Электронная библиотека » С. Егоров » » онлайн чтение - страница 3


  • Текст добавлен: 14 апреля 2015, 21:02


Автор книги: С. Егоров


Жанр: Химия, Наука и Образование


сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 19 страниц) [доступный отрывок для чтения: 6 страниц]

Шрифт:
- 100% +

14. Закономерности ионного обмена в коллоидных растворах. Ацидоиды. Роль pН в ионном обмене

В коллоидных системах обнаружено свойство твердых частиц обмениваться на одноименные по знаку заряда ионы, находящиеся в жидкой среде.

В частицах, которые окружены двойным электрическим слоем, такой способностью обладают противоионы, поэтому они называются обменными ионами.

Процесс ионного обмена можно выразить следующим равенством:

2 АВ + В2+ = А2В + 2В+,

где А – точка на поверхности частицы, несущая элементарный отрицательный заряд; В+ – одновалентный катион; В2+ – двухвалентный катион.

Способность катиона В2+ адсорбироваться на данной частице выражена сильнее, чем у катиона В+. Следовательно, при относительно малой концентрации ионов В2+ в растворе они вытеснят в раствор значительные количества ионов В+ из двойного слоя.

В этом случае говорят, что ионообменное равновесие сдвинуто вправо.

Уравнение для ионного обмена, в котором участвуют данные катионы, имеет вид:

X(В+) / X(В2+) = K C(В+) / [C(В2+)]0,5,

где X(В+) и X(В2+) – количества катионов в двойном слое; C(В+) и C(В2+) – концентрация катионов в растворе.

В ионном обмене могут участвовать также ионы Н+ и ОН. Ионный обмен с участием этих ионов способен изменить реакцию среды в ту или иную сторону.

Если у коллоидных частиц обменными являются ионы водорода, то они адсорбируют из раствора содержащиеся в нем катионы. Содержание водородных ионов в результате обмена увеличивается. Такие коллоиды иначе называют ацидоидами.

Примером ацидоида является коллоидная кремниевая кислота.

АH + В+ = АВ + Н+,

где А – точка на поверхности частицы;

В+ – одновалентный катион.

Отрицательно заряженные коллоиды, которые содержат в качестве противоионов катионы металлов (например, ионы кальция), адсорбируют обменным путем ионы Н+. В этом случае происходит катионный обмен:

ХСа2+ + 2Н+ = Х[Н+]2 + Са2+.

Отрицательно заряженные коллоиды, содержащие обменные катионы металлов, связывают вводимые в раствор ионы водорода, таким способом они противодействуют подкислению среды.

Положительно заряженные коллоиды, в которых обменными являются анионы, способны адсорбировать обменным путем ионы гидроксила:

ХА + ОН = ХОН + А.

Коллоид при этом связывает гидроксильные ионы, тем самым он противодействует подщелачиванию среды.

На описанных свойствах основано буферное действие коллоидов.

Следует учитывать, что катионный и анионный обмен зависит от реакции среды.

Если в среде, где происходит катионный обмен, есть ионы водорода, которые также участвуют в обмене, то количество адсорбированных из раствора катионов М+ будет тем меньше, чем ниже щелочность рН среды.

15. Основные методы измерения поверхностного натяжения

Поверхностное натяжение – это энергия переноса молекул из объема тела на поверхность или работа образования единицы поверхности. Существует несколько методов измерения поверхностного натяжения легкоподвижных поверхностей раздела фаз «жидкость – газ» и «жидкость – жидкость»: статические, полустатические, динамические.

В статических методах поверхностное натяжение определяется на основе изучения равновесного состояния, к которому самопроизвольно приходит изучаемая система.

В методе Вильгельми определяется сила, которая необходима для уравновешивания пластинки шириной d, погруженной в жидкость; используется полностью смачиваемая жидкостью пластинка, поверхностное натяжение рассчитывается по формуле:


(1)


где F – сила, втягивающая пластинку в жидкость, за вычетом веса пластинки.

Метод капиллярного поднятия основан на определении высоты столба жидкости h в капилляре радиуса r при полном смачивании; поверхностное натяжение рассчитывают по формуле:


(2)


где r – плотность жидкости; g – ускорение силы тяжести.

Полустатические методы основаны на достижении системой неустойчивого равновесного состояния. Это методы отрыва пластинки и кольца или максимального давления в пузырьке (капле).

Метод отрыва пластинки, как и метод Вильгельми, основан на определении силы, действующей со стороны жидкости на смачиваемую ею пластинку, но определение этой силы производится при отрыве пластинки от поверхности, что смягчает требования к смачиванию пластинки. Расчет поверхностного натяжения производится по формуле (1).

Метод отрыва кольца (метод дю Нуи) – один из наиболее распространенных методов определения поверхностного натяжения жидкостей. Связь поверхностного натяжения с силой F, необходимой для отрыва от поверхности жидкости тонкого кольца с радиусом R, хорошо смачиваемого жидкостью (краевой угол смачивания Θ = 0°), описывают выражением:


(3)


где величина k зависит от соотношения радиуса кольца и толщины проволоки, из которой сделано кольцо, и от поверхностного натяжения жидкости. Последняя зависимость слаба, что позволяет использовать этот метод как относительный:


(4)


где величины s и F относятся к эталонной жидкости.

Метод максимального давления пузырька (капли) основан на измерении максимального значения капиллярного давления, возникающего при образовании на срезе капилляра пузырька сферической формы:

Рσ = 2σ / r0.

Это максимальное давление определяется радиусом капилляра r0. Метод чаще всего используется как относительный, и поверхностное натяжение исследуемой жидкости определяется по отношению значений максимальных давлений Р исследуемой и эталонной Рэ жидкостей или из соотношения соответствующих высот поднятия манометрической жидкости:


(5)


где sэ – поверхностное натяжение эталонной жидкости.

16. Особенности ионного обмена в амфолитоидах, изоэлектрическое состояние амфолитоидов. Понятие об обменной емкости

Коллоиды, которые обладают свойством адсорбировать обменным путем как катионы, так и анионы, называют амфолитоидами. Частицы амфолитоидов обладают амфотерными свойствами: поверхность частицы амфолитоида, способна отщеплять ионы водорода и ионы гидроксила. Примерами амфолитоидов являются золи гидроксида алюминия и гидроксида железа (III).

Кислотные и основные свойства амфолитоидов выражены в различной степени: кислотные свойства могут преобладать над основными, или, наоборот, основные свойства преобладают над кислотными. Доминирование кислотных свойств амфолитоида проявляется в том, что в нейтральной среде с поверхности коллоидной частицы ионы водорода переходят в окружающий раствор в большем количестве, чем ионы гидроксила.

Поскольку при отщеплении иона водорода на поверхности частицы освобождается элементарный заряд отрицательного электричества, а отщепление каждого иона гидроксила – заряд положительного электричества, то частицы амфолитоида с преобладанием кислотных свойств заряжены в нейтральной среде отрицательно. Если в нейтральной среде основные свойства амфолитоида преобладают над кислотными, то суммарный заряд поверхности частиц является положительным.

Для амфолитоида существует обменная емкость поглощения катионов и анионов, которая зависит от рН среды. Рассмотрим процессы происходящие в амфолитоидах.

Пусть имеет место процесс поглощения ионов амфолитоидом с преобладанием кислотных свойств над основными. В нейтральной среде у коллоидной частицы емкость поглощения катионов больше емкости поглощения анионов. При постепенном подкислении среды кислотные свойства амфолитоида ослабляются, а основные свойства усиливаются, поскольку уменьшается число отщепляемых ионов водорода.

При этом уменьшается емкость поглощения катионов, но увеличивается емкость поглощения анионов. При определенной кислотности среды кислотные и основные свойства амфолитоида уравниваются, и, при условии одинаковой адсорбируемости катионов и анионов емкость поглощения катионов становится равной емкости поглощения анионов.

Наряду с описываемыми процессами происходит изменение заряда поверхности коллоидных частиц: меняются величина и знак ζ-потенциала. В нейтральной среде частицы данного амфолитоида заряжены отрицательно. По мере увеличения кислотности величина отрицательного потенциала частиц уменьшается, и при определенном значении рН ζ-потенциал становится равным нулю. Такое состояние называется изоэлектрическим состоянием. Значение рН, при котором система находится в изоэлектрическом состоянии, называется изоэлектрической точкой.

Если имеет место амфолитоид с преобладанием кислотных свойств, то его изоэлектрическая точка ниже 7 (т. е. коллоид переходит в изоэлектрическое состояние в кислой среде). Чем сильнее выражены кислотные свойства, тем меньше изоэлектрическая точка. У амфолитоидов с преобладанием основных свойств, наоборот, изоэлектрическая точка выше 7 (т. е. коллоид переходит в изоэлектрическое состояние в щелочной среде). Чем сильнее выражены основные свойства, тем выше изоэлектрическая точка.

Таким образом, можно сделать следующий вывод: с увеичением рН увеличивается количество адсорбируемых катионов, или емкость обмена катионов; с уменьшением рН увеличивается адсорбция анионов, или емкость обмена анионов.

Значит, для амфолитоидов характерно явление перезарядки частиц, вызываемое изменением реакции среды.

17. Методы приготовления коллоидных растворов

Основными методами для приготовления коллоидных растворов являются диспергационный и конденсационный.

Диспергационный метод заключается в дроблении массивных частиц твердой фазы до соответствующей степени дисперсности. Конденсационный метод основан на том, что частицы коллоидной дисперсности образуются из растворов или газовой фазы. Необходимо также упомянуть т. н. метод пептизации, который основан на превращении рыхлых осадков, состоящих из частиц коллоидной степени дисперсности, в коллоидный раствор.

При использовании диспергационного метода твердые частицы дробят механическим или электрическим способом. Механическое дробление в лабораторных условиях до необходимой степени дисперсности осуществляют с помощью специальных агатовых или стальных ступок. В процессе растирания раздробленные частички слипаются, поэтому, необходимо использовать дополнительно жидкое стабилизирующее вещество, которое может смачивать поверхность частицы, препятствуя их агрегации. Для измельчения вещества до 100–300 нм можно применять шаровые мельницы. В цилиндрическом сосуде находятся соответствующее твердое тело, жидкость и стабилизирующее вещество, а также металлические шары, которые при вращении цилиндра непрерывно перекатываются и измельчают твердое вещество. Для более тонкого дробления частиц используют коллоидные мельницы. Твердое вещество подвергают предварительному дроблению, затем смешивают с дисперсионной средой и стабилизирующей добавкой, после этого смесь подают через отверстие в мельницу. Жидкость со взвешенными частицами твердой фазы приобретает большую скорость благодаря быстрому вращению.

Электрический метод является одновременно диспергационным и конденсационным. Его используют для приготовления коллоидных растворов благородных металлов, для чего к двум электродам из благородного металла, погруженным в жидкость, подводят электрическое напряжение. Электроды вначале замыкают под жидкостью, затем отводят один от другого. В результате имеет место образование электрической дуги, как следствие, повышается температура, происходит испарение металла. Затем в результате перепада температур происходит образование кристаллов металла коллоидной степени дисперсности.

В конденсационном методе принято выделять способ физической конденсации, при этом твердая фаза образуется в результате конденсации из газообразной фазы, и способ химической конденсации, когда твердая фаза образуется в результате химической реакции. В обоих случаях необходимо образование мелких частиц. Один из механизмов конденсации заключается в том, что вначале происходит зарождение кристалла, линейные размеры которого затем увеличиваются. Для образования кристаллов малых размеров скорость образования кристаллических зародышей должна быть высокой, а скорость линейного роста кристаллов – малой. Примером конденсационного метода является получение коллоидного раствора иодида серебра. Приготовляют разбавленные растворы нитрата серебра и иодида калия, затем смешивают их. В результате химической реакции образуется иодид серебра, который практически нерастворим. В результате имеет место образование зародышей кристаллов иодида серебра коллоидной степени дисперсности.

Другим механизмом конденсационного метода является первоначальное возникновение аморфных частиц, которые постепенно упорядочиваются, превращаясь в кристаллы. Такой процесс имеет место при образовании оксидных пленок. Вначале образуются частицы сравнительно большой степени дисперсности, затем в них возникают внутренние механические напряжения, что приводит к образованию трещин, дроблению частицы на кристаллики коллоидной степени дисперсности.

18. Поверхность раздела между двумя конденсированными фазами. Правило Антонова. Межфазное натяжение

Величина поверхностного натяжения является постоянной величиной при постоянной температуре, она характеризует полярность жидкости, или интенсивность поля молекулярных сил.

Эта характеристика молекулярного сцепления связана с такими параметрами, как дипольный момент, поляризуемость, диэлектрическая проницаемость. Полярность растет с увеличением значений дипольного момента и диэлектрической проницаемости.

Существуют и другие компоненты молекулярных сил, проявляющиеся, например, у молекул с двойными связями.

Для границы двух несмешивающихся жидкостей всегда необходимо учитывать межмолекулярное сцепление соседней фазы.

Действие межмолекулярных сцеплений, как правило, представляется аддитивным, поэтому значение поверхностного натяжения для границы двух жидкостей определяется разностью их интенсивностей.

Само поверхностное натяжение называют в данном случае пограничным (или межфазным) поверхностным натяжением. Существование аддитивности действия молекулярных сил выражается правилом Антонова, которое гласит, что пограничное натяжение σжж равно разности поверхностных натяжений этих жидкостей (на границах с воздухом) в условиях взаимного насыщения. Математически данное правило можно записать следующим образом:

σжж = σжг1 – σжг2,

где sжж – межфазное поверхностное натяжение на границе «жидкость – жидкость»;

σжг1, σжг2 – значения поверхностных натяжений этих жидкостей на границе с воздухом.

Поясним правило Антонова на примере смеси двух жидкостей – воды и бензола.

Пусть слагаемое σжг1 относится к насыщенному раствору бензола в воде, а слагаемое σжг2 – к насыщенному раствору воды в бензоле.

С уменьшением разностей полярностей увеличивается взаимная растворимость жидкостей, различие между свойствами сосуществующих постепенно исчезает, а значения σжг1 и σжг2 становятся более близкими.

Следовательно, значение межфазного поверхностного натяжения σжж уменьшается. В том случае, когда происходит полное взаимное растворение, значение межфазного поверхностного натяжения становится равным нулю.

Если представить, что данную смесь возможно разделить на два искомых вещества, то для этого необходимо совершить работу, направленную на разрыв межфазной поверхности и образование двух новых межфазных поверхностей.

Эта работа называется работой адгезии. Математически ее можно записать следующим образом:

W = σжг1 + σжг2σжж.

На границе твердого тела с жидкостью или газом также существует избыточное поверхностное натяжение.

Однако его сложно характеризовать как межфазное, поскольку процессы образования новой поверхности необратимы.

Значения избыточного поверхностного натяжения на границах «твердое тело – жидкость» или «твердое тело – газ» намного превышают аналогичные величины на межфазных поверхностях «жидкость – жидкость» или «жидкость – газ», поскольку интенсивность силового поля в твердых телах больше, чем в жидких состояниях вещества.

19. Капиллярное давление. Закон Лапласа

Поверхность раздела фаз на практике довольно часто оказывается не плоской, а искривленной. Поверхность раздела фаз может быть выпуклой или вогнутой. Молекула жидкости, находящаяся на выпуклой поверхности, будет испытывать равнодействующую силу, меньшую, чем на плоской поверхности и направленную в глубь жидкости.

На вогнутой поверхности эта сила больше. Вследствие изменения поверхностных взаимодействий происходит изменение условий равновесия фаз, разделенных искривленной поверхностью.

На искривленной поверхности, помимо общего давления в обеих сосуществующих фазах, возникает добавочное давление, направленное в сторону той фазы, по отношению к которой поверхность вогнута, т. е. давление в фазе, отделенной от другой фазы вогнутой поверхностью, больше. Разность давлений, возникающая по обе стороны искривленной поверхности жидкости, получила название капиллярного давления, иначе его называют лапласовым давлением.

Величина капиллярного давления зависит от кривизны поверхности и поверхностного натяжения и выражается уравнением Лапласа. Рассмотрим вывод данного уравнения. Пусть нам дан элементарный участок искривленной поверхности площадью

s = L1L2,

где L1 и L2 – криволинейные отрезки, ограничивающие искомый участок.

Радиусы кривизны криволинейных отрезков равны r1, r2, следовательно, площадь s равна:

s = L1L2 = r1φ1r2φ2,

где φ1 и φ2 – соответствующие центральные углы.

Если под действием силы, вызванной разностью давлений Δр по обе стороны поверхности, произошло смещение поверхности на величину dr без изменения кривизны, то имеет место увеличение этой поверхности на величину ds.

Затраченная работа dW может быть вычислена как произведение силы на путь или как произведение поверхностного натяжения на прирост поверхности следовательно,

dW = σds = Δрsdr = r1 r 2φ1φ2Δрdr.

Таким образом, величина ds будет определена как

ds = (r1 + dr) x (r2 + dr)φ1φ2 – r1r2φ1φ2.

Преобразовав данное уравнение, пренебрегая бесконечно малыми величинами, получим:

ds = φ1φ2r1dr – φ1φ2r2dr.

Пользуясь полученными уравнениями, получим уравнение Лапласа, выражающее избыток давления со стороны вогнутой поверхности:

Δр = σ(r1 –1 + r2 1).

Если поверхность сферическая, то r 1 = r 2, а уравнение Лапласа примет вид:



Величина давления насыщенного пара жидкости при данной температуре зависит от формы поверхности. Капиллярные явления – это явления физического свойства. Действие поверхностного натяжения происходит на границе раздела несмешивающихся сред. К капиллярным явлениям относят явления в жидких средах, вызванные искривлением их поверхности, граничащей с состояниями сред. Искривление поверхности ведет к появлению в жидкости дополнительного капиллярного давления, оно обозначается Δp, величина которого связана со средней кривизной r поверхности уравнением Лапласа.

20. Закон Томсона. Капиллярная конденсация

В пористых телах наряду с адсорбцией часто имеет место явление капиллярной конденсации. Под капиллярной конденсацией понимают конденсацию пара адсорбата при давлениях, которые меньше давления насыщенного пара. При адсорбции происходит образование тонкой пленки адсорбированного вещества на стенках пор, которые довольно хорошо смачиваются жидким сорбатом, в результате чего имеет место образование вогнутого мениска жидкости. Согласно закону Томсона давление пара, равновесное вогнутой поверхности, меньше упругости насыщенного пара. Следовательно, конденсация пара в порах над вогнутым мениском начинается при давлениях, которые меньше давления насыщенного пара. Изотерма адсорбции в случае капиллярной классификации принадлежит к одному из типов 2–5 по классификации Брунаура.

С капиллярной конденсацией связано явление несовпадения изотерм адсорбции и десорбции, иначе это явление называют сорбционным гистерезисом. Суть его заключается в том, что имеет место «запаздывание» десорбции, которая происходит при меньших по сравнению с адсорбцией давлениях. Одной из причин сорбционного гистерезиса при капиллярной конденсации может быть несовпадение формы и кривизны мениска адсорбата в порах при протекании процессов адсорбции и десорбции. Для вычисления кривизны мениска используют уравнение Томсона. Данное уравнение выводится следующим образом. Пусть радиус сферической поверхности раздела фаз равен r, давление насыщенного пара над плоской поверхностью равно p0, над выпуклой поверхностью – p. Предположим, что некоторое количество жидкости dm переносится путем с обратимого изотермического испарения при давлении р0 с плоской поверхности в каплю радиусом r. Затем имеет место обратимая изотермическая конденсация при давлении р. Работа испарения и работа конденсации в этих условиях равны и противоположны по знаку, а общая работа переноса dW, совершаемая над системой, представляет собой работу сжатия пара:

dW1 = [RT ln (p0 / p)] dm / M,

где М – молярная масса.

Однако при переносе данного количества вещества увеличивается радиус капли на величину dr и ее поверхность на величину ds, следовательно, происходит работа увеличения поверхности:

dW1 = [RT ln (p0 / p)] dm / M = —σds.

Преобразовав данное уравнение получим уравнение Томсона для выпуклой поверхности:

r = —2σ v / [RT ln p0 / p].

Уравнение Томсона для вогнутой поверхности имеет вид:

r = —2σv / [RT ln p / p0].

Уравнение Томсона находит широкое применение при исследовании пористой структуры сорбентов. Объем адсорбата, заполнившего пространство пор адсорбента при капиллярной конденсации при определенном давлении (при этом имеет место изотермический процесс) считается равным объему пор, имеющих определенный размер (радиус). Кривую распределения объемов пор по радиусам определяют по экспериментального построения десорбционной ветви изотермы адсорбции. Последняя имеет следующий вид:

а = f (p / ps), v = f(r), v = a / ρ, r = 2σ v / RT ln p / ps,

где p – давление пара над вогнутым мениском;

ps – давление насыщенного пара при данной температуре; r – плотность жидкости; a – величина адсорбции.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации