Электронная библиотека » Сергей Богатырев » » онлайн чтение - страница 3


  • Текст добавлен: 27 мая 2022, 14:11


Автор книги: Сергей Богатырев


Жанр: Справочная литература: прочее, Справочники


сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 10 страниц) [доступный отрывок для чтения: 3 страниц]

Шрифт:
- 100% +
Биохимические процессы

Обусловлены эти процессы действием ферментов, находящихся в продуктах. К основным биохимическим процессам, протекающим при хранении пищевых продуктов, относятся дыхание и гидролиз (автолиз).

Дыхание – это сложный окислительный процесс, происходящий в любой живой клетке. Процесс дыхания протекает в плодах, овощах, зерне, крупе, муке, яйцах. При этом органические вещества, в первую очередь сахара, окисляются до простых соединений (воды, углекислого газа) с выделением тепла. Дыхание может быть аэробным и анаэробным. Аэробное дыхание происходит в присутствии кислорода воздуха, схематически изображается следующим уравнением:

С6Н12О6 + 6О2 = 6Н2О + 6СО2 + 282 кДж.

При недостатке или отсутствии в среде кислорода в продуктах наблюдается анаэробное (внутримолекулярное) дыхание:

С6Н12О6 – 2С2Н5ОН = 2СО2+117 кДж.

Как видно из приведенных уравнений, при кислородном дыхании в результате полного окисления сахаров образуются вода, углекислый газ и выделяется энергия; при бескислородном дыхании происходит неполное окисление, в результате чего выделяются спирт, углекислый газ и значительно меньше тепловой энергии. В процессе дыхания участвуют не только сахара, но и органические кислоты, белки, жиры и другие соединения.

О характере протекания дыхания судят по дыхательному коэффициенту – отношению объемов выделяемого углекислого газа и поглощаемого кислорода. Если процесс аэробного дыхания происходит в точном соответствии с приведенным уравнением, то дыхательный коэффициент равняется 1.

При прорастании масличных семян, когда происходит окисление жирных кислот, бедных кислородом, и превращение жира в сахар, дыхательный коэффициент значительно меньше 1.

Высокие дыхательные коэффициенты наблюдаются при использовании на дыхание соединений, более богатых кислородом, чем сахар, например органических кислот (щавелевой, винной и др.).

Процесс дыхания сопровождается потерей массы растительного объекта, изменением состава окружающей атмосферы, выделением влаги и тепла.

Потери массы при дыхании растительных продуктов могут достигать значительных размеров. Они особенно велики у хранящихся плодов и овощей. Выделяющиеся при дыхании тепло и влага могут быть причиной дальнейшего усиления процесса дыхания. Это происходит в том случае, когда хранящиеся объекты плохо проветриваются, для удаления накапливающейся в них влаги и понижения их температуры.

Важным фактором, влияющим на интенсивность дыхания, является температура. В определенном интервале температур возрастание интенсивности дыхания растительных объектов подчиняется правилу Вант-Гоффа: повышение температуры на 10 °С увеличивает интенсивность дыхания продукта в 2–3 раза.

На интенсивность дыхания также большое влияние оказывает газовый состав воздуха. Повышение концентрации углекислого газа и понижение кислорода сильно тормозят дыхание растительных продуктов. При понижении количества кислорода в окружающей среде до 2% и менее, а также при повышении концентрации углекислого газа в растительных объектах вместо аэробного начинается анаэробное дыхание, являющееся по существу процессом брожения. Анаэробное дыхание сопровождается накоплением ацетальдегида, спирта, которые губительно действуют на растительные ткани. Однако газовые смеси, содержащие кислород и углекислый газ в количествах 3–5% и азот в количестве 90–94%, благоприятны для хранения некоторых видов плодов и овощей. Такое хранение называется хранением в регулируемой или модифицированной газовой среде. В этих условиях происходит торможение процессов жизнедеятельности (созревания и перезревания), что позволяет значительно удлинять сроки их хранения с минимальными потерями органических веществ на процесс дыхания.

Процесс дыхания у растительных продуктов различного происхождения неодинаков. Он определяется количеством выделенного углекислого газа или поглощаемого кислорода в единицу времени единицей массы. Слабая интенсивность дыхания характерна для сухого зерна, значительно выше она у сочных плодов и овощей. Особенно возрастает интенсивность дыхания при механических повреждениях и микробиологических заболеваниях объектов.

Расходование на дыхание сахаров и других органических веществ (кислот, белков, жиров) приводит к потере сухого вещества продукта. Образующиеся спирт и углекислый газ губительно действуют на живые клетки продукта, вода может способствовать увлажнению продукта, а тепло – его согреванию (самосогреванию).

Таким образом, активное аэробное дыхание ведет к значительной потере сухого вещества, увлажнению и согреванию продуктов. При анаэробном дыхании также наблюдаются потери сухого вещества, а в результате накоплению спирта и ацетальдегида – отравление и отмирание живых тканей продукта. Поэтому для максимального сохранения качества желательно замедленное аэробное дыхание. Замедлить дыхание можно понижением температуры, влажности воздуха и созданием модифицированной газовой среды, т.е. среды с определенным содержанием кислорода, углекислого газа и азота, отличающимся от состава обычной атмосферы.

Гидролитические процессы

Данные процессы протекают в товарах, являющихся живыми объектами, и в продуктах их переработки и могут влиять положительно или отрицательно на качество. Гидролитические процессы протекают в пищевых продуктах под действием ферментов гидролаз. Интенсивность этих процессов определяется химическим составом продукта, наличием и активностью ферментов, условиями хранения. Гидролитические процессы могут оказывать положительное и отрицательное влияние на качество продукта.

В начале хранения при созревании плодов и овощей происходит гидролиз крахмала в сахаре, из протопектина образуется пектин, что приводит к ухудшению вкуса и консистенции продукта. К концу же хранения при полном гидролизе протопектина мякоть становится мягкой и дряблой.

При кислотном гидролизе крахмала образуется глюкоза. В процессе гидролиза из макромолекулы крахмала сначала образуется растворимый крахмал, у которого молекула меньше исходной, он легко растворяется в воде. Дальнейший гидролиз крахмала дает декстрины, представляющие собой полисахариды с более короткими цепями, чем у крахмала. В зависимости от молекулярной массы и свойств они делятся на амило-, эритро-, ахро– и мальтодекстрины. Амилодекстрин по своим свойствам близок к крахмалу, йодом окрашивается в фиолетовый цвет, растворяется в горячей воде. Эритродекстрин дает с йодом красно-бурое окрашивание, растворяется в холодной воде. Мальтодекстрин мало отличается от мальтозы. Все виды декстринов (за исключением мальтодекстринов) осаждаются спиртом определенной концентрации. Декстрины также в силу разрыва связей превращаются в мальтозу, а затем в глюкозу.

Кислотный гидролиз лежит в основе производства патоки, которая представляет собой продукт неполного гидролиза крахмала и состоит из декстринов, мальтозы и глюкозы.

При гидролизе крахмала ферментом амилазой образуются мальтоза и промежуточные продукты (декстрины). Этот процесс наблюдается в тесте для выпечки хлеба. Фосфоролитические ферменты вызывают превращение крахмала в глюкозо– и фруктозофосфаты и в конечном итоге в сахарозу.

При хранении продуктов, богатых жирами, происходит гидролиз жира под действием липаз, что сопровождается повышением кислотного числа жира (показатель свежести); под действием протеаз происходит гидролиз белков до аминокислот.

Жиры при определенных условиях реагируют с водой, образуя глицерин и жирные кислоты. Степень гидролиза жиров характеризуется содержанием свободных жирных кислот, ухудшающих вкус и запах продукта. Реакция гидролиза обратима и зависит от содержания в реакционной среде воды. Гидролиз молекул жира протекает ступенчато. Промежуточными продуктами гидролиза жира являются ди– и моноглицериды, конечными – глицерин и жирные кислоты.

Гидролиз жира может быть неферментативный и ферментативный. Неферментативный гидролиз протекает в жировой фазе и зависит от количества растворенной в жире воды. При низких отрицательных температурах гидролитического расщепления жиров не происходит. При пониженных температурах скорость гидролиза ничтожна, так как в жире растворено мало воды. Реакция гидролитического расщепления жиров ускоряется с повышением температуры, а также в присутствии щелочей и кислот. Реакция гидролиза идет глубоко при нагревании жиров выше 200 °С в присутствии воды. Под действием щелочей жиры гидролизуются более интенсивно, чем под действием кислот.

Наличие сопутствующих веществ (белков, липидов и др.) в растительных маслах увеличивает скорость гидролиза жира, так как создается большая поверхность соприкосновения воды с жиром.

Ферментативный гидролиз жиров происходит под действием липаз, которые могли быть в сырье и сохранились в готовом продукте, а также в том случае, если в процессе хранения в жиры попала микрофлора.

Во время хранения животных жиров при низких минусовых температурах их гидролиз не происходит. В копченых колбасах, беконе, соленом шпике наблюдается глубокий гидролиз жиров при изготовлении и особенно при хранении. Количество свободных жирных кислот за первые два месяца хранения в них возрастает в 10–14 раз.

При гидролизе жира происходит повышение кислотного числа. Кислотным числом называют количество миллиграммов едкого калия, необходимое для нейтрализации свободных жирных кислот, содержащихся в 1 грамме жира. Кислотное число является основным химическим показателем качества жира. По количеству свободных жирных кислот, содержащихся в жире, можно судить о его свежести, так как в природных жирах их находится мало. При неправильном хранении количество свободных жирных кислот возрастает, дальнейшее их окисление приводит к появлению пороков вкуса и запаха, а при более глубоком процессе – к непригодности жира для пищевых целей.

При гидролизе белков белковая молекула расщепляется на пептоны (смесь полипептидов), далее на три– и дипептиды, а затем на альфа-аминокислоты.

Гидролитические процессы приводят к ухудшению вкуса и запаха продуктов, они часто являются причиной значительных потерь пищевых продуктов.

Из других ферментативных процессов необходимо отметить автолиз (саморастворение). Этот процесс протекает в тканях мяса и рыбы под действием тканевых ферментов. В живых объектах ферментативные процессы обратимы – гидролиз веществ всегда сопровождается синтезом новых органических соединений. В неживых объектах (мясе, рыбе и др.) процессы синтеза прекращаются и все реакции смещаются в сторону расщепления веществ.

В результате автолиза происходят сложное превращение гликогена в молочную кислоту (гликолиз), а также различные преобразования белков мышечной ткани.

Автолитические изменения в мясе подразделяют на две стадии: послеубойное окоченение и созревание.

На первой стадии в мышечной ткани мяса, рыбы происходит накопление молочной кислоты, реакция среды смещается в кислую сторону, что приводит к изменению концентрации солей, уменьшению количества АТФ, а также вследствие этого к образованию нерастворимого белкового комплекса – актомиозина.

На второй стадии вследствие биохимических процессов повышается рН и количество АТФ, происходит распад актомиозина на акти– и миозин, в связи с чем увеличивается растворимость миозина. Начинается протеолиз белков, в результате чего в мышечной ткани накапливаются пептиды и свободные аминокислоты. Повышается набухаемость белков. Созревание мяса сопровождается накоплением экстрактивных веществ, которые влияют на вкус и запах мяса. При распаде АТФ образуются адениловая и инозиновая кислоты, гипоксантин – соединения определяющие органолептические свойства мяса. При дезаминировании глутамина образуется глутаминовая кислота, участвующая в образовании вкуса мяса. В результате этих процессов увеличиваются нежность и сочность мяса, улучшаются его вкус и запах.

При глубоком автолизе происходит распад белков, жиров, увеличивается отделение мясного сока, появляется неприятный кислый вкус.

В рыбе автолитические изменения проходят очень быстро и приводят к ухудшению ее качества, а затем и к порче. Рыба пригодна в пищу лишь с начальными признаками автолиза.

Все биохимические процессы могут быть заторможены низкими температурами хранения.

Микробиологические процессы

Одной из главных причин порчи пищевых продуктов при хранении является развитие микроорганизмов. К микробиологическим процессам относят брожение, плесневение, гниение, которые вызываются жизнедеятельностью микроорганизмов, для которых многие пищевые продукты служат хорошей питательной средой.

Брожение – это разложение углеводов и некоторых спиртов под действием ферментов, выделяемых микроорганизмами. В отличие от дыхания брожение, кроме уксуснокислого и лимоннокислого, осуществляется только в анаэробных условиях. При хранении продовольственных товаров наиболее часто возникают следующие виды брожения: спиртовое, молочнокислое, уксуснокислое, маслянокислое.

Спиртовое брожение – наиболее важный вид брожения. Оно лежит в основе целого ряда пищевых производств (виноделия, пивоварения, изготовления спирта). Но часто при хранении спиртовое брожение является причиной порчи пищевых продуктов, например соков, компотов, варенья, джемов и других изделий, содержащих менее 65% углеводов. Эти продукты приобретают спиртовой привкус, изменяется их консистенция в связи с наличием углекислого газа, а соки и компоты мутнеют. Спиртовое брожение вызывается дрожжами рода Saccharomycetes, а также некоторыми плесневыми грибами, например Мuсоr. Под действием этих микроорганизмов в анаэробных условиях происходит расщепление углеводов до этилового спирта и углекислого газа:

С6Н12О6 = 2С2Н5ОН + 2СO2.

Оптимальными условиями для протекания этой реакции являются невысокое содержание сахара (до 15%) и температура 20–30 °С. Однако имеются дрожжи, способные сбраживать продукты с высокими концентрациями сахара, достигающими 60%. Понижение температуры даже до 0 °С замедляет брожение, но не прекращает его.

Молочнокислое брожение вызывается анаэробными гомоферментативными и гетероферментативными бактериями.

Первые сбраживают сахара в молочную кислоту строго по уравнению:

С6Н12O6 = 2СН3СНОНСООН.

Гетероферментативные бактерии, кроме молочной кислоты, образуют значительные количества уксусной кислоты, спирта, углекислого газа, ацетона, диацетила и др.

Молочнокислые бактерии легко переносят высушивание, устойчивы к этиловому спирту, поваренной соли.

Молочнокислое брожение используется при производстве кисломолочных продуктов (сметаны, творога, кефира и др.), квашеных овощей, ржаного хлеба. Однако оно является причиной порчи молока, вызывает прокисание и ослизнение вина и пива.

Маслянокислое брожение происходит под действием маслянокислых бактерий рода Clostridium, сбраживающими сахара, крахмал, пектиновые вещества с образованием масляной кислоты, углекислого газа и водорода:

С6Н12O6 = СН3СН2СН2СООН + 2СO2 + 2Н2.

Кроме указанных веществ, в процессе маслянокислого брожения образуются этиловый и бутиловый спирты, ацетон, молочная и уксусная кислоты. Маслянокислые бактерии вызывают порчу картофеля, квашеной капусты, прогоркание молока, увлажнение муки и др. В результате выделения газов происходит вспучивание сыров, бомбаж консервов. Масляная кислота придает продуктам горький вкус и неприятный острый запах.

Уксуснокислое брожение вызывается бактериями, которые превращают спирт в уксусную кислоту при повышенной температуре (30 °С) и в присутствии кислорода воздуха. Образование уксусной кислоты происходит в две стадии:

2СН3СН2ОН + O2 = 2СН3СНО + 2Н2O;

2СН3СНО + O2 = 2СН3СООН.

Уксуснокислое брожение вызывает порчу продуктов, содержащих небольшое количество спирта (столовых вин, пива, кваса). При этом они приобретают запах и привкус уксусной кислоты и ее эфиров, мутнеют и ослизняются. На уксуснокислом брожении основано получение пищевого уксуса из разбавленных вин и спирта.

Пропионовокислое брожение – превращение углеводов, винной и молочной кислот в пропионовую и уксусную кислоты с выделением углекислого газа и воды. Оно может вызывать порчу виноградных вин, в результате чего они теряют приятный вкус и аромат, мутнеют и изменяют цвет.

Пропионовокислое брожение играет важную роль при созревании сыров, при котором формируются вкус и привкус сыра.

Гниение – это разложение белков под действием ферментов, выделяемых гнилостными микроорганизмами, с образованием продуктов глубокого распада (аммиака, сероводорода, углекислого газа, меркаптанов и др.). Чаще всего гниению подвержены продукты с высокой влажностью и богатые белком: мясо, рыба, яйца.

Гниение – глубокий распад белков и продуктов их гидролиза. Этот процесс возбуждается преимущественно гнилостными бактериями. Распад белков начинается с гидролиза и образования полипептидов и аминокислот. В дальнейшем распад этих соединений зависит от вида микроорганизмов, аминокислотного состава и условий, в которых протекает процесс. Аэробные гнилостные бактерии дезаминируют аминокислоты с выделением аммиака, жирных кислот (муравьиной, уксусной, пропионовой, масляной, валериановой), а также оксикислот и спиртов.

Под действием анаэробных бактерий происходит декарбоксилирование аминокислот с образованием аминов и углекислого газа:

Кадаверин и путресцин токсичны и имеют неприятный запах.

Из серосодержащих аминокислот образуются меркаптаны (R-SН), обладающие дурным запахом.

Карбоциклические (фенилаланин, тирозин) и гетероциклические (триптофан) аминокислоты образуют токсичные соединения, обладающие неприятным запахом (фенол, крезол, индол, скатол).

Плесневение происходит в результате развития на пищевых продуктах плесневых грибов. Ему подвергаются продукты, содержащие в своем составе много воды или увлажнившиеся в процессе хранения: плоды, овощи, хлеб, варенье, мясные и рыбные изделия, мука. Развитие плесеней вызывает глубокие изменения в составе продукта и появление своеобразного плесневелого запаха и налета на поверхности продукта.

Химические процессы

Химические процессы протекают в пищевых продуктах без участия ферментов. Это, например, окислительные процессы, происходящие под действием кислорода воздуха и активизируемые теплом и светом, прогоркание жира в жиросодержащих продуктах, обесцвечивание и изменение окраски вин, химическое разрушение витаминов. К химическим изменениям можно отнести также образование меланоидинов и химический бомбаж консервов, возникающий при взаимодействии металла банки с кислотами продукта. При этом выделяется водород, который, накапливаясь, вздувает крышки банок.

Скорость химических процессов можно замедлить понижением температуры хранения, применением упаковки, изолирующей продукт от действия света и кислорода воздуха.

Одним из распространенных химических процессов является прогоркание жиров – окислительная порча под действием кислорода воздуха. Этот процесс характерен для пищевых жиров и жиросодержащих продуктов (растительного и коровьего масла, сала, маргарина, сыра, орехов и др.). Окислению подвергаются в первую очередь непредельные жирные кислоты, провитамины и витамины, при этом происходят сложные химические превращения, сопровождающиеся накоплением продуктов окисления, в том числе и токсичных. Они придают жиру своеобразный горький вкус, неприятный прогорклый запах, вызывают першение в горле. На скорость окисления влияют степень насыщенности входящих в их состав жирных кислот, температура хранения, присутствие катализаторов (металлов, света), наличие антиокислителей и др.

Другим видом химической порчи пищевых продуктов является неферментативное потемнение, которое может развиваться в результате карамелизации сахаров, а также реакции между аминокислотами и восстанавливающими сахарами (меланоидинообразования). Этот процесс протекает при хранении многих пищевых продуктов (сушеных овощей, картофеля, яичного порошка), а также при кулинарной обработке. Меланоидинообразование отрицательно влияет на пищевую ценность продуктов и их органолептические достоинства: изменяется цвет продукта, появляются посторонние вкус и запах. Этот процесс можно замедлить понижением температур хранения и переработки, а также блокированием реакционноспособных группировок главных компонентов реакции. Эффективным ингибитором этого процесса является сернистая кислота или сернистый ангидрид. Они реагируют с карбонильными группами сахароз, блокируют их и выводят из цепочки реакции.

Однако меланоидинообразование может играть и положительную роль. Меланоидины образуются при выпечке хлеба, жарке мяса и рыбы, приготовлении топленого молока, солода, пива и других продуктов. В этом случае они участвуют в создании специфических вкуса, аромата и цвета.

При хранении консервов в металлической таре происходит растворение металла и накопление его в продукте. Переход металла в продукт в результате разрушения поверхностного слоя и накопление солей олова и других металлов, содержащихся в виде примесей в жести, снижает сохраняемость консервированного продукта, так как катализирует в нем химические процессы, а также оказывает неблагоприятное воздействие на организм человека. Содержание солей олова не должно превышать 200 мг на 1 кг продукта. Образующийся в результате взаимодействия кислот продукта и жести углекислый газ увеличивает давление внутри банки, что приводит к физическому (водородному) бомбажу. Для защиты внутренней поверхности банок от коррозии применяют различные пищевые лаки и эмали.

Химическими процессами обусловлено обесцвечивание и помутнение ликеро-водочных изделий, выпадение нерастворимых осадков в виноградных и плодово-ягодных винах, образование в них сложных эфиров и ацеталей при выдержке, разрушение витаминов.

Все эти процессы, как правило, в конечном итоге приводят к ухудшению цвета, вкуса и запаха продукта.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации