Электронная библиотека » Сергей Кутя » » онлайн чтение - страница 3

Текст книги "Биология"


  • Текст добавлен: 16 октября 2020, 11:53


Автор книги: Сергей Кутя


Жанр: Медицина, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 24 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

Комплекс Гольджи. Указанная органелла названа именем итальянца Карелло Гольджи, открывшего ее в 1896 г. В световом микроскопе структура имеет вид сетки, лежащей вблизи ядра. По данным электронной микроскопии комплекс состоит из диктиосом. Каждая диктиосома представляет стопку плоских мешочков-цистерн диаметром около 7 мкм. Число цистерн в одной диктиосоме 5—7. От краев цистерн отделяются микропузырьки. Вся структура имеет полярный характер, поскольку в диктиосоме два полюса – формирующий у основания и секретирующий у вершины. Основная функция комплекса Гольджи заключается в накоплении и конденсации продуктов, синтезируемых эндоплазматическим ретикулумом (рис. 11). Образно говоря, здесь происходит упаковка сложных химических соединений в виде пузырьков, гранул, зерен, которые затем выводятся из клетки. Величина аппарата Гольджи связана с синтетической активностью клетки и обусловлена либо уровнем наружной секреции, например, в печени или поджелудочной железе, либо интенсивностью синтеза, необходимой для жизнедеятельности самой клетки, например, в нейронах.


Рис. 11. Схема строения аппарата Гольджи.


Лизосомы. В названии данной органеллы биохимик Де Дюву объединил два греческих слова: «лизис» – растворение и «сома» – тело. Лизосомы представляют сферические частицы размерами 0,5—2,0 мкм (рис. 12). Они имеют плотную липопротеиновую мембрану и содержат большой набор гидролитических ферментов, необходимых для процессов внутриклеточного пищеварения. На это указывает высокое содержание лизосом в клетках-фагоцитах, а также присутствие лизосомальных ферментов во внутриклеточных пищеварительных вакуолях. Другой важной функцией лизосом является аутолиз – посмертное растворение структурных компонентов клетки под действием все тех же ферментов лизосом. Как выразился Де Дюву – это «маленькие могильщики», освобождающие ткани от мертвых клеток.


Рис. 12. Схема строения и функции лизосом.


В лизосомах могут отсутствовать некоторые энзимы, необходимые для нормального метаболизма клеток. Энзимопатия или дисметаболическая болезнь имеет врожденный характер и наследуется по аутосомно-рецессивному типу. Дефицит энзимов наблюдается наиболее часто при гликогенозах (болезнь Помпе, болезнь Гирке), липидозах (недостаточность липаз адипозоцитов), гепатозах (болезнь Дабина-Джонсона). Эти состояния иногда называют «болезнями накопления». В реальной действительности речь идет не об избыточном образовании различных субстанций, а о замедлении или остановке разрушения их метаболитов при нормальном синтезе.


Центросома. Открыл эту структуру голландский ученый Ван-Бенеден, в 1876 г., но название предложил цитолог Бовери, опять-таки, используя греческую терминологию: «центрум» – центр и «сома» – тело. Типичная центросома представлена двумя центриолями, соединенными перемычкой – центродесмосомой и окруженной «лучистой» сферой – астросферой. При электронной микроскопии центриоли имеют вид цилиндра, стенки каждого образованы микротрубочками. Центросома обеспечивает процесс митоза, формируя митотическии аппарат клетки (рис. 13).


Рис. 13. Схема организации центросомы по данным электронной микроскопии.


Органеллы специального значения


Реснички и жгутики. Эти органоиды встречаются у одноклеточных организмов (бактерии, простейшие) и у клеток в составе тканей (клетки эпителия трахеи). Реснички и жгутики представляют тончайшие подвижные выросты цитоплазмы, в которых находятся ультратонкие фибриллы, содержащие белок с сократительной функцией (рис. 14). Они отражают элементы движения. Существуют генетические аномалии строения ресничек. Например, врожденный синдром неподвижных ресничек (синдром Картагенера) характеризуется тем, что реснички покровного эпителия дыхательных путей и слизистой оболочки среднего уха неподвижны или малоподвижны. Поэтому мукоцилиарный транспорт резко ослаблен или отсутствует, что ведет к хроническому воспалению дыхательных путей и среднего уха. У таких больных неподвижны также сперматозоиды, так как их хвост эквивалентен ресничкам.


Рис. 14. Схема строения жгутика.


Миофибриллы. Характерны для мышечных клеток. Состоят из элементарных ультратонких нитей протофибрилл. Описано два типа миофибрилл – гладкие и поперечнополосатые. Последние содержат систему светлых (изотропных) и темных (анизотропных) дисков. Выполняют сократительную функцию.

Нейрофибриллы. Являются обязательным компонентом многих нервных клеток и их отростков. Они могут быть очень тонкими гладкими однородными нитями (нейропротофибриллы) или более толстыми трубчатыми элементам, имеют опорное значение в связи с наличием в нервных клетках отростков большой протяженности.

Включения – непостоянные структурные компоненты клетки, возникающие в результате внутриклеточного метаболизма или других процессов жизнедеятельности клетки. Исходя из особенностей субстрата, различают жидкие включения – вакуоли и плотные включения – гранулы, кристаллы. Обе группы включений могут нести на своей поверхности ограничивающие их тонкие липопротеиновые мембраны.

В функциональном отношении все включения подразделяются на три группы: трофические, секреторные и специальные.



Трофические включения отражают повседневный метаболизм клетки. Они представлены гранулами гликогена, белковыми зернами, каплями жира. В ходе внутриклеточного обмена включения этой группы утилизируются и входят в состав цитоплазмы. Особую группу трофических включений составляют продукты экскреции (распада), подлежащие выведению из клетки: желчные пигменты, мочевина и др.

Секреторные включения характерны, в основном, для железистых клеток. Значение их очень велико, так как сюда относятся некоторые ферменты и гормоны.

Специальные включения присутствуют в высокоспециализированных клетках. К этой группе относят гранулы пигмента меланина, плотно заполняющего цитоплазму меланоцитов – особых клеток кожи с защитной функцией. Диффузное состояние специальных включений выражает гемоглобин, находящиеся в клетках крови – эритроцитах. Включения могут характеризовать патологическое состояние клетки и быть предвестниками ее гибели (появление слизистых конгломератов в клетках кости или хряща).

Таким образом, приведенные выше данные указывают, что внутриклеточные компоненты имеют мембранный и немембранный принцип организации. Мембранные структуры можно подразделить на одномембранные и двумембранные. Одномембранные компоненты имеют вид каналов, цистерн, пузырьков, ограниченных одной мембраной и тесно взаимосвязанных. Эти пузырьки иногда называют «вакуолярной системой», хотя данное определение недостаточно точно. Сюда можно отнести: а) эндоплазматический ретикулум; б) комплекс Гольджи; в) лизосомы; г) вакуоли у растительных клеток и некоторых простейших.

Двумембранные компоненты – это митохондрии и пластиды. Наружная мембрана их всегда гладкая, внутренняя образует выросты, имеющие важное функциональное значение. Систему двойных мембран имеет также ядро – центральный аппарат клетки. Ядерные мембраны содержат поры.

Немембранные структуры клетки немногочисленны и в той или иной мере связаны с системой мембран. В число их входят: а) рибосомы, состоящие из двух субъединиц; б) центросома, локализованная вблизи ядра: в) органеллы движения клеток – жгутики; реснички, миофибриллы; г) разнообразные клеточные включения.

Обмен веществ и превращение энергии в клетке

Клетка  это открытая система. В ней непрерывно происходит обмен веществ. Он включает поступление в клетку неорганических и органических соединений, их превращения и выведение из клетки. Тем самым, обмен веществ имеет две стороны: пластический обмен (ассимиляция) и энергетический обмен (диссимиляция).

Универсальный источник энергии клетки  АТФ

Для того чтобы существовать и выполнять определенные функции клетка нуждается в энергии. Энергия, приобретаемая клеткой, сохраняется в полезной форме, главным образом в виде молекул аденозинтрифосфата – АТФ (аденозинтрифосфорная кислота). Молекула АТФ является нуклеотидом, так как состоит из азотистого основания – аденина, сахара рибозы и трех фосфатных групп (остатки фосфорной кислоты). АТФ – это макроэргическое соединение поскольку в двух фосфатных связях накапливается большое количество энергии. Химические связи, которыми соединены молекулы фосфорной кислоты неустойчивы. Под действием фермента АТФ-азы в ходе гидролиза (присоединения воды) один богатый энергией остаток фосфорной кислоты отщепляется от молекулы АТФ с образованием аденозиндифосфата АДФ и выделением энергии в количестве около 40 кДж/моль. Указанный процесс называется дефосфорилированием. Обратное явление, переход АДФ в АТФ путем присоединения неорганического фосфата — фосфорилированием.


Пластический обмен. Биосинтез белка


Информационное обеспечение процессов синтеза. Живая клетка содержит тысячи различных белков. Более того, каждый вид клеток имеет свои специфические белки. Эти белки клетка обязана синтезировать, передать потомкам и воспроизвести затем в ряду поколений. Следовательно, любая клетка должна обладать биологической памятью. Биологическая память – это хранение и передача клеткой генетической информации. Обеспечивают ее нуклеиновые кислоты.

Нуклеиновые кислоты

Нуклеиновые кислоты открыты еще в позапрошлом веке швейцарским ученым Ф. Мишером (1868 г.). Первые экспериментальные данные о значении нуклеиновых кислот в механизмах наследственности были получены группой микробиологов, возглавляемой О. Эвери в 1944 г. Ученые работали с двумя близкими видами бактерий, вызывающих воспаление легких. Один вид имел хорошо выраженную полисахаридную капсулу, другой нет. Выделив нуклеиновую кислоту, ДНК от бактерий с капсулами и обработав ею бескапсульные микроорганизмы, исследователи получили в потомстве последних как капсульные, так и бескапсульные формы. Это указывало на хранение информации о наличии капсулы именно в молекуле ДНК. В дальнейшем было представлено огромное количество фактов, подтверждающих это открытие.


Существует два класса нуклеиновых кислот:

ДНК  дезоксирибонуклеиновые кислоты. РНК – рибонуклеиновые кислоты.

ДНК локализована в ядрах, митохондриях и пластидах клеток. РНК входит в состав ядрышек, рибосом и присутствует в цитоплазме клеток. По своей химической структуре ДНК и РНК  это крупные молекулы биополимеров. Они складываются из мономеров – нуклеотидов. Каждый нуклеотид включает три компонента: полисахарид, азотистое основание, фосфат (остаток фосфорной кислоты) (рис. 15).


Рис. 15. Структура строения ДНК и РНК.


В состав нуклеотида молекулы ДНК входят углевод – дезоксирибоза (пентоза), остаток фосфорной кислоты и одно из четырех имеющихся азотистых оснований. Азотистые основания пуриновые – аденин (А), гуанин (Г) и пиримидиновые – цитозин (Ц), тимин (Т).

По правилу Чаргаффа общее количество пуриновых оснований в молекуле ДНК равно количеству пиримидиновых оснований: пуриновые А + Г = Ц + Т пиримидиновые

В 1953 г. Д. Уотсон и Ф. Крик, используя кристаллографический анализ, построили модель пространственной структуры молекулы ДНК, за что были удостоены Нобелевской премии. Основные положения этой модели следующие:

1. ДНК образована двумя полинуклеотидными цепями, при этом соединение нуклеотидов в цепь обеспечивается ферментом ДНК-полимеразой.

2. Цепи правозакручены спирально вокруг общей оси, один виток включает 10 пар нуклеотидов.

3. Фосфатные группировки находятся снаружи спирали, а азотистые основания внутри.

4. Цепи антипараллельны, то есть последовательность атомов одной цепи противоположна таковой в другой.

5. Цепи удерживаются водородными связями между азотистыми основаниями по принципу комплементарносги. Аденин соединяется двумя связями с тимином, гуанин тремя связями с цитозином (рис. 16).


Рис. 16. Строение ДНК: А – фрагмент нити ДНК. К первому углеродному атому дезоксирибозы присоединено азотистое основание: 1 – цитозин; 2 – гуанин. Б – двойная спираль ДНК: Д – дезоксирибоза; Ф – фосфат; А – аденин; Т – тимин; Г – гуанин; Ц – цитозин.


Открытие явления комплементарности – крупнейшее достижение биологии XX века. Следует заметить, что водородные связи слабые и нарушаются при изменении pH клетки или нагревании до 100°. Исходя из сказанного, различают первичную и вторичную структуру ДНК.

Первичная структура – это линейная последовательность нуклеотидов в антипараллельных цепях.

Вторичная структура – сближение азотистых оснований по принципу комплементарности, их спирализация, что придает молекуле ДНК высокую компактность. Как показал академик Белозерский, ДНК, выделенная из разных тканей одного организма, имеет одинаковый нуклеотидный состав, а соотношение пар азотистых оснований является строгим видовым признаком.


Функции ДНК

1) аутосинтетическая – репликация (синтез ДНК) в S-периоде интерфазы клеточного цикла;

2) гетеросинтетическая – участие в синтезе белка, хранении и передачи генетической информации.

При репликации происходит следующее:

а) разрыв водородных связей между двумя полинуклеотндными цепями и их расхождение;

б) деспирализация полинуклеотндных цепей;

в) синтез новых цепей вдоль каждой из разделившихся, но правилу комплементарности с точным сохранением их структуры.

Описанная репликация называется полуконсерватнвной, поскольку одна из цепей новой молекулы ДНК является старой, а другая вновь синтезированной. Репликация протекает при участии ферментов ДНК-полимераз (рис.17).


Рис. 17. Схема репликации ДНК.


ДНК – это единственная макромолекула клетки, которая способна устранять повреждения, возникающие в ее структуре, что может приводить к мутациям. Более того, в ней закодирована информация о механизмах самых разнообразных репарационных процессов.

РНК

Общий принцип структурной организации нуклеиновых кислот сохранен, но имеется ряд особенностей. Сахарид представлен рибозой (содержит на один атом кислорода больше. чем дезоксирибоза). Азотистое основание тимин заменено на урацил (Т-У). В молекулах РНК только одна полинуклеотидная цепь, то есть они одноцепочечные.

Выделяют три разновидности РНК

1) и-РНК, информационная;

2) т-РНК, транспортная;

3) р-РНК, рибосомальная.

Молекула и-РНК синтезируется на молекуле ДНК в ядре клетки и затем переносится в цитоплазму; т-РНК присутствует в цитоплазме и осуществляет транспорт аминокислот; р-РНК находится в рибосомах.

Функция РНК – участие в синтезе белка. Сколь бы замечательны не были белки, они лишены одного очень важного свойства. Белок в составе клетки не может точно воспроизвести сам себя на протяжении ряда клеточных делений. Точное копирование белковых молекул происходит с помощью генетического кода. Под ним понимают систему записи в молекулах ДНК генетической информации о строении белковой молекулы. Белок состоит из аминокислот, которых всего 20. Аминокислоты в белковой молекуле расположены в линейном порядке, подобно нуклеотидам молекулы ДНК. Строгая последовательность аминокислот определяет первичную структуру белковой молекулы, ее специфичность. Так, в составе белка гемоглобина 300 аминокислот. Достаточно изменить лишь одну аминокислоту в общей цепи, чтобы свойства гемоглобина нарушились. Последовательность аминокислот в белке определяется последовательностью нуклеотидов в молекуле ДНК, его генетическим кодом.


Принципы генетического кода

1. Код триплетный: три нуклеотида, расположенные рядом в строгой последовательности, соответствуют определенной аминокислоте. Триплет нуклеотидов называют кодоном. Например, аминокислоту валин кодирует кодон ЦАТ.

2. Код специфичен. Нет случаев, когда один и тот же кодон соответствовал бы нескольким аминокислотам.

3. Код вырожденный или избыточный, поскольку одной аминокислоте может соответствовать несколько триплетов. Валин кодирует не только кодон ЦАТ, но и ЦАЦ. Это свойство имеет существенное значение для повышения надежности системы хранения генетической информации.

4. Код однонаправленный. При синтезе белка считывание информации идет от первого основания к третьему в одном направлении.

5. Код неперекрывающийся. Это значит, нет таких оснований, которые принадлежали бы одновременно двум кодонам. Триплет ограничен как бы «рамкой» считывания, которая перемещается сразу на три основания: УГГ ЦАА.

6. Код является универсальным для всех живых существ.


Синтез белка в клетке

Синтез белка включает несколько уровней (рис. 18)

1. Претранскрипционный. 2. Транскрипционный. 3. Транспортный.

4. Трансляционный. 5. Посттрансляционный.


Рис. 18. Общая схема синтеза белка в эукариотической клетке.


Претранскрипционный уровень. Это стартовый этап синтеза, во время которого происходит активация молекулы ДНК с помощью специальных белков.

Транскрипционный уровень. Транскрипцией называется синтез и-РНК на молекуле ДНК с последовательностью нуклеотидов комплементарной молекуле ДНК. Матрицей для и-РНК служит только одна из двух имеющихся цепей ДНК, то есть синтез носит полуконсервативный характер. Процесс контролируется ферментами РНК-полимеразами.

В молекуле ДНК выделяется определенный фрагмент – промотор как начальный участок синтеза. За ним следуют информационные нуклеотидные кодоны. Существует два вида наборов нуклеотидов. Триплеты, несущие информацию об аминокислотах – экзоны. Они образуют короткие сегменты ДНК и, как правило, разделены более длинными неинформативным участком нуклеотидов, которые называют интроны. В каждом гене число экзонов на один превышает число интронов. С началом транскрипции в состав и-РНК включаются как экзоны, так и интроны. Первичный транскрипт полностью копирует молекулу ДНК.



Транспортный уровень. Охватывает период между транскрипцией и трансляцией. На данном этапе происходит процессинг, то есть созревание и-РНК. Суть его – удаление интронов с помощью ферментов рестриктаз. Экзоны сохраняются и соединяются в единую цепь с помощью ферментов лигаз. Указанное явление называется сплайсинг. В ходе его возможны ошибки транскрипции, когда удаляются не все интроны. Прошедшая сплайсинг и-РНК значительно укорочена, компактна и может служить матрицей для синтеза белка. Для этого она переносится из ядра в цитоплазму к рибосомам. В клетках животных и растений на всем пути от ядерного хроматина к рибосомам и-РНК находится не в свободном состоянии, а связана специальными белками-переносчиками. Они различны в ядре и цитоплазме. Образно говоря, белки везут и-РНК в рибосому «на перекладных».

Трансляционный уровень. Трансляцией называется синтез полипептидной цепи из аминокислот согласно кодирующей и-РНК. В ходе трансляции происходит перевод генетической информации в аминокислотную последовательность: ДНК, и-РНК, белок. Трансляция является очень важной частью общего метаболизма клетки. В ней задействованы не менее 20 ферментов (аминоацилсинтетаз), до 60 различных т-РНК, 3—5 молекул р-РНК и макромолекулы и-РНК. Здесь выделяют следующие этапы: инициация, элонгация, терминация.

Инициация – начало трансляции. Фермент аминоацилсинтетаза активирует определенную аминокислоту и вовлекает ее в белковый синтез. Активированная аминокислота соединяется с т-РНК специализированной на данной аминокислоте. Эта т-РНК имеет форму трилистника и содержит три петли. Антикодоновая петля имеет антикодон, то есть триплет нуклеотидов, соответствующий своей аминокислоте. Псевдоуридиновая петля необходима при взаимодействии с рибосомой. Дигидроуридиновая петля служит для соединения с ферментом аминоацил-синтетазой. (Рис. 19). Доставленная к рибосоме и-РНК связывается с рибосомальной РНК. При этом рибосома диссоциирует, ее малая и большая субъединицы несколько раздвигаются, и рибосома насаживается на и-РНК. В начальной части и-РНК имеются стартовые кодоны АУГ и ГУГ. К ним присоединяется т-РНК, несущая соответствующую аминокислоту (рис. 20).


Рис.19. Схема строения т-РНК.


Рис. 20. Схема синтеза белка в рибосоме (трансляция).


Элонгация – продолжение трансляции. Рибосома двигается вдоль молекулы и-РНК. Транспортные РНК связываются с рибосомой и их анти-кодоны избирательно по правилу комплементарности контактируют с кодонами и-РНК. При совмещении кодона и антикодона аминокислота отрывается от т-РНК и включается в полипептидную цепь из аминокислот в большой субъединице рибосомы. При формировании первичной белковой структуры каждая новая аминокислота занимает место за аминокислотой, включенной непосредственно перед ней.

Терминация – окончание синтеза. В и-РНК есть трейлерный участок, содержащий стоп кодоны УАА, УАГ, УГА. Они указывают на завершение синтеза данного белка. Поэтому при контакте с ними сборка аминокислотной цепи заканчивается. Большая и малая субъединицы рибосом смыкаются.

Посттрансляцнонный уровень. Синтезированная белковая молекула начинает усложнять свою первичную структуру под действием ферментов. Происходит ее конформация, изменяется пространственная организация белка, он приобретает вторичную, третичную и четвертичную структуру.

Таким образом, мы узнали центральную догму молекулярной биологии. Она гласит: информация в живых организмах передается по цепи ДНК – РНК – белок. В настоящее время доказано явление обратной транскрипции, когда передача информации происходит от РНК к ДНК. В то же время совершенно невозможен перенос информации от белков обратно к нуклеиновым кислотам.

В соответствии с существующими представлениями синтез белка всегда начинается с работы генов. Работа генов – это способность транскрибировать, то есть направлять синтез и-РНК. Но не всегда работа гена заканчивается сборкой белковой молекулы. Как заметил один американский генетик, для того, чтобы выдать белок, гену нужно пробиться сквозь «клеточные джунгли». Выход конечного белкового продукта – это экспрессия гена. Она совершается в результате деятельности всей клетки с ее многокомпонентными механизмами белкового синтеза.


Энергетический обмен


Энергетическим обменом или диссимиляцией называются процессы ферментативного расщепления органических веществ и образование соединений богатых энергией. Энергетический обмен подразделяется на три этапа.

Первый этап, подготовительный, связан с пищеварением. Он происходит вне клетки. Крупные молекулы биополимеров распадаются на мономеры: белки – на аминокислоты, полисахариды – на простые сахара, жиры – на жирные кислоты и глицерин. При разрыве химических связей выделяется небольшое количество энергии, рассеянной в виде тепла. Мономеры поступают в кровь.

Второй этап – гликолиз, бескислородное расщепление глюкозы. Происходит внутриклеточно в цитоплазме, куда глюкоза поступает из крови. Включает ряд последовательных ферментативных реакций, в результате которых глюкоза распадается на две молекулы пировиноградной кислоты. Реакции протекают с участием фосфорной кислоты, образованием 2 молекул АТФ.



В процессе гликолиза выделяется 200 кДж энергии, из которых только 80 кДж (40%) аккумулируется в АТФ, остальные 120 кДж рассеиваются в виде тепла.

Гликолиз происходит во всех животных клетках, но является мало эффективным с энергетических позиций. Поэтому основные процессы накопления энергии совершаются на третьем этапе.

Третий этап – кислородный (аэробный – клеточное дыхание). Его называют окислительным фосфорилированием. Наблюдается полное кислородное расщепление органических веществ до двуокиси углерода СО2. Происходит освобождение атомов водорода Н (водород выделяется из углеводов в результате прохождения ими сложного ряда химических превращений, называемых циклом Кребса). Реакция протекает с участием АДФ и Н3Р04. При этом выделяется большое количество энергии, достаточное для синтеза 36 молекул АТФ.

Окислительное фосфорилирование совершается в митохондриях клеток Атомы водорода Н (электроны и протоны) переносятся на систему ферментов в митохондриальной мембране. Здесь они окисляются, то есть теряют электроны:

Н2 – 2е-+. Образуются свободные электроны е- и ионы водорода Н+ (протоны). В ходе дыхания электроны несколько раз пересекают мембрану митохондрий, вынося протоны Н+ на наружную поверхность. Количество положительно заряженных протонов там резко возрастает. Возникает градиент концентрации протонов и электрический потенциал. При напряжении 200 мВ в ферменте АТФ-синтетазе, встроенном в мембрану крист, открывается протонный канал. Через него протоны Н+ возвращаются на исходную позицию, где взаимодействуют с 02, образуя воду (2Н+ +02 = Н20). В момент прохождения протонов по каналу фермента электрическое поле разряжается, а энергия аккумулируется в реакции синтеза АТФ.

Итоговое уравнение внутриклеточного расщепления глюкозы:

Анаэробный этап:



Аэробный этап



Суммарное уравнение гликолиза:

38АДФ +38Н3Р04 +1520 кДж = 38 АТФ +38Н20

Таким образом, в ходе энергетического обмена из одной молекулы глюкозы образуется 38 молекул АТФ.

Блок-схема энергетического обмена



Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации