый в серый лабораторный халат, принес в подвал Физического института на виа Панисперна маленький обрезок стеклянной трубки длиной не более первой фаланги мизинца. Трубка была запаяна с одного конца и частично наполнена порошком бериллия. Он установил запаянный конец этой капсулы в резервуар со сжиженным воздухом. При температуре –200 °C радон, направляемый из выходного патрубка очистной установки в капсулу, конденсировался на ее стенках. Затем Ферми нужно было постараться как можно быстрее нагреть открытый конец трубки и запечатать его, не повредив стекла, чтобы радон не успел испариться и улетучиться. Когда ему это удалось, он завершил изготовление нейтронного источника, вставив капсулу в полуметровую стеклянную трубку большего диаметра и зафиксировав ее в дальнем конце этой трубки, чтобы источник можно было держать, оставаясь на безопасном расстоянии от испускаемого им гамма-излучения. Несмотря на столь долгую и трудоемкую подготовку, срок службы такого источника был невелик.
Вначале Ферми работал в одиночку. Он планировал облучить в общей сложности большинство элементов периодической системы и методически начал с самых легких. По его расчетам, источник вырабатывал более 100 000 нейтронов в секунду[930]930
Ср. статью Ферми (далее СФ) 84b, Fermi (1962), p. 674.
[Закрыть]. «Небольшие цилиндрические контейнеры с исследуемыми веществами, – объяснял он в своем первом отчете, – подвергались воздействию радиации в течение периодов длительностью от нескольких минут до нескольких часов». Первым делом Ферми облучил воду – это позволяло проверить сразу водород и кислород, – затем литий, бериллий, бор и углерод; ни в одном из этих веществ радиоактивности не возникло. Лаура Ферми говорит, что такое отсутствие результатов вызвало у него некоторые колебания, но Ферми редко рассказывал дома о своей работе, и кажется маловероятным, чтобы у него появились серьезные сомнения. Из работы Жолио-Кюри он знал, что алюминий, расположенный в периодической системе лишь немногим дальше, реагирует на облучение альфа-частицами, а нейтроны должны были оказаться еще более действенными.
Как бы то ни было, следующая попытка, с фтором, была успешной: «Фтористый кальций, облучавшийся в течение нескольких минут и быстро приближенный к счетчику, вызывает в первые секунды рост числа импульсов; этот эффект быстро спадает, достигая половинного уровня приблизительно за 10 секунд»[931]931
Ibid.
[Закрыть].
Вскоре он обнаружил в алюминии радиоактивность с периодом полураспада в двенадцать минут, что не совпадало с открытием супругов Жолио-Кюри. Чтобы подчеркнуть связь своей работы с их исследованиями, Ферми начал описание своих результатов в письме в Ricerca Scientifica от 25 марта 1934 года именно с алюминия.
Этот первый отчет о «радиоактивности, наведенной нейтронами» был помечен римской цифрой I. Поиски продолжались. Ферми привлек к дальнейшей работе Амальди и Сегре и послал Разетти в Марокко телеграмму, призывавшую его срочно вернуться домой. Сегре пишет:
Мы организовали свою деятельность следующим образом: Ферми производил большую часть экспериментов и вычислений. Амальди занимался тем, что мы назвали бы сейчас электроникой, а я отвечал за облучаемые вещества, источники и так далее. Разумеется, это разделение обязанностей вовсе не было жестким, и все мы участвовали во всех этапах работы, но области нашей ответственности были распределены приблизительно таким образом, и работа шла очень быстро. Мы нуждались в любой доступной помощи, так что даже приставили к делу младшего брата одного из студентов (лет, наверное, двенадцати), убедив его, что ему поручают очень интересное и важное дело – подготовку аккуратных бумажных трубок, в которых мы могли бы облучать свои материалы[932]932
Segrè (1955), p. 258 и далее.
[Закрыть].
В следующем письме[933]933
СФ 85b, Fermi (1962), p. 676.
[Закрыть], отправленном в Ricerca Scientifica (и, в сокращенном виде, в Nature), сообщалось об искусственно наведенной радиоактивности в железе, кремнии, фосфоре, хлоре, ванадии, меди, мышьяке, серебре, теллуре, йоде, хроме, барии, натрии, магнии, титане, цинке, селене, сурьме, броме и лантане. К тому времени они разработали стандартную процедуру: вещества облучали в одном конце второго этажа, а измерения радиоактивности счетчиками Гейгера проводили в другом его конце, к которому вел длинный коридор. В такой конфигурации счетчики не подвергались воздействию фонового излучения источника нейтронов. Но это также означало, что, когда период полураспада радиоактивности был коротким, кому-то нужно было бежать по коридору. «Амальди и Ферми гордились тем, что они бегают быстрее всех, – отмечает Лаура Ферми, – и поэтому в их обязанности входило доставлять облученные вещества с коротким периодом полураспада из одного конца коридора в другой. Они всегда бежали наперегонки, и Энрико утверждал, что он обычно обгонял Эдоардо. Но Энрико вообще не любил проигрывать»[934]934
L. Fermi (1954), p. 89.
[Закрыть]. Однажды в институт явился некий респектабельный испанец, хотевший поговорить с «его превосходительством сеньором Ферми». Молодой римский профессор теоретической физики, несшийся по коридору в развевающемся грязном лабораторном халате, чуть не сбил его с ног.
В конце концов они добрались до урана и составили приблизительную классификацию наблюдавшихся эффектов. Легкие элементы, как правило, превращались в элементы еще более легкие, испуская протон или альфа-частицу. Однако существующий вокруг ядра электрический барьер препятствует не только входу, но и выходу[935]935
Если быть точным, барьер на выход создается ядерными силами притяжения. В ядрах с большим атомным номером эти силы не просто могут, но и обязаны быть больше. Иначе электрическое отталкивание разорвало бы ядро. – Прим. науч. ред.
[Закрыть], причем прочность этого барьера возрастает с увеличением атомного номера. Поэтому тяжелые элементы становились не легче, а тяжелее: они захватывали налетающий нейтрон, испускали его энергию связи в виде гамма-излучения и, поскольку их масса увеличивалась на массу нейтрона, а заряд не увеличивался и не уменьшался, превращались в более тяжелый изотоп того же элемента. Затем этот изотоп распадался через запаздывающее испускание отрицательно заряженных бета-лучей до элемента с бо́льшим на единицу атомным номером. То же самое происходило и с ураном: по прошествии некоторой задержки он испускал бета-излучение, то есть электрон. Это означало, понял Ферми, что при бомбардировке урана нейтронами сначала получается более тяжелый изотоп, уран-239, а затем новый, рукотворный трансурановый элемент с атомным номером 93, которого никогда раньше не существовало на свете.
Образец урана (раствор нитрата урана, светло-желтую жидкость) нужно было очистить от фоновой бета-активности, которую создают продукты естественного распада урана (в природе уран распадается по цепочке из четырнадцати сложных этапов, перемещаясь все ниже по периодической системе – сначала до тория, затем до протактиния, радия, радона, полония, висмута и свинца). Трабакки щедро одолжил группе молодого химика Оскара Д’Агостино, недавно окончившего курс радиохимии на улице Пьера Кюри; в начале мая Д’Агостино завершил трудоемкий процесс очистки. В это время они уже использовали более мощные источники, до 800 милликюри[936]936
Ср. СФ 99, Fermi (1962), p. 748.
[Закрыть] радона, что давало около миллиона нейтронов в секунду. Облучение нитрата урана дало «очень сильный эффект с несколькими разными периодами [полураспада]: один период, составляющий около 1 минуты, другой – 13 минут, а также другие, более долгие периоды, еще точно не определенные»[937]937
СФ 86b, там же, p. 678.
[Закрыть], – говорилось в их отчете от 10 мая.
Во всех этих случаях наведенная радиоактивность была бета-излучением. Атом, испускающий бета-частицу, увеличивает свой атомный номер на единицу. Таким образом, следовало предположить, что эти превращения ведут в неисследованную область периодической системы, область искусственных элементов. Чтобы доказать справедливость этого поразительного предположения, Ферми нужно было продемонстрировать методами химической сепарации, что бомбардировка нейтронами не приводит к непредвиденному образованию элементов более легких, чем уран. Поскольку период полураспада длительностью в одну минуту был слишком коротким для исследования, Ферми сосредоточился на тринадцатиминутном распаде. Д’Агостино разбавил облученный нитрат урана 50-процентной азотной кислотой, растворил в кислоте небольшое количество соли марганца и довел раствор до кипения. Добавление в кипящий раствор хлората натрия вызвало осаждение кристаллов двуокиси марганца. Когда же он очистил эти кристаллы от раствора фильтрованием, вся радиоактивность осталась в марганце – так же, как радиоактивность, которую Жолио-Кюри создали в алюминии, оставалась в газообразном водороде. Раз радиоактивное вещество можно было осадить из уранового раствора на марганцевый носитель, это вещество никак не могло быть ураном.
Добавляя другие носители и осаждая другие соединения, Д’Агостино доказал, что вещество с тринадцатиминутным периодом полураспада не могло быть ни протактинием (91), ни торием (90), ни актинием (89), ни радием (88), ни висмутом (83), ни свинцом (82). Его поведение не позволяло считать его ни 87-м элементом (который называли тогда экацезием[938]938
Современное название – франций.
[Закрыть]), ни радоном (86). Элемент 85 еще не был известен[939]939
Речь идет об астате, впервые полученном в 1940 г. путем облучения висмута альфа-частицами.
[Закрыть]. Ферми не пытался проверить полоний (84), возможно из-за явного различия периодов полураспада. Однако ему казалось, что его исследование было достаточно тщательным. «Такая невозможность приписать 13-минутную активность ни одному из большого числа самых тяжелых элементов, – осторожно писал он в июне в журнале Nature, – позволяет предположить, что атомный номер этого элемента может превышать 92»[940]940
СФ 99, Fermi (1962), p. 750.
[Закрыть].
Корбино имел неосторожность объявить о «новом элементе» на ежегодном собрании по поводу окончания учебного года[941]941
Текст выступления Корбино частично приводится в Segrè (1970), p. 76.
[Закрыть], причем в присутствии самого короля Италии; в прессе поднялась шумиха, доставившая Ферми несколько бессонных ночей. После столь блестящего завершения работы, которую Сцилард называл «долгой и скучной», утомленный физик был рад уехать вместе с женой и маленькой дочерью Неллой в летний лекционный тур по Аргентине, Уругваю и Бразилии, организованный на средства итальянского правительства.
Весной 1934 года, вылезши из ванны, Лео Сцилард по-прежнему пытался – все еще в одиночку – добиться достижения двух своих главных целей, высвобождения энергии ядра и спасения мира. В написанном в конце апреля меморандуме, осуждающем японскую оккупацию Маньчжурии, он, как кажется, заглядывает в далекое будущее: «Открытия ученых, – пишет он, – дали человечеству оружие, способное уничтожить нашу нынешнюю цивилизацию, если только нам не удастся предотвратить будущие войны»[942]942
Weart and Szilard (1978), p. 37.
[Закрыть]. Вероятно, он имел в виду изобретение военной авиации; в середине того десятилетия много говорили об ужасах стратегических бомбардировок и даже о возможностях сдерживания путем создания равных угроз для всех сторон. Но в то же время он, почти несомненно, думал и об атомных бомбах.
Спустя несколько недель, пытаясь найти покровителей, он отправил сэру Хьюго Херсту, основателю британской General Electric Company, первую главу «Освобожденного мира». «Разумеется, – писал он сэру Хьюго с некоторой горечью, все еще не забыв предсказания Резерфорда, – все это лишь лунные миражи, но у меня есть основания полагать, что в том, что касается промышленного применения нынешних открытий в физике, прогноз писателей может оказаться более точным, чем прогноз ученых. У физиков есть убедительные доказательства того, что создать новые источники энергии для промышленных целей в настоящее время невозможно; я не вполне уверен, что они хорошо понимают, о чем идет речь»[943]943
Ibid., p. 39.
[Закрыть].
То, что Сцилард рассматривал не только «энергию для промышленных целей», но и возможность появления оружия, ясно видно из следующих поправок к его патентным заявкам, внесенных 28 июня и 4 июля 1934 года. Раньше он описывал «преобразование химических элементов»; теперь же он добавил «высвобождение ядерной энергии для производства электроэнергии и других целей путем ядерных преобразований». Он впервые предложил «цепную реакцию, звенья цепи которой образуют частицы, не несущие положительного заряда и имеющие массу, приблизительно равную массе протона или кратную ей, [т. е. нейтроны]»[944]944
Szilard (1972), p. 639.
[Закрыть]. Он описал основные характеристики того, что впоследствии стали называть «критической массой», – объема вещества, в котором происходит цепная реакция, необходимого для того, чтобы цепная реакция стала самоподдерживающейся[945]945
Ср. там же, p. 642.
[Закрыть]. Он понимал, что критическую массу можно уменьшить, окружив сферу вещества, в котором происходит цепная реакция, «неким дешевым тяжелым материалом, например свинцом», который отражал бы вылетающие нейтроны обратно в эту сферу: отражатель нейтронов, основанный на этой базовой концепции, впоследствии стал известен под названием tamper, то есть «трамбовка», по аналогии с процессом утрамбовки земли в буровые скважины при использовании обычной взрывчатки. А кроме того, он понимал, что произойдет в случае накопления критической массы, и ясно изложил это понимание на четвертой странице своей заявки:
Как будто бы чтобы отметить в неком далеком от человечества календаре конец одной эпохи и начало следующей, в тот же день, когда Сцилард подал свою заявку, 4 июля 1934 года, в Савойе умерла Мария Склодовская-Кюри, родившаяся в Варшаве 7 ноября 1867 года. Лучшей эпитафией ей стали слова Эйнштейна. «Мария Кюри, – сказал он, – была единственной из всех прославленных людей, чья слава осталась незапятнанной»[947]947
Цит. по: Eve (1939), p. 388.
[Закрыть].
Нет никаких документальных свидетельств того, что в то время Сцилард уже думал об уране. Его июньская поправка описывает возможную цепную реакцию с использованием легкого серебристого бериллия, элемента номер 4 периодической системы.
Для изучения этого металла Сциларду нужны были лаборатория и радиоактивный источник. Ядро бериллия связано настолько непрочно, что он предполагал, что сможет выбивать из него нейтроны не только альфа-частицами или нейтронами, но даже гамма-лучами или высокоэнергетическим рентгеновским излучением. Гамма-лучи испускал радий, а радий можно было найти в ближайшей крупной больнице. Поэтому Сцилард, бывший на редкость практичным мечтателем, пришел к директору физического отделения медицинского колледжа при больнице Св. Варфоломея. Нельзя ли ему использовать для экспериментов имеющийся в больнице радий, «который летом все равно почти никто не использует»? Эти эксперименты могут принести пользу медицине. Директор полагал, что это возможно, если он будет работать вместе с кем-нибудь из сотрудников больницы. «На это согласился один очень любезный англичанин, мистер [Т. А.] Чалмерс, и в течение следующих двух месяцев мы с ним проводили эксперименты»[948]948
Weart and Szilard (1978), p. 20.
[Закрыть].
В их первом эксперименте был продемонстрирован восхитительно простой метод выделения изотопов йода путем бомбардировки соединений йода нейтронами. Затем они использовали этот эффект Сциларда – Чалмерса (как его стали называть впоследствии), обладавший высокой чувствительностью, для измерения производства нейтронов во втором эксперименте: выбивание нейтронов из бериллия при помощи гамма-излучения радия. «Эти эксперименты, – саркастично вспоминает Сцилард, – создали мне репутацию ядерного физика, если не в Кембридже, то в Оксфорде. [На самом деле той же весной Сцилард пытался поступить на работу в Кавендишскую лабораторию к Резерфорду, но тот ему отказал[949]949
Ср. письмо ЛС к Эрнесту Резерфорду от 7 июня 1934 г., Szilard Papers.
[Закрыть]. Я никогда раньше не работал в ядерной физике, но в Оксфорде меня считали специалистом… В Кембридже… такой ошибки не допустили бы. Там меня считали выскочкой, который, возможно, производит всякие наблюдения, но такие наблюдения нельзя считать открытиями, пока их не повторят и не подтвердят в Кембридже»[950]950
Weart and Szilard (1978), p. 20.
[Закрыть].
Хотя летняя работа помогла Сциларду заработать репутацию в Оксфорде, лично для него она закончилась разочарованием: бериллий оказался неподходящим кандидатом на цепную реакцию. Проблема, которую разрешили только в 1935 году, была связана с общепринятым значением массы гелия[951]951
Ср. Brown (б. д.), p. 53 и далее.
[Закрыть]. Единственный стабильный изотоп бериллия состоит из двух ядер гелия, непрочно связанных вместе нейтроном[952]952
Это достаточно грубая модель устройства ядра бериллия; современные модели рисуют другую картину. Тем не менее эта модель позволяет понять, почему бериллий считался слабо связанной структурой, пока более точные измерения массы гелия не опровергли это представление. – Прим. науч. ред.
[Закрыть]. Масса этого изотопа, вычисленная на основе измеренной Фрэнсисом Астоном массы гелия, казалась большой, что, по-видимому, говорило о его неустойчивости. Однако масс-спектрограф был прибором своенравным, даже в руках своего собственного создателя, и, как вскоре показали Бете, Резерфорд и другие, измерения Астона были неточны: он получил слишком большое значение массы гелия. Одной из жертв этой ошибки стали перспективы использования бериллия для получения цепной реакции, производства атомной энергии и атомных бомб.
В начале июля Эмилио Сегре и Эдоардо Амальди совершили паломничество в Кембридж[953]953
Amaldi (1977), p. 305.
[Закрыть]. Они плохо знали английский язык, но привезли с собой всеобъемлющий отчет о римских исследованиях с использованием бомбардировки нейтронами. Они встретились с Чедвиком, Капицей и другими завсегдатаями Кавендишской лаборатории, видели на прогулке уже ушедшего в отставку Дж. Дж. Томсона, заметили, что Астон, как невинно говорит Амальди, «продолжал работать над повышением точности измерений атомных масс», и имели запоминающуюся беседу с Резерфордом, «сильная личность которого царила над всей лабораторией»[954]954
Ibid.
[Закрыть].
Два молодых физика приехали, чтобы сравнить свои эксперименты с работой двух «мальчиков» Резерфорда. В нейтронной работе оставался один еще не решенный вопрос, который ставил под сомнение существующую ядерную теорию[955]955
Ср. Amaldi (1977), p. 310, СФ 98 (p. 744), СФ 103 (p. 755) и Fermi (1962), p. 641.
[Закрыть]. В статье в Nature, которую они привезли с собой, это затруднение было честно описано. Речь шла о так называемом «радиационном захвате», типичной реакции тяжелых элементов на бомбардировку нейтронами: ядро захватывает нейтрон, испускает фотон гамма-излучения, чтобы вернуться к энергетическому равновесию, и становится в результате изотопом с массой, увеличенной на одну единицу.
Теория того времени рассматривала ядро как единую большую частицу. У этой частицы есть определенный диаметр, причем такой небольшой, что высокоскоростной нейтрон может войти в ядро с одной стороны и выйти с другой приблизительно за 10–21, то есть одну миллиардную одной триллионной доли, секунды. Любые процессы захвата должны произойти в течение этого короткого времени. В противном случае нейтрон улетает. Захват нейтрона означает его остановку внутри ядра. Для этого ядро должно поглотить энергию движения нейтрона. В свою очередь, ядро должно избавиться от излишка энергии. Что оно и делает: испуская фотон гамма-излучения.
Однако время испускания гамма-излучения, измеренное группой Ферми, отличалось от предсказанного теорией. У ядер, которые исследовала римская группа, испускание гамма-лучей занимало по меньшей мере 10–16 секунды – в сто тысяч раз больше, чем ожидалось. И причина этого была неясна.
Неоспоримое доказательство существования радиационного захвата позволило бы более точно сформулировать проблемы теории. Для его получения нужно было доказать так, чтобы в этом не оставалось никаких сомнений, что при захвате нейтрона тяжелым ядром действительно образуется более тяжелый изотоп. Кавендишские исследователи, к которым летом 1934 года приехали Сегре и Амальди, получили первую часть такого доказательства в эксперименте на натрии, проведенном в присутствии итальянцев. Затем те вернулись в Рим и, заручившись помощью Д’Агостино, стали работать над подтверждающим химическим процессом. Жарким римским августом их поиски других несомненных примеров радиационного захвата принесли им двойную победу. «Мы также нашли второй случай “доказанного” радиационного захвата, – пишет Амальди, – основанный на открытии нового радиоизотопа [алюминия], период существования которого составляет почти 3 минуты»[956]956
Amaldi (1977), p. 310.
[Закрыть].
На обратном пути из Южной Америки Ферми собирался заехать в Лондон на международную конференцию по физике. Его молодые коллеги написали ему о своем открытии, касающемся алюминия. Он сделал на конференции доклад о работе с нейтронами. Сцилард также был на этой конференции, с удовольствием выслушивая похвалы своим летним экспериментам и успешно работая над получением оплачиваемого места в Оксфорде. Ферми сказал, что его группа пока что исследовала шестьдесят элементов и возбудила радиоактивность в сорока из них. Говоря о проблеме радиационного захвата[957]957
Ср. СФ 103, Fermi (1962), p. 754 и далее.
[Закрыть], он упомянул результаты Кавендишской лаборатории «и результаты, полученные Амальди и Сегре на алюминии», подчеркнув, что и те и другие «следует считать чрезвычайно важными»[958]958
Ibid., p. 756.
[Закрыть]. Сегре описал последовавшее за этим бурное развитие событий:
Вскоре после этого я простудился и несколько дней не мог ходить в лабораторию. Амальди попытался повторить наши опыты и обнаружил для облученного алюминия другой период [полураспада], а это означало, что наша так называемая реакция (n, γ) [т. е. с нейтроном на входе и фотоном гамма-излучения на выходе] не происходит. Об этом спешно сообщили Ферми, который был разозлен и смущен тем, что сообщил о результате, который казался теперь ошибочным. Он резко разбранил нас, даже не пытаясь скрыть свое неудовольствие. Вся эта история беспокоила нас все больше и больше, потому что мы никак не могли найти никаких ошибок в экспериментах, давших противоречивые результаты[959]959
Ibid., p. 641.
[Закрыть].
Провинившимся молодым членам группы предстояла большая работа. Пока они трудились над уточнением первых приблизительных результатов, к ним присоединился еще один новобранец, Бруно Понтекорво, высокий, широкоплечий, привлекательный чемпион по теннису из Пизы. Бомбардировка нейтронами вызывала в одних элементах более сильную радиоактивность, чем в других. До этого они использовали лишь самую общую классификацию этой активности, подразделяя ее на сильную, среднюю и слабую. Теперь же было предложено разработать численную шкалу активности. Для этого нужно было выбрать некую стандартную интенсивность, с которой можно было бы сравнивать интенсивность радиоактивного излучения всех остальных элементов. В качестве такой точки отсчета выбрали активность, наводимую нейтронной бомбардировкой в серебре, с удобным периодом полураспада в 2,3 минуты.
Эта задача была поручена Амальди и Понтекорво. К своему удивлению, они обнаружили, что в разных точках лаборатории в их серебряных цилиндрах возбуждается разная активность. «В частности, – пишет Амальди, – рядом со спектроскопом в темной комнате были деревянные столы, обладавшие волшебными свойствами, так как серебро, облученное на этих столах, приобретало значительно бо́льшую активность, чем при облучении на мраморном столе, стоявшем в том же помещении»[960]960
Amaldi (1977), p. 311 и далее.
[Закрыть].
С этой загадкой стоило разобраться. 18 октября они начали систематическое исследование, серию измерений, которые проводились внутри и вне свинцового кожуха. К 22 октября они были готовы измерить, что происходит, когда источник нейтронов отделен от мишени только свинцовым клином. Однако этим утром экспериментаторы должны были принимать экзамен у студентов, и Ферми решил продолжить работу самостоятельно. Вот как он описывал впоследствии этот исторический момент для коллеги, интересовавшегося процессом открытия в физике:
Расскажу вам, как я пришел к открытию, которое, пожалуй, важнее всего, что я сделал. Мы очень много работали, изучая радиоактивность, наводимую нейтронами, но получали бессмысленные результаты. Однажды, когда я пришел в лабораторию, мне пришло в голову, что надо бы посмотреть, что произойдет, если на пути нейтронов поставить свинец. И, изменив своему обыкновению, я приложил все усилия к тому, чтобы этот кусок свинца был очень хорошо обработан. Мне явно что-то не давало покоя: я под любым предлогом старался оттянуть момент установки свинца на предназначенное ему место. Когда же, наконец, я с некоторой неохотой собрался поставить его, то сказал себе: «Нет! Не хочу я ставить этот свинец, мне нужен кусок парафина». Это было именно так – никаких предчувствий, никаких сознательных предварительных рассуждений. Я сразу же взял кусок парафина, случайно подвернувшийся мне под руку, и поставил его на то место, где должен был стоять свинец[961]961
Цит. по: Сегре Э. Указ. соч. С. 110.
[Закрыть][962]962
Цит. по: Segrè (1970), p. 80. Этим коллегой был Субраманьян Чандрасекар.
[Закрыть].
Поразительным результатом замены тяжелого элемента – свинца – парафином было резкое увеличение интенсивности активности. «Около полудня, – вспоминает Сегре, – все были созваны в комнату, чтобы засвидетельствовать чудодейственное влияние парафинового фильтра. Сначала я подумал, что испортился счетчик – таких огромных активностей мы никогда раньше не получали, но было немедленно показано, что это возрастание вызвано именно фильтрацией излучения, вызывающего радиоактивность, парафином»[963]963
Цит. по: Сегре Э. С. 111 (цит. с уточнениями).
[Закрыть][964]964
Ibid.
[Закрыть]. По словам Лауры Ферми, «весь физический корпус загремел возгласами: “Фантастика! Невероятно! Черная магия!”»[965]965
L. Fermi (1954), p. 98.
[Закрыть]
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?