Текст книги "100 великих чудес техники"
Автор книги: Сергей Мусский
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 12 (всего у книги 42 страниц)
«Генное ружье»
«Генное ружье» – металлическая конструкция, сильно смахивающая на микроскоп. Этот прибор позволяет и животных, и человека «обстреливать» генами – частицами наследственной информации.
«Еще неизвестно, что оставит больший след в истории: автомат Калашникова или вот это ружье Колесникова, – говорит профессор Александр Зеленин, руководитель лаборатории Института молекулярной биологии РАН. – Наш сотрудник фактически в одиночку придумал и сделал то, над чем в США корпели целые коллективы.
Сначала эта идея использовалась для работы с трансгенными растениями. У растительных клеток очень толстые стенки, в них трудно ввести чужие гены привычными для биологов методами. Вот американцы и предложили применить энергию выстрела – это намного эффективнее и дешевле. Идей, как сделать такое ружье, было выдвинуто много, они публиковались и обсуждались. На какой конструкции остановились в реальности, до сих пор неизвестно – коммерческая тайна. Вскоре мы первыми в мире выяснили, что точно так же можно «обстреливать» клетки животных и людей».
«Кандидат биологических наук Виктор Колесников, – пишет в газете «Известия» Татьяна Батенева, – придумал конструкцию ружья, которая проще и остроумнее предложенных американцами. И вовремя. В последние три года в мире наблюдается настоящий бум работ с применением генного ружья, которое оказалось, в частности, просто незаменимым прибором для медицинских генетиков. У них сразу возник вопрос можно ли его использовать для генной терапии – одного из главных направлений медицины будущего. Оказалось, ружье можно применить для решения множества лечебных задач.
Белый кролик, недовольно дергая носом, сидит в специальном приспособлении, которое не дает ему двигаться. Его розовое ухо – под прицелом ружья. Негромкий щелчок – и в ухо влетает смесь из микроскопических частиц золота и вольфрама, на которые «подвешены» нужные гены. Своеобразной ракетой-носителем для смеси служит тончайший пыж из тефлона, который энергией взрыва гремучей ртути разгоняется в ружье до 500 метров в секунду. Затем пыж резко тормозится, а пылинки золота и вольфрама вместе с генами продолжают полет, пробивая до десяти слоев клеток… Пройдет какое-то время, и гены, встроившись в наследственный аппарат животного, запустят процесс выработки нужных белков».
«Метод можно использовать в разных целях, – убежден Зеленин. – Например, для лечения наследственных болезней, когда собственные гены больного не обеспечивают выработку нужных организму веществ. Для введения «лечебных» генов в раковые клетки или в раны, чтобы они быстрее заживали. Эта идея, кстати, очень заинтересовала американских военных. Наконец, метод будет незаменим для безопасной и высокоэффективной вакцинации».
Как известно, любая вакцина – это белок. Вакцина, попадая в организм, вызывает естественный иммунный ответ – образование защитных антител. Таким образом, организм получает прививку от потенциальных болезней. Однако белок очень трудно очистить от примесей. Поэтому нередки случаи, когда после прививок возникают аллергические реакции. Другое дело выстрел золотой пулей. В организм сразу вводится необходимый ген. Он быстро запускает процесс производства антител естественным путем.
А не опасен ли такой способ вакцинации? «Однажды в ходе эксперимента я случайно подставил под ружье руку, – рассказывает Виктор Колесников. – Ощущение легкого ожога или ссадины. Но следов на коже не осталось».
Изобретатель продолжает совершенствовать конструкцию своего прибора. По прикидкам Колесникова, в серийном производстве российское «генное ружье» должно стоить в десять раз меньше, чем американское. Последнее «тянет» на 30000 долларов.
СООРУЖЕНИЯ
Плотины
Гидроэлектростанция (ГЭС) – это комплекс сложных гидротехнических сооружений и оборудования. Его назначение – преобразовывать энергию потока воды в электрическую энергию. Гидравлическая турбина – главный двигатель на ГЭС. С ее помощью энергия воды, движущейся под напором, превращается в механическую энергию вращения, которая затем, благодаря электрическому генератору, преобразуется в электрическую энергию.
Важнейшее гидротехническое сооружение – плотина. Строится она поперек реки от берега до берега и перекрывает русло реки, что препятствует свободному стоку ее вод. Перегородив реку, плотина с одной своей стороны удерживает воду на более высоком уровне, чем с другой, создавая перепад в уровнях и увеличивая тем самым ее энергию. Ведь энергия падающей воды намного больше, чем энергия спокойно текущей воды. Плотины строят для использования водной энергии и производства электроэнергии, для задержания паводковых вод (орошение полей), для водоснабжения крупных городов, улучшения судоходства по рекам. Плотины бывают глухие, ни при каких условиях не пропускающие воду с высокого уровня на нижний, и водосливные, допускающие перелив воды через гребень плотины.
Плотина, которая является частью гидроэлектростанции, – водосливная. В ее теле – водопропускные отверстия, через которые вода с верхнего уровня сбрасывается в нижний. Падающая вода приводит во вращение гидравлические турбины – главные двигатели ГЭС, вырабатывающие электроэнергию.
Высота перепада (как говорят специалисты – напора), создаваемого плотиной, определяется требованиями энергетики, ведь энергия, вырабатываемая ГЭС, зависит не только от количества пропускаемой плотиной воды, но и от высоты, с которой она сбрасывается.
Высоту плотины определяет строительный материал, из которого ее сооружают. Плотины бывают земляные, каменные, каменно-земляные, бетонные и железобетонные.
Наиболее распространены среди средних и крупных плотин бетонные и железобетонные. По конструкции они подразделяются на массивные (гравитационные), арочные и гравитационно-арочные. Массивные плотины противостоят силе давления воды собственным весом. Арочные плотины строятся криволинейными, благодаря этому они передают нагрузку со стороны водохранилища на скалистые берега. Арочно-гравитационные плотины противостоят нагрузке и собственным весом, и упором на берега.
Самые древние плотины были обнаружены в Иерусалиме и у Джавы в Иордании. Эти земляные дамбы с каменной облицовкой построили еще в 3200 году до нашей эры.
Сегодня самые высокие плотины в мире находятся на территории бывшего СССР: высота плотины Ингурской ГЭС – 271,5 метров, Токтогульской ГЭС – 215 метров, Саяно-Шушенской ГЭС – 245 метров. Самая высокая в мире плотина Нурекской ГЭС – 310 метров.
Саяно-Шушенская плотина – самая мощная в мире. Она рассчитана на нагрузку 18 миллионов тонн от водохранилища.
Самая высокая плотина в Африке построена в 1971 году в Египте у города Асуан. Эта плотина (Садд-эль-Али) позволила установить контроль над ежегодным половодьем Нила. За счет строительства плотины стало возможным возделывать больше земли. Хотя тут же возникли другие проблемы. Так, например, изменился состав почвы вокруг дельты Нила за счет повышенного содержания соли в воде и перемены климата в этом регионе.
Асуан – город на восточном берегу Нила. Он расположен в 966 километрах к югу от Каира. Плотина находится в 13 километраж вверх по течению, к югу от Асуана. Примерно в шести километрах вниз по течению находится старая Асуанская плотина, которая была закончена в 1902 году. В те времена это была самая большая плотина мира, и арабы называли ее Эль-Садд.
Высота новой Асуанской плотины составила 111 метров, длина – 3,8 километра. В основании она по ширине равна 975 метрам и сужается к верхнему краю до 40 метров.
На строительство плотины пошло такое количество камней, песка, глины и бетона, что из этого материала можно было бы соорудить целых семнадцать пирамид Хеопса.
Поверх плотины пустили четырехполосную дорогу. Канал на восточной стороне плотины приводит в движение турбины гидроэлектростанции. Образовавшийся гигантский водный резервуар получил имя президента Египта Насера. Это одно из самых больших искусственных озер мира. Оно занимает площадь 5244 квадратных километра и простирается на 510 километров к югу, через Нубию к Судану.
Плотину спроектировали в Германии, а построили с помощью Советского Союза. Сооружение ее стоило жизни 451 человеку. Из-за ее строительства потеряли жилище 60000 нубийцев и жителей Судана. Они вынуждены были переселиться в другие места. Воды искусственного озера поглотили многочисленные древние памятники. Лишь самые важные из них были спасены благодаря беспримерной акции ЮНЕСКО. Так, скальные храмы Абу-Симбела близ границы Египта и Судана были вырублены и перенесены в безопасное место.
Самая мощная в мире гидроэлектростанция находится в Южной Америке. 13 октября 1982 года в Бразилии было завершено сооружение плотины Итайпу, которая сумела обуздать бурные воды реки Парана, или, как ее еще называют, – «Матери моря». Впервые в мире на столь могучей реке удалось реализовать уникальную гидротехническую операцию. На дно реки опустили двенадцать огромных ворот, закрывающихся с помощью гидравлики. На всю операцию ушло ровно восемь минут. Затем в течение двух недель воды реки поднимались, остановленные гигантской бетонной стеной, до запланированной отметки 100 метров. С этой высоты начался сброс воды по специальному каналу, достигнув вскоре планового уровня – 60000 кубометров в час.
В настоящее время в Бразилии разработан грандиозный план сооружения на реке Паране и ее притоках целой системы гидроэлектростанций. Всего он насчитывает более тридцати проектов, из которых часть находится еще в стадии подготовки, а часть – уже в стадии строительства. Реализация плана позволит производить 25 миллионов киловатт электроэнергии, не считая того, что вырабатывает уже Итайпу. Генераторы энергоблока гидроэлектростанции самые мощные в мире, каждый из них производит 700000 киловатт. Общая мощность гидроэлектростанции оценивается в 12,6 миллиона киловатт.
Проект Итайпу зародился еще до нефтяного кризиса 1973 года. Последний лишь укрепил намерения бразильского правительства полнее использовать необъятные энергоресурсы страны. Эксплуатацию гидроэлектростанции ведет компания «Итайпу-Бинасионал», созданная в 1973 году. Она принадлежит Бразилии и Парагваю, странам, делящим между собой произведенную электроэнергию. Название «Итайпу» означает буквально «Поющий камень» и поэтически передает шум воды, перекатывающейся через каменистые пороги.
Стоимость электростанции – одиннадцать миллиардов долларов. На ее строительстве работало 28000 рабочих. Гигантская бетонная плотина, которая в пять раз больше Асуанской, установлена в двадцати километрах к северу от города Фос-ду-Игуасу. Ее длина – почти 8 километров, высота – 196 метров, ширина – 400 метров. Для возведения этого грандиозного сооружения понадобилось отвести реку по двухкилометровому каналу шириной 150 метров, пробитому в скалах. После того как реку отвели, потребовалось время на высыхание русла, так что строительство плотины было начато только в 1979 году.
Преградив течение реки, плотина образовала искусственное озеро площадью 1340 квадратных километров. Перед затоплением этого района отсюда были вывезены все сколько-нибудь значительные археологические памятники – всего около трехсот. Уже после затопления в районе водохранилища была проведена реадаптация многих видов животных, обитавших здесь до затопления. Кроме того, по берегам искусственного озера было высажено 20 миллионов деревьев.
Судоходные каналы
В местах многих древних волоков проложены каналы – искусственные реки, которые намного сокращают длину водных путей, позволяя судам быстро переходить из одной реки в другую (например, Волго-Донской канал, соединивший Волгу с Доном). Обводные каналы позволяют кораблям миновать, обойти при помощи шлюзов плотины гидроэлектростанций.
Шлюз – это лифт для судов. Если река перегорожена плотиной, то уровень воды перед ней, в водохранилище, гораздо выше, чем в реке ниже по течению. Чтобы подняться до уровня водохранилища, судно, идущее с низовьев, заходит в шлюз – часть канала, отгороженную двумя водонепроницаемыми воротами – верхними и нижними. Как только судно вошло в шлюз, нижние ворота закрываются. Затем открываются верхние ворота. Начинается заполнение шлюза, и судно поднимается до необходимого уровня. Через открывшиеся верхние ворота судно выходит в водохранилище и продолжает путь. Спуск судов, идущих вниз по реке, осуществляется в обратном порядке.
С недавних пор вместо шлюзов на некоторых реках стали использовать судоподъемники. Судно попадает в камеру такого подъемника точно так же, как в шлюз, и вместе с камерой поднимается или опускается. А потом вся камера передвигается по рельсовым путям на другую сторону плотины, где судно выпускают в реку.
Самой большой морской шлюз «Берендрехт» находится в Бельгии. Он соединяет реку Шельду с доками Антверпена. Шлюз открыт в апреле 1989 года, длина его камеры – 500 метров, ширина – 68 метров, глубина на пороге шлюза – 13,5 метра, вес каждых из четырех раздвижных ворот (затворов) – 1500 тонн. Строительство шлюза обошлось примерно в 12 миллиардов бельгийских франков. В Бельгии находится и шлюз с самым большим подъемом с одного уровня реки на другой – 68,58 метров. Это шлюзовой подъемник у Ронкьера на канале Шарлеруа, в Брюсселе. Два 236-колесных кессона грузоподъемностью 1370 тонн каждый по наклонной плоскости преодолевают расстояние в 1432 метра в течение 22 минут. Самые глубокий шлюз – «Запорожье» на Днепровско-Бугском канале, в Белоруссии. Он может поднимать и опускать баржи на высоту 39,2 метра.
Остатки самых древних каналов в мире были обнаружены недалеко от Мандали в Ираке. Они датированы археологами IV тысячелетием до нашей эры.
Сегодня самая длинная система каналов в мире – Волго-Балтийский водный путь (бывшая Мариинская водная система). Она построена в начале XIX века и соединяет Волгу с Балтийским морем, а через Беломорско-Балтийский канал – с Белым морем. В 1964 году после коренной реконструкции эта система стала доступна для судов водоизмещением 5 тысяч тонн. Длина пути – 1100 километров, а глубина – не менее четырех метров.
Самым оживленным является Кильский канал, соединяющий Северное и Балтийское моря в Западной Германии. В 1987 году по нему было пропущено 45000 судов. Второе место занимает Суэцкий канал – более 20000 судов в год; третье – Панамский канал – более 10000 судов в год. По грузоподъемности судов на первом месте стоит Суэцкий канал, по нему проходят суда общим водоизмещением почти 440 миллионов тонн.
Открытие Суэцкого канала состоялось в ноябре 1869 года. Впрочем, идея соединить Средиземное море с Красным была не нова. Уже в VI веке до нашей эры египетский царь Нехо лелеял подобный план. Но попытка осуществить его стоила жизни 120000 рабам. В итоге он отказался от намерения проложить этот водный путь. Около 500 года до нашей эры, после завоевания Египта персами, царь Дарий возобновил проект и засвидетельствовал в надписи на плите, что канал он завершил. Греческий историк Геродот в V веке до нашей эры сообщал, что этот канал соединял два моря не по прямой и, чтобы пройти его, кораблю требовалось четыре дня. Он был достаточно широк для того, чтобы две лодки с тремя веслами на каждой могли плыть рядом. Вероятно, канал Дария проходил восточнее Нила и, как и сегодняшний водный путь, пересекал озеро. При римлянах канал был усовершенствован, но потом снова обмелел. Последующие поколения не поднялись до деяний своих предков. Планы времен венецианского государства, Людовика XIV и Наполеона, так никогда и не осуществились.
Инженеры Наполеона заложили в проект многочисленные шлюзы, потому что, по их подсчетам, разница в уровне вод между Средиземным и Красным морями составляла 10 метров. Но и после того как выяснилось, что это неверно, потребовалось еще много времени для осуществления идеи.
Канал был спланирован французским дипломатом графом Фердинандом де Лессепсом. В 1854 году он с трудом добился согласия вице-президента Мохаммеда Саида-паши (Египет в то время был частью Османской империи) и получил право приступить к строительным работам. Канал, начинаясь севернее Суэца, должен был по прямой линии пересечь озеро Тимсах и Горькие озера и достичь Средиземного моря. Де Лессепс сумел заручиться поддержкой вице-президента. Ему же удалось привлечь ряд французских акционеров, которые инвестировали средства в строительство Суэцкого канала. Удивительно, но британцы, больше других выигрывавшие от сокращения пути в Индию (канал сокращал расстояние между Лондоном и Бомбеем на 7343 километра), не купили ни одной акции. Более того, британское правительство сделало все, чтобы воспрепятствовать этому проекту. Оно осуждало его как физически невыполнимый, слишком дорогой и нерентабельный.
Строительство канала началось 25 апреля 1859 года. С этого дня и вплоть до состоявшейся через десять лет церемонии открытия работами руководил сам де Лессепс. Пришлось преодолеть множество трудностей. Вначале на строительстве работали каторжники. Позднее процесс был механизирован, а условия труда улучшены настолько, что стали привлекательными и для европейской рабочей силы. На строительстве канала работали 8213 человек и 368 верблюдов.
Длина готового канала была равна 161,9 километров от маяка в Порт-Саиде до Суэц-Роудс, глубина – 8 метрам, а ширина – 60 метрам. Через каждые 10 километров была вырыта запасная бухта. Сегодня ширина канала составляет 200 метров, и нет ни одного места, где глубина была бы менее 15 метров. По нему может пройти полностью загруженный нефтяной танкер двенадцатиметровой осадки.
Де Лессепс был прекрасным журналистом и менеджером. Он организовал пышную церемонию открытия. Для 6000 гостей были приглашены 500 поваров и 1000 лакеев. Знаменитому композитору Джузеппе Верди заказали оперу для торжественного открытия канала и нового итальянского театра в Каире. Так была создана «Аида».
С именем Фердинанда де Лессепса связано строительство другого известнейшего канала – Панамского. Увы, первая попытка вырыть этот канал окончилась неудачей. Де Лессепс учредил новую компанию. Та в 1881 году обязалась взять на себя этот труд и выкопать от океана до океана русло глубиной 9,1 метра и шириной 22 метра на уровне моря. Увы, трудности оказались непреодолимыми. Главной причиной неудачи стал не твердый скальный грунт, а повальные заболевания желтухой и малярией. Стройка превратилась в гибельную ловушку и пользовалась дурной славой. Есть данные о том, что там погибло около 20000 человек. Компания обанкротилась в 1889 году.
В 1904 году Панама и Америка подписали договор, согласно которому права на строительство канала перешли к последней. Учтя предыдущую попытку, в эту местность был направлен американский военный врач Уильям Кроуфорд Горгас. В два года он справился с желтухой и взял под контроль малярию. В 1907 году строительство канала, теперь уже по другому плану, возобновилось. Руководил им полковник армии США Джордж У. Геталз.
15 августа 1914 года первый океанский пароход прошел по Панамскому каналу, связавшему Атлантический и Тихий океаны. Длина канала – 82,4 километра. Вопреки общему впечатлению, он не идет по прямой линии с востока на запад, потому что сама география Панамского перешейка направляет канал от Колона на Атлантическом океане к Панама-Сити на Тихом океане, на юго-восток.
На обоих концах водного пути были построены порты, а также множество других сооружений: волнорезы, плотины, шлюзы и искусственные озера. Да и большую часть железной дороги между Колоном и Панама-Сити пришлось тоже прокладывать заново.
В конце канала со стороны Атлантики суда отправляются к трем Гатунским шлюзам, где их поднимают на высоту 26 метров до искусственного озера Гатун. За этим озером на канале шириной 150 метров стоят уже другие шлюзы. Там суда опускаются сначала на 9,5, а потом на 16,5 метра до уровня моря и входят в тихоокеанский порт у Панамского залива. Оба входа в канал застрахованы гигантскими волнорезами.
Высота шлюзов – 305 метров, а ширина – 34 метра. Все шлюзы двусторонние, то есть корабли, пришедшие с противоположных сторон, могут плыть, не мешая друг другу. Толщина огромных стальных ворот этих шлюзов – 2,1 метра, а высота – до 25 метров. Маленькие дизели, двигаясь вдоль стен, медленно проводят судно через шлюз. Обычно на одно судно требуется шесть таких машин.
Транссибирская магистраль
Транссибирская магистраль, или, как именовали ее прежде, Великая Сибирская магистраль, самая длинная в мире железная дорога, связавшая Европу и Азию. Ее одноколейное полотно протянулось от Москвы до тихоокеанского порта Владивосток на расстояние более 9000 километров.
Необходимость железнодорожного строительства в Сибири сознавалась уже в середине XIX столетия. Становилось ясно, что при наметившемся росте грузопотока в ближайшее время потребуется надежный транспорт, который можно использовать круглогодично.
В декабре 1885 года была построена Екатеринбург-Тюменская дорога. То был первый рельсовый путь в Сибири. Дорога доказала свою рентабельность, и тогда российское правительство стало обсуждать вопрос о строительстве Транссибирской железнодорожной магистрали. Экономические предпосылки для подобного строительства к тому времени уже созрели.
Решено было начать изыскания кратчайшего рельсового пути в пределах полосы между 51 и 56 градусами северной широты, где географические условия представлялись наиболее благоприятными не столько для строительства новой дороги, сколько для последующего освоения земель, главным образом сельскохозяйственных.
В 1886 году на всеподданнейшем отчете иркутского генерал-губернатора графа А.П. Игнатьева царь Александр III собственноручно написал: «Уже сколько отчетов генерал-губернаторов Сибири Я читал и должен с грустью и стыдом сознаться, что правительство до сих пор почти ничего не сделало для удовлетворения потребностей этого богатого, но запущенного края. А пора, давно пора».
Эта резолюция и решила судьбу Транссиба. Через некоторое время последовало повеление: «Необходимо приступить скорее к постройке этой дороги». Правительство понимало, что без железной дороги в стратегическом отношении Сибирь, и особенно Дальний Восток, очень уязвима, и в случае возможных конфликтов вряд ли удастся обеспечить оборону Владивостока и всего Южноуссурийского края. Поэтому министерство путей сообщения спешно приступило к железнодорожным изысканиям в Сибири. Для ускорения работ решено было начать строительство одновременно с двух концов – с запада и востока.
Грандиозное дело, сулившее России многие выгоды, нуждалось в «совершенно исключительном, нешаблонном осуществлении». И сегодня не может не поражать четкость и целостность плана, его общая законченность и гармоничность.
Министр финансов С.Ю. Витте, к примеру, предлагал для облегчения и удешевления доставки грузов, необходимых для новой дороги, провести соединительную железнодорожную линию между Челябинском и Екатеринбургом и таким образом связать строящуюся Сибирскую дорогу с центром черной металлургии Урала. Чтобы усилить экономическое и культурное влияние Сибирской дороги, Витте предложил к сооружаемой магистрали подвести вспомогательные пути, оборудовать на пересечении ее с реками подходящие порты, пристани, поселки, что способствовало бы переселению из Европы землепашцев.
Помимо чисто организационных решений план Витте подразделял все грандиозное строительство на несколько этапов. Это позволило эффективно строить финансовую политику: уже в период строительства Транссиба получать доход от дороги.
Первый этап – сооружение Западносибирского участка от Челябинска до Оби (1332 версты), затем Среднесибирский участок от Оби до Иркутска (1734) при одновременном строительстве Уссурийского участка на Дальнем Востоке. Второй этап предусматривал достройку участка от станции Мысовой на берегу озера Байкал до Сретенска (1032) и продолжение Уссурийской линии до Хабаровска. Наконец, третий этап – сооружение Кругобайкальской линии (312) и участка от Сретенска до Хабаровска (около 2000).
10 декабря 1892 году план Витте утвердил царь, и тогда же был организован Комитет Сибирской дороги. Если до его создания строительство велось эпизодически, в основном ограничиваясь небольшими объемами земляных работ, что во многом объяснялось скромными размерами отпущенных на них кредитов, то с появлением централизованного органа управления ситуация на трассе резко изменилась в лучшую сторону.
Западносибирская линия от Челябинска до пересечения с Обью начала строиться в 1892 году под начальством замечательного русского инженера К.Я. Михайловского, до этого построившего Самаро-Златоустовскую железную дорогу и Александровский мост через Волгу.
Чтобы не только компенсировать нехватку рабочих рук, но и иметь возможность маневра рабочей силой, Комитет Сибирской дороги решил приобрести за границей землекопные машины. Экскаваторы очень продвинули дело, а также заметно удешевили земляные работы.
Вообще, новейшие достижения науки и техники при строительстве Транссиба использовались достаточно широко. Вот один из примеров. Проходя через сухую Западно-Сибирскую равнину, строители испытывали неудобства с водообеспечением. Воду из многочисленных окрестных озер, люди потреблять не могли: горько-соленая на вкус, очень жесткая, она не подходила практически ни для каких нужд. Поэтому пришлось приобретать специальные приборы и химически очищать воду от примесей.
Уже с 15 октября 1895 года открылось временное движение по всей Западносибирской линии. 1332 версты за три с небольшим года! Правда, поначалу в Омске на железной дороге действовала переправа через Иртыш, а в марте 1896 года два берега великой сибирской реки связал мост, спроектированный инженером-мостостроителем профессором Н.А. Белелюбским. Этот мост, как и многие другие инженерные решения на Транссибе, вошел в классические учебники. Мост через Обь соорудили и открыли к 31 марта 1897 года.
Столь стремительных темпов строительства железных дорог мировая практика еще не знала. Оказалось, и они не предел. Утверждать так позволили результаты строительства следующей, Среднесибирской, линии от Оби до Иркутска.
Прокладывать Среднесибирскую линию было значительно сложнее с инженерной точки зрения: равнинный рельеф местности сменился на гористый. Работы на всем Среднесибирском участке начались в 1893 году и велись сразу из двух пунктов – от Оби на восток и от Енисея тоже на восток. Всюду на трассе резко возросли объемы земляных работ: примерно 2060 кубических сажен на версту. Но попадались и особо трудные горные участки, где на одну версту приходилось более 10000 и даже 21000 кубических сажен.
Именно здесь, в глухих таежных районах, строители впервые столкнулись с таким неизвестным инженерам природным явлением, как вечная мерзлота. Даже в жаркий июль земля не оттаивала, поэтому сразу же, по ходу, приходилось искать новые решения.
Промышленные предприятия Европейской России четко выполняли заказы для Транссиба, где – преимущественно в пунктах пересечения магистрали с реками, на Оби, Томи, Чулыме, Енисее – специально были построены большие склады. Грузы хоть и доставлялись кружным путем, но бесперебойно.
Именно потребности Транссиба подтолкнули к освоению еще одного пути в Сибирь – морем, через Северный Ледовитый океан. Всего за период строительства Транссиба через Арктику пришло 27 судов с грузами для стройки. С тех пор начались сравнительно регулярные плавания на арктических трассах и в устьях сибирских рек.
Обратим внимание на один важный аспект – трассу всегда прокладывали только кратчайшим путем. В этом, кстати, проявился транзитный характер назначения Транссиба, дорога была нужна в первую очередь для связи Европейской России с Дальним Востоком и Тихим океаном. В стороне от дороги остался даже Тобольск – столица Сибири. Искривлять трассу было невыгодно для России в целом!
Строился Транссиб стремительно. 15 октября 1895 года дорога подошла к Новониколаевску – нынешнему Новосибирску, а уже 6 декабря того же года поезд прибыл в Красноярск, путь удлинился еще на 714 верст. А дальше трасса потянулась к Иркутску. Еще на тысячу с лишним верст по глухой таежной земле. Начальник работ на Среднесибирской линии инженер Меженинов намечал летом 1898 году подойти к Байкалу. И план свой выполнил!
От Иркутска трассу прямо на восток проложить не позволил Байкал. Магистраль могла пройти только вдоль южных берегов сибирского озера. Но неприступные скалы, свисавшие прямо над озером, чрезвычайно усложнили бы и замедлили строительство. Поэтому Комитет решил подвести рельсы прямо к берегам Байкала, а по озеру организовать временную переправу, что позволило бы, не снижая темпов, продолжить строительство Транссиба.
От берега до берега поездам предстояло плыть на ледокольных паромах, которые специально для этого были закуплены за границей. Выписанная из Петербурга бригада опытных рабочих-корабелов прямо под открытым небом собрала в 1900 году крупнейший в мире ледокол «Байкал». Паромы сослужили добрую службу. Благодаря им слишком тяжелый обходной путь по южному берегу Байкала отнесли к работам третьей очереди.
Работы на восточном берегу Байкала, от озера до города Сретенска, начались еще в 1895 году. Руководил строительством инженер Пушечников, много сил и энергии отдавал он Транссибу, надеясь довести магистраль до цели к назначенному времени – 1898 год.
Но природа распорядилась по-своему: лето 1897 года выдалось на редкость дождливым, дожди не прекращались сутками. Страшное наводнение обрушилось на Забайкалье. Подобной стихии не помнили и старожилы. Мощные водяные потоки совершенно смыли несколько селений, которые до этого просуществовали сотни лет. Реки вышли из берегов. Конечно, серьезно пострадала и только что построенная дорога.
Лишь к 1900 году последствия наводнения были полностью устранены, и движение на новой трассе было открыто. Транссиб, таким образом, удлинился еще на 1032 версты.
В результате темпы прокладки Транссиба заметно снизились до 685 верст в год. Однако ни в одной другой стране мира, где природные и экономические условия несравнимо легче, в таком темпе железные дороги не строили. Транссиб проложили в полтора раза быстрее, чем дорогу в Америке.
Да, русская школа железнодорожных строителей не знала себе равных в мире. Сложнейшие инженерные проблемы решались в Сибири гениально просто.
Начав строительство магистрали с двух направлений, строители встретились в декабре 1899 года на 346-й версте от Мысовой, около ныне существующей станции Толбага.
По первоначальному плану Забайкальская линия не заканчивалась в Сретенске, открывавшем выход на реку Амур, а продолжалась дальше, до Хабаровска. Но неожиданно возникли финансовые трудности.
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.