Электронная библиотека » Сергей Кутя » » онлайн чтение - страница 4

Текст книги "Биология"


  • Текст добавлен: 16 октября 2020, 11:53


Автор книги: Сергей Кутя


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 4 (всего у книги 24 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +
Теория гена

Теория – это система обобщающих положений в той или иной области знаний. Теория неразрывно связана с практикой, которая ставит задачи и побуждает к их решению. Наука генетика наиболее выразительно иллюстрирует эту взаимосвязь. Успехи современной молекулярной биологии существенно углубили и детализировали теоретическую базу генетики, обосновали молекулярно-генетический уровень жизни.


Структура гена

Грегор Мендель, разрабатывая основопологающие законы наследования (1856—1863 гг.), использовал понятие «наследственные зачатки», применяя для них буквенные обозначения. Термин «ген» (от греч. genos – происхождение) ввел датский генетик В. Йогансен (1909 г.). Ген – структурная и функциональная единица наследственности.

В современном понимании ген — это участок молекулы ДНК (у некоторых вирусов – РНК) со строго определенной последовательностью нуклеотидов, контролирующей синтез белка (белков-ферментов).

Детальный анализ генной активности позволил выделить следующие группы генов:

1) аллельные и неаллельные;

2) доминантные и рецессивные;

3) эпистатические и гипостатические;

4) структурные и регуляторные.

В целом, понятие «ген» ассоциируется с созидательными процессами, однако есть и гены деструктивные по своей природе: онкогены, гены-мутаторы, летальные и сублетальные гены. Генам свойственно объединиться в группы, полигены. Функционально близкие группы генов формируют кластеры, отвечающие за важнейшие функции организма (размножение, пищеварение и т.д.).

На молекулярном уровне гены образованы нуклеосомами и связывающми их фрагментами молекулы ДНК. Нуклеосома состоит из протеинового дискообразного остова, включающего 8 молекул (глобул) белков-гистонов: по 2 молекулы H2A, H2B, H3, H4. На него насажен виток молекулы ДНК, включающей 150 пар нуклеотидов. Нить ДНК непрерывно и последовательно связывает нуклеосомы, при этом межнуклеосомные участки называются линкерными и каждый из них содержит до 60 пар азотистых оснований. Полная нуклеосома включает собственно нуклеосому и примыкающий к ней линкерный участок, насчитывая таким образом, около 200 пар нуклеотидов.

При спирализации ДНК свободные пространства заполняет белок Н1 (рис. 21).


Рис. 21. Компоненты нуклеосом


Ген средней величины объединят около 6 нуклеосом. Методами секвенирования было установлено, что организм человека содержит 25—40 тысяч активно работающих генов. В последнее время специалисты по биоинформатике уточняют количество генов до 2025 тысяч из-за их повторения в геноме. Следует учитывать высокую динамичность всей генной системы, и эти цифры, очевидно, будут меняться. Суть вопроса не в количестве генов, а в их сложности. Смысл эволюционных перестроек всей генной системы – это количество информации, включаемой в отдельный конкретный ген. Все гены функционируют как единое целое, формируя индивидуальный генотип особи и генотипическую среду, определяющую фенотипические проявления, т.е. признаки организма.


Генная регуляция синтеза белка. Система оперон

Основным условием существования любых живых организмов является наличие тонкой, гибкой и согласованно действующей системы регуляции, в которой все элементы тесно связаны друг с другом. В белковом синтезе определенное значение имеют не только количественный и качественный состав белков, но и параметры времени. Теорию генной регуляции синтеза белка разработали французские ученые Ф. Жакоб и Ж. Моно, удостоенные нобелевской премии (1965 г.). Для этого была использована культура бактерии кишечной палочки E. coli. Общая концепция состоит в способности этой бактерии включать или выключать систему генов в зависимости от наличия или отсутствия необходимой для жизнедеятельности бактерии лактозы (молочный сахар). Соответственно, система получила обозначение Lac-оперон (оперон – генетическая единица транскрипции). Она включает группу структурных и регуляторных генов.

Акцепторной зоной являются ген-промотор и ген-оператор. Структурные гены lac Z+, lac Y+, lac A+ содержат информацию о белках-ферментах, необходимых для расщепления лактозы: галактозидаза, пермеаза, трансацетилаза. Ген-регулятор регулирует образование регуляторного белка, контролирующего работу структурных генов. Ген-терминатор несет сигнал об окончании транскрипции (рис. 22).

Все указанные гены располагаются последовательно, за исключением гена-регулятора, которые занимают обособленное положение. Система работает рационально. В нерабочем состоянии ген-регулятор, контролирует выработку белка-репрессора (вещество-посредник), который находится в активной форме. Он включается в систему входа гена-промотора и далее связывается с геном-оператором, блокируя структурные гены. Механизм транскрипции закрыт. При поступлении в среду обитания Е. coli лактозы белок-репрессор переходит в неактивную форму, ген-оператор освобождается и структурные гены начинают механизм транскрипции. Происходит синтез ферментов расщепляющих лактозу как субстрат, необходимый для жизнедеятельности кишечной палочки. С полной утилизацией лактозы посредством активации белка-репрессора система посредством оператора опять блокируется. Таким образом, белок-репрессор является негативным регулятором.

Описанная для прокариот функциональная схема справедлива и для эукариотических клеток, хотя реализуется более сложными путями с участием гормонов. Кроме того, из-за наличия ядра в клетке процессы транскрипции и трансляции разделены не только пространственно биомембраной, но и во времени.


Рис. 22. Схема работы Lac-оперона. ГР – ген-регулятор; П – промотор; ГО – ген-оператор.

Хромосомы

Местом локализации генов в клетке являются хромосомы. Они относятся к числу самых удивительных внутриклеточных структур и с завидным упорством мигрируют из организма в организм на протяжении многих поколений. В миниатюрном биологическом компьютере, каким являются хромосомы, сконцентрирована информация в несколько терабайт, эквивалентная сотням томов обширных научных фолиантов. Здесь записано все – какими мы были, есть и будем.

Хромосомы – это высокоспециализированные компоненты клеточного ядра, обладающие особой индивидуальностью и функцией, способные к воспроизведению на протяжении ряда поколений. Свою четко выраженную морфологическую структуру хромосомы приобретают в ходе клеточного деления (митоза). Поэтому, все представленные ниже данные касаются митотических хромосом.

В состав хромосом входят ДНК, и-РНК, основные белки гистоны, негистоновые белки, Гистоны – это структурные белки относительно небольшого диаметра, несущие положительно заряженные аминокислоты. Положительный заряд способствует тесной связи гистонов с ДНК. Как указано выше, известно четыре типа гистонов, которые подразделяются на две группы: нуклеосомные гистоны Н2, Н3, Н4, и гистоны Н1 (см. рис. 21).


Строение хромосомы. В метафазе митоза хромосомы представлены палочковидными образованиями, сформированными подобно шпильке. В них различают плечи и центромеру, район первичной перетяжки. Расположение центромеры строго постоянно для определенной хромосомы.

В 1960 г. английский генетик Патау ввел понятие центромерный индекс – отношение длины плеча к длине всей хромосомы. В соответствие с этим выделены следующие виды хромосом:

1. Метацентрические хромосомы, имеющие срединно расположенную центромеру и плечи равной длины.

2. Субметацентрические хромосомы со смещенной центромерой и соответственно разновеликими плечами.

3. Акроцентрические хромосомы, у которых центромера резко сдвинута в крайнее положение, в связи с чем одно плечо почти редуцировано и определяется с трудом.

4. Телоцентрические хромосомы, где центромера замыкает хромосому с одного конца (рис. 23).


Рис. 23. Виды хромосом в зависимости от величины плеч.


Появление на плече хромосомы вторичной перетяжки ведет к формированию дополнительного фрагмента плеча, называемого спутник.

Полностью сформированная хромосома состоит из двух морфологически одинаковых нитей – хроматид. Они переплетены, тесно прилежат одна к другой и соединяются с помощью центромеры. Свободные концы хромосом образованы теломерой, играющей роль своеобразного изолятора. Естественный конец хромосомы в виде теломеры не способен контактировать с другими хромосомами или их фрагментами. Теломера предотвращает отрыв и потерю нуклеотидных пар ДНК. Размеры метафазных хромосом у разных представителей животного мира колеблются в пределах 0,2—50,0 мкм. Длина хромосом человека 1,5—10,0 мкм. Количество хромосомных наборов в клетках является видовым признаком: у человека – 46, у кукурузы – 20, у мухи дрозофилы – 8 и т. д.

Общим принципом ультрамикроскопической организации хромосом является образование доменов (петель ДНК, связанных с белками). Они отходят под тем или иным углом от основной оси хромосомы. Типичная петля содержит от 20000 до 100000 пар нуклеотидов молекулы ДНК. Гигантская молекула ДНК, образующая совместно с белками хромосому, претерпевает сложную пространственную перестройку – «упаковывается», путем спирализации (см. рис. 24). В итоге общая длина ее уменьшается примерно в 10000 раз. С помощью белков каждая гигантская молекула ДНК компактно упаковывается и приобретает вид палочковидной структуры (рис. 24). Вся генетическая информация, заключенная в хромосоме, составляет геном. Каждая хромосома дифференцирована по длине и в ней выделяют два типа районов: эухроматиновые и гетерохроматиновые.

Эухроматин – это активные участки хромосом, содержащие основной комплексов генов. ДНК здесь пребывает в деспирализованном состоянии.

Гетерохроматин представляет собой неактивные в генетическом отношении фрагменты хромосом в резко конденсированной форме. Концевые теломеры всегда состоят из гетерохроматина.


Рис. 24. Последовательная упаковка (спирализация) молекулы ДНК во время подготовки клетки к делению. Последний фрагмент рисунка – метафазная хромосома на стадии разделения.


Интерфазные хромосомы находятся в деспирализованном состоянии и представляют длинные нити деконденсированной ДНК. В ядре клетки эти хромосомы всегда стремятся занять определенные области или зоны. Мнение, что они сплетены в единый клубок, согласно современным взглядом, маловероятно.

Многоклеточные организмы содержат два вида клеток: соматические (от слова soma – тело) и половые (генеративные) клетки – гаметы. Для ядер соматических клеток характерен двойной – диплоидный набор хромосом (2n). Зрелые половые клетки обладают половинным – гаплоидным набором хромосом (n), который составляет у человека 23 хромосомы. В диплоидном наборе хромосомы образуют идентичные пары. Две хромосомы в составе одной пары называются гомологичными. Они имеют одинаковые размеры, точно совпадающую локализацию центромеры и плечи идентичной формы и величины. У человека 46 хромосом и гомологичные хромосомы образуют 22 пары, называемые аутосомами. Последняя 23 пара представлена половыми хромосомами, определяющими половую принадлежность. У женщин эти хромосомы имеют форму XX, у мужчин XY и называются гетерохромосомами.


Хромосомы многоклеточных организмов подчиняются следующим правилам:

1. Все соматические клетки одной особи имеют в норме одинаковое число хромосом;

2. У всех организмов, относящихся к одному виду, число хромосом также одинаково. Хромосомный набор человека – 46, шимпанзе – 48, курицы – 78, рыбы сазан —104 хромосомы.


Кариотип и идиограмма


Совокупность количественных (число) и качественных (форма) показателей хромосом соматических клеток организма представляет его кариотип. Особи, относящиеся к одному виду, имеют одинаковый кариотип. Хотя у человека и шимпанзе число хромосом почти совпадает – это не является точным критерием их эволюционной близости. Одно и то же число хромосом может наблюдаться у очень далеких друг от друга организмов: муха домашняя, головная вошь, растение шпинат имеют в кариотипе по 12 хромосом. Число хромосом также не является показателем высоты организации (у курицы больше хромосом, чем у человека).

Если гомологичные хромосомы определенного кариотипа сгруппировать и расположить попарно в порядке убывания размеров получится кариограмма, а согласно положению центромеры – идиограмма. Идиограмма позволяет представить кариотип человека в виде схемы, которая включает семь групп, с буквенными обозначениями от А до G.



Чикагская конференция генетиков положила в основу классификации величину и расположение центромеры, а также длину плеч хромосомы: группа А – крупные метацентрические (1,2 и 3 пары), группа В – крупные субметацентрические (4 и 5 пары), группа С – средние субметацентрические (6—12 пары), группа D – крупные акроцентрические (13, 14, 15 пары), группа Е – маленькие субметацентрические (16, 17, 18 пары), группа F – маленькие метацентрические (19 и 20 пары), группа G – маленькие акроцентрические (21, 22 пары – Y).

В настоящее время существует множество технических приемов, которые позволяют детально разграничить хромосомы каждой пары и выявить даже незначительное отклонение в строении отдельных хромосом, а также локализацию в них генов.

Деление клетки

Клеточное деление – это удивительный биологический механизм, с помощью которого в ходе эволюции клетке удалось обмануть время и значительно продлить свое существование. Механизм деления клетки открыл любитель-натуралист лейпцигский продавец книг Вильгельм Гофмейстер в 1848 г. Он зарисовал отдельные стадии деления клеточного тела под микроскопом. Позднее Вильгельм Ру показал универсальность этого явления для животных и растений, что позволило выдающемуся представителю медицины Рудольфу Вирхову провозгласить: «Omnis cellula e cellulae» – каждая клетка из клетки

Деление клетки – митоз, представляет чрезвычайно сложное явление, посредством которого материал материнской клетки равномерно распределяется между дочерними клетками. То, что удается наблюдать при делении клетки в световом микроскопе, лишь внешнее отражение глубоких молекулярно-биохимических внутриклеточных процессов, протекающих в строгой последовательности. Эти процессы объединяет клеточный цикл. Он охватывает промежуток времени от одного деления клеток до другого деления с образованием двух новых клеток. Клетки различных типов имеют неодинаковую длительность клеточного цикла. Общая продолжительность его равна времени, в течение которого произойдет удвоение числа клеток определенной группы (клеточной популяции). Так, если исходное состояние популяции 2x10 клеток—10 часов, а удвоение 4x10 клеток—30 часов, то продолжительность клеточного цикла составляет 20 часов (30 час – 10 час = 20 час.)

В клеточном цикле выделяют: аутосинтетическую интерфазу и митоз (рис. 25).


Рис. 25. Фазы клеточного цикла эукариот: 2n ‒диплоидный набор хромосом (23 хромосомы по 2 копии); 4n – тетраплоидный набор.


Аутосинтетическая интерфаза состоит из пресинтетического периода G1, синтетического периода S, постсинтетического периода G2.

В пресинтетическом периоде G1, клетка накапливает белки и РНК необходимые для формирования внутриклеточных структур. Здесь же может совершаться рост клетки. В G1 имеется точка старта (переходная точка). Это ключевой момент клеточного цикла, пройдя который, клетка включает механизм деления и должна осуществить все последующие стадии: S, G2, митоз. Подтверждением является простое наблюдение. Если клетку в S периоде, то есть прошедшую точку старта, совместить с другой клеткой в состоянии G1. (ранняя фаза), в последней немедленно начнутся процессы характерные для 8 периода. При дефиците основных питательных веществ клетки эукариот останавливаются в фазе G1 в точке старта. Продолжительность G1, максимальна и у разных клеток колеблется от нескольких часов до нескольких суток.

В постсинтетическом периоде G2 синтез ДНК прекращается, но наблюдается интенсивное образование АТФ и ядерных белков. Время необходимое для осуществления этих процессов 3—4 часа. Клетка начинает готовиться к сборке своего митотического аппарата.

Митотический аппарат клетки – это совокупность внутриклеточных структур, которые с началом митоза образуются из центросомы. Центросома (клеточный центр) – органелла, обеспечивающая течение митоза. Она состоит из двух центриолей, связанных тонкой перемычкой центродесмозой и окруженных лучистой сферой цитоплазмы – астросферой.

Митоз (М) – короткий период клеточного цикла. Сущность его заключается в конденсации содержимого ядра и выявлении в нем хромосом, которые удваиваются и затем равноценно распределяются между двумя дочерними клетками. Митоз – это непрерывный процесс, но для удобства рассмотрения в нем выделяют четыре фазы: профазу, метафазу, анафазу и телофазу (рис. 26).

Профаза. Начинается со сдвига физико-химического состояния цитоплазмы и реорганизации цитоскелета клетки. Центросома расщепляется. Ее центриоли расходятся в противоположные стороны, формируя два полюса клетки. Между ними образуется ахроматиновое веретено в виде тонких белковых нитей. Формируется мнтотический аппарат клетки, состоящий из микротрубочек и связанных с ними белков. Ядро клетки несколько увеличивается в размерах. В нем обнаруживаются хромосомы в виде тонких нитевидных структур. Вся группа хромосом выглядит в виде клубка. Ядрышки уменьшаются и исчезают. Конец профазы характеризуется распадом ядерной оболочки на мелкие фрагменты. К этому моменту хромосомы максимально укорачиваются и отделяются друг от друга.


Рис. 26. Схема митоза.


Метафаза. Хромосомы представлены компактными палочковидно изогнутыми тельцами. Каждая хромосома образована двумя тесно связанными половинками – хроматидами. Такие реплицированные (двойные) хромосомы прикрепляются к веретену с помощью особых структур, называемых кинетохоры. В метафазе хромосомы четко сгруппированы в центре клетки, их свободные концы обращены к периферии. Образуется фигура, называемая «материнской звездой» или метафазной пластинкой. Упорядоченное расположение хромосом в метафазной пластинке – это, главным образом, результат действия тянущей силы, создаваемой кинетохорными микротрубочками.

Анафаза. Началом ее является взаимное синхронное разделение всех хромосом на сестринские хроматиды, которые начинают движение к противоположным полюсам. Основное правило анафазы – хроматиды от одной хромосомы расходятся в разные стороны. Движение связано с укорочением микротрубочек кинетохора. В анафазе хроматиды называют дочерними хромосомами. Заканчивается анафаза сближением дочерних хромосом у противоположных полюсов, где они образуют две «дочерние звезды».

Телофаза – заключительная стадия митоза, связанная с реконструкцией ядер. Хромосомы деспирализуются и уже не различаются как отдельные морфологические структуры. Ахроматиновое веретено растворяется. Формируются путем сборки ядерные мембраны, начинается цитокинез – деление цитоплазмы. В животных клетках оно происходит путем гантелевидной перетяжки между ядрами, ее разрыва и образования двух дочерних клеток. Длительность всего клеточного цикла зависит от внешних и внутренних факторов, а также типа клеток. Наиболее короткой фазой является анафаза, максимальную продолжительность имеет интерфаза.

Регулирует и контролирует процессы митоза группа гормонов, относящаяся к факторам роста (см. ниже).

Отмечен суточный ритм митозов, связанных с биоритмами каждого организма. Так, у животных с ночным образом жизни пик митозов приходится на ранние утренние часы, у дневных животных и человека максимум митозов наблюдается в вечерние часы суток. Как долго исходная клетка может делиться митозом? Наблюдения над клетками соединительной ткани (нормальные фибробласты), выращенными в условиях лаборатории, показали, что способность каждой клетки данной линии делиться ограничена 50-ю удвоениями (лимит Хейфлика), после чего эта линия клеток погибает за счет исчезновения теломер. Если клеточную культуру заморозить на длительный срок после 10-го и 20-го удвоения, а затем разморозить, они все равно дадут только 50 удвоений. Также ведут себя и другие типы клеток, что обусловлено их генетической памятью. Клетки, как бы имеют «встроенные часы», точно отсчитывающие число делений своей линии. Жизнь клетки как любой живой системы ограничена.

В 1972 году ученый Ж. Керр впервые описал апоптоз запрограммированную клеточную гибель. Апоптоз регулируется показателями внешней среды и рядом внутренних факторов, связанных с системой гомеостаза. Гомеостаз – постоянство внутренней среды организма. Посредством гомеостаза обеспечивается точный баланс различных видов клеток на определенных этапах онтогенеза.

Однако, из общего правила есть исключения. Культивируемую линию клеток можно превратить в «бессмертную», обработав вирусом рака. Сейчас существует около 600 бессмертных, трансформированных клеточных линий Наиболее известна линия клеток человека, называемая HeLa, которая возникла в 1952 г., в культуре ткани, взятой из матки женщины. С тех пор она непрерывно культивируется. Чтобы животные клетки приобрели способность к неограниченному клеточному делению, они должны обрести некоторые особенности раковых клеток.



Биологическое значение митоза. Точный механизм клеточного деления обеспечивает качественное явление жизни – наследственность. В ходе митоза (клеточный цикл) происходит передача генетического материала в бесчисленных поколениях клеток. Митотическое деление клеток делает возможным рост и развитие. Оно поддерживает структурную целостность организмов посредством восстановления компонентов тканей, утраченных в ходе нормальной жизнедеятельности или при различных повреждениях.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации