Текст книги "100 великих чудес техники"
Автор книги: Сергей Мусский
Жанр: Прочая образовательная литература, Наука и Образование
сообщить о неприемлемом содержимом
Текущая страница: 18 (всего у книги 42 страниц)
Орбитальная станция «Мир»
Еще в начале XX века К.Э. Циолковский, мечтая об устройстве «эфирных поселений», наметил пути создания орбитальных станций.
Что же это такое? Как видно из названия, это тяжелый искусственный спутник, длительное время совершающий полет по околоземной, окололунной или околопланетной орбите. От обычных спутников орбитальную станцию отличают, прежде всего, ее размеры, оснащенность и универсальность: на ней можно проводить большой комплекс разнообразных исследований.
Как правило, она не имеет даже своей двигательной установки, поскольку коррекцию ее орбиты производят с помощью двигателей транспортного корабля. Зато на ней гораздо больше научного оборудования, она просторнее и уютнее, чем корабль. Космонавты прилетают сюда надолго – на несколько недель или даже месяцев. На это время станция становится их космическим домом, и для того чтобы сохранять в течение всего полета хорошую работоспособность, они должны чувствовать себя в ней комфортно и спокойно. В отличие от пилотируемых кораблей орбитальные станции не возвращаются на Землю.
Первой в истории орбитальной космической станцией стал советский «Салют», выведенный на орбиту 19 апреля 1971 года. 30 июня того же года к станции пристыковался корабль «Союз-11» с космонавтами Добровольским, Волковым и Пацаевым. Первая (и единственная) вахта продолжалась 24 дня. Затем некоторое время «Салют» находился в автоматическом беспилотном режиме, пока 11 ноября станция не закончила свое существование, сгорев в плотных слоях атмосферы.
За первым «Салютом» последовал второй, затем третий и так далее. В течение десяти лет в космосе отработало целое семейство орбитальных станций. Десятки экипажей провели на них множество научных экспериментов. Все «Салюты» представляли собой космические многоцелевые исследовательские лаборатории для продолжительных исследований со сменным экипажем. В отсутствие космонавтов все системы станции управлялись с Земли. Для этого использовались малогабаритные ЭВМ, в память которых были заложены стандартные программы управления операциями полета.
Самым крупным стал «Салют-6». Общая длина станции составляла 20 метров, а объем – 100 кубических метров. Масса «Салюта» без транспортного корабля – 18,9 тонны. На станции помещалось много разнообразной аппаратуры, в том числе крупногабаритные телескоп «Орион» и гамма-телескоп «Анна-111».
Вслед за СССР свою орбитальную станцию запустили в космос США. 14 мая 1973 года на орбиту была выведена их станция «Скайлэб» («Небесная лаборатория»). Основой для нее послужила третья ступень ракеты «Сатурн-5», которая использовалась в прежних лунных экспедициях для разгона корабля «Аполлон» до второй космической скорости. Большой водородный бак был переоборудован в бытовые помещения и лабораторию, а меньший по размерам кислородный бак превращен в контейнер для сбора отходов.
«Скайлэб» включала в себя собственно блок станции, шлюзовую камеру, причальную конструкцию с двумя стыковочными узлами, две солнечные батареи и отдельный комплект астрономических приборов (в его состав входило восемь различных аппаратов и цифровая вычислительная машина). Общая длина станции достигала 25 метров, масса – 83 тонны, внутренний свободный объем – 360 кубических метров. Для ее выведения на орбиту использовалась мощная ракета-носитель «Сатурн-5», способная поднимать на околоземную орбиту до 130 тонн полезного груза. Собственных двигателей для коррекции орбиты «Скайлэб» не имела. Ее осуществляли с помощью двигателей космического корабля «Аполлон». Ориентация станции изменялась с помощью трех силовых гироскопов и микродвигателей, работавших на сжатом газе. За время функционирования «Скайлэб» на ней побывали три экипажа.
По сравнению с «Салютом» «Скайлэб» был значительно вместительнее. Длина шлюзовой камеры составляла 5,2 метра, а ее диаметр – 3,2 метра. Здесь в баллонах высокого давления хранились бортовые запасы газов (кислорода и азота). Блок станции имел длину 14,6 метров при диаметре 6,6 метров.
Российская орбитальная станция «Мир» была выведена на орбиту 20 февраля 1986 года. Разрабатывал и изготавливал базовый блок и модуль станции Государственный космический научно-производственный центр имени М.В. Хруничева, а техническое задание готовила ракетно-космическая корпорация «Энергия».
Общая масса станции «Мир» – 140 тонн. Длина станции – 33 метра. Станция состояла из нескольких относительно самостоятельных блоков – модулей. По модульному принципу построены также отдельные ее части и бортовые системы. За годы эксплуатации в состав комплекса дополнительно базовому блоку были введены пять крупных модулей и специальный стыковочный отсек.
Базовый блок по размерам и внешнему виду подобен российским орбитальным станциям серии «Салют». Его основу составляет герметичный рабочий отсек. Здесь расположены центральный пост управления и средства связи. Позаботились конструкторы и о комфортных условиях для экипажа: на станции были две индивидуальные каюты и общая кают-компания с рабочим столом, устройствами для подогрева воды и пищи, беговая дорожка и велоэргометр. На наружной поверхности рабочего отсека размещались две поворотные панели солнечных батарей и неподвижная третья, смонтированная космонавтами в ходе полета.
Перед рабочим отсеком – герметичный переходный отсек, который мог служить шлюзом для выхода в открытый космос. Там пять стыковочных портов для соединения с транспортными кораблями и научными модулями. За рабочим отсеком располагался негерметичный агрегатный отсек с герметичной переходной камерой со стыковочным узлом, к которому впоследствии был подсоединен модуль «Квант». Снаружи агрегатного отсека на поворотной штанге установили остронаправленную антенну, обеспечивающую связь через спутник-ретранслятор, который находился на геостационарной орбите. Подобная орбита означает, что спутник висит над одной точкой земной поверхности.
В апреле 1987 года к базовому блоку был пристыкован модуль «Квант». Он представляет собой единый герметический отсек с двумя люками, один из которых служил рабочим портом для приема транспортных кораблей «Прогресс-М». Вокруг него располагался комплекс астрофизических приборов, предназначенных преимущественно для исследования недоступных наблюдениям с Земли рентгеновских звезд. На наружной поверхности космонавтами были смонтированы два узла крепления поворотных многоразовых солнечных батареи. Элементы конструкции международной станции – две крупногабаритные фермы «Рапана» и «Софора». На «Мире» они проходили многолетние испытания на прочность и долговечность в условиях космоса. На конце «Софоры» размещалась выносная двигательная установка крена.
«Квант-2» был пристыкован в декабре 1989 года. Другое название блока – модуль дооснащения, поскольку в нем было расположено оборудование, необходимое для работы систем жизнеобеспечения станции и создания дополнительного комфорта для ее обитателей. В частности, шлюзовой отсек использовался как хранилище скафандров и в качестве ангара для автономного средства перемещения космонавта.
В модуле «Кристалл» (был пристыкован в 1990 году) размещалось преимущественно научное и технологическое оборудование для исследования технологии получения новых материалов в условиях невесомости. К нему через переходной узел присоединялся стыковочный отсек.
Аппаратура модуля «Спектр» (1995) позволяла вести постоянные наблюдения за состоянием атмосферы, океана и земной поверхности, а также проводить медико-биологические исследования и т д. «Спектр» был оснащен четырьмя поворотными солнечными батареями, дающими электроэнергию для питания научной аппаратуры.
Стыковочный отсек (1995) – это сравнительно небольшой модуль, созданный специально для американского космического корабля «Атлантис». Он был доставлен на «Мир» американским многоразовым пилотируемым транспортным космическим кораблем «Спейс Шаттл».
В блоке «Природа» (1996) располагались высокоточные приборы для наблюдения за земной поверхностью. В состав модуля входило также около тонны американского оборудования для изучения поведения человека во время длительного космического полета.
25 июня 1997 года во время эксперимента по стыковке со станцией «Мир» с помощью дистанционного управления беспилотный грузовой корабль «Прогресс М-34» своими семью тоннами повредил солнечную батарею модуля «Спектр» и пробил его корпус. Воздух из станции стал вытекать. При таких авариях предусмотрено досрочное возвращение экипажа станции на Землю. Однако мужество и грамотные согласованные действия космонавтов Василия Циблиева, Александра Лазуткина и астронавта Майкла Фоула спасли для работы станцию «Мир». Автор книги «Стрекоза» Брайан Берроу воспроизводит обстановку на станции во время этой аварии. Вот отрывок из этой книги, частично опубликованной в журнале «ГЕО» (июль 1999 года):
«…Фоул выбирается из отсека "Союза", чтобы направиться к базовому блоку и выяснить, в чем дело. Вдруг появляется Лазуткин и начинает возиться с люком "Союза". Фоул понимает, что начинается эвакуация. "Что я должен делать, Саша?" – спрашивает он. Лазуткин не обращает внимания на вопрос – или не слышит его; в оглушительном вое сирены трудно расслышать даже собственный голос. Обхватив, как борец на арене, толстую вентиляционную трубу, Лазуткин разрывает ее пополам. Он размыкает одно за другим соединения проводов, чтобы освободить «Союз» для старта. Не произнося ни слова, один за другим выдергивает штекеры. Фоул молча смотрит на все это. Через минуту все соединения разомкнуты – кроме трубы, которая отводит конденсированную воду из «Союза» в центральную цистерну. Лазуткин показывает Фоулу, как отвинчивается эта труба. Фоул пробирается в «Союз» и начинает изо всех сил торопливо орудовать ключом.
Только убедившись, что Фоул все делает правильно, Лазуткин возвращается в "Спектр". Фоул по-прежнему считает, что утечка произошла в базовом блоке или в "Кванте". Но Лазуткину гадать ни к чему – он наблюдал, как все случилось, через иллюминатор и потому знает, где искать пробоину. Он ныряет головой вперед в люк «Спектра» и сразу же слышит свистящий звук – это воздух вытекает в космическое пространство. Невольно Лазуткина пронзает мысль: неужели все, конец?…
Чтобы спасти "Мир", нужно как-то закрыть люк модуля "Спектр". Все люки устроены одинаково: сквозь каждый проходит толстая вентиляционная труба, а также кабель из восемнадцати белых и серых проводов. Чтобы разрезать их, нужен нож. Лазуткин возвращается в основной модуль, где, как он помнит, были большие ножницы, – к Циблиеву, который как раз выходит на сеанс связи с Землей. И тут Лазуткин с ужасом видит, что ножниц нет. Находится только небольшой нож для зачистки проводов ("которым впору не кабель резать, а сливочное масло", – вспомнит он впоследствии), Фоул, справившись наконец с трубой, выходит из «Союза» и видит, что Лазуткин работает с люком "Спектра". "Я был абсолютно уверен, что он перепутал люк, – рассказывал потом Фоул. – И решил, что пока не буду вмешиваться. Но все время думал: не следует ли остановить его?". Однако лихорадочность, с которой работал Лазуткин, подействовала на Фоула. Он схватил свободные концы отрезанного кабеля и стал связывать их резиновым жгутом, который нашел в базовом блоке. "Зачем мы отсоединяем „Спектр“? – прокричал он Лазуткину в самое ухо, чтобы тот услышал его сквозь вой сирены. – Чтобы перекрыть утечку, нужно начать с „Кванта“!" "Майкл! Я сам видел – пробоина в „Спектре“". Лишь теперь Фоул понимает, почему Лазуткин так торопится: он хочет изолировать разгерметизированный "Спектр", чтобы успеть спасти станцию. Всего за три минуты ему удается разъединить пятнадцать из восемнадцати проводов. У трех оставшихся нет никаких разъемов. Лазуткин пускает в ход нож и обрезает кабели датчиков. Остался последний. Лазуткин принимается изо всех сил кромсать ножом провод – в стороны летят искры, а его бьет током: кабель оказался под напряжением.
Фоул видит ужас на лице у Лазуткина. "Давай, Саша! Режь!" Лазуткин, кажется, не реагирует. "Режь быстрее!" Но электрический кабель Лазуткин резать не хочет…
…В каком-то темном углу Лазуткин нащупывает соединительную часть электрокабеля – и, ориентируясь по ней, добирается до модуля "Спектр". Там он, наконец, находит разъем. Одним яростным рывком Лазуткин отсоединяет кабель.
Вместе с Фоулом они бросаются к внутреннему клапану "Спектра". Лазуткин хватается за него и хочет закрыть. Клапан не поддается. Причина ясна обоим: искусственная атмосфера станции, будто струя воды, с огромным напором вытекает сквозь люк и дальше, через пробоину, в космическое пространство… Конечно, Лазуткин мог бы перейти в «Спектр» и задраить клапан оттуда – но тогда он там навсегда останется и погибнет от удушья. Лазуткин не хочет героической смерти. Снова и снова вместе с Фоулом они пытаются закрыть люк «Спектра» со стороны станции. Но упрямый люк никак не поддается, не сдвигается ни на сантиметр…
…Клапан по-прежнему не поддается. У него гладкая поверхность и ни одной рукоятки. Если закрывать его, схватившись за край, можно потерять пальцы. "Крышку! – кричит Лазуткин. – Нужна крышка!" Фоул сразу понимает, что, раз внутренний клапан модуля не поддается, придется закрывать люк со стороны базового блока. Все модули снабжены двумя круглыми, похожими на крышку от мусорного бака заслонками – тяжелой и легкой. Поначалу Лазуткин хватается за тяжелую крышку, но она крепится множеством бандажей, и он понимает: времени все их перерезать уже нет. Он бросается к легкой крышке, держащейся лишь на двух бандажах, и перерезает их. Вместе с Фоулом они начинают прилаживать крышку к отверстию люка. Ее нужно закрепить скобами. И тут им везет – как только удается закрыть отверстие, перепад давления помогает им: воздушная струя намертво прижимает крышку к люку. Они спасены…»
Так жизнь еще раз подтвердила надежность российской станции, возможность восстановить его функции при разгерметизации одного из модулей.
На станции «Мир» космонавты жили подолгу. Здесь они проводили научные эксперименты и наблюдения в реальных условиях космического пространства, испытывали технические устройства.
На станции «Мир» было установлено множество мировых рекордов. Самые продолжительные полеты совершили Юрий Романенко (1987—326 суток), Владимир Титов и Муса Манаров (1988—366 суток), Валерий Поляков (1995—437 суток). Самое большое суммарное время на станции у Валерия Полякова (2 полета – 678 суток), Сергея Авдеева (3 полета – 747 суток). Рекорды среди женщин – у Елены Кондаковой (1995—169 суток), Шеннон Люсид (1996—188 суток).
На «Мире» побывали 104 человека. 5 раз совершал полеты сюда Анатолий Соловьев, 4 раза – Александр Викторенко, 3 раза – Сергей Авдеев, Виктор Афанасьев, Александр Калери и астронавт США Чарлз Прекорт.
На «Мире» работали 62 иностранца из 11 стран и Европейского космического агентства. Больше других из США – 44 и из Франции – 5.
На «Мире» осуществлено 78 выходов в открытый космос. Больше других выходил за пределы станции Анатолий Соловьев – 16 раз. Общее время, проведенное им в открытом космосе, составило 78 часов!
На станции проведено множество научных экспериментов. «Разговоры о том, что в последние годы на «Мире» не занимались наукой – обман, – говорит генеральный конструктор космической корпорации «Энергия» им. Королёва Юрий Семенов. – Поставлены блестящие эксперименты. "Плазменный кристалл" под руководством академика Фортова тянет на Нобелевскую премию. А также «Пелена» – обеспечение второго контура жизнеобеспечения. «Рефлектор» – новое качество телекоммуникаций. Выведение модуля в точку либрации для предотвращения магнитных бурь. Новый принцип холодильной установки в невесомости…»
«Мир» – уникальная орбитальная станция. Многие из космонавтов просто влюбились в нее. Говорит летчик-космонавт Анатолий Соловьев: «Пять раз летал в космос – и все пять раз на "Мир". Прибыв на станцию, ловил себя на мысли, что мои руки сами совершают привычные действия. Это подсознательная память тела, «Мир» вжился в подкорку. Отговаривала ли меня жена от полетов? Никогда. Сейчас могу признаться, что повод для ревности был: «Мир» забыть невозможно, как первую женщину. Стану стариком, но станцию не забуду».
Телескоп «Хаббл»
Приоритет изготовления телескопа оспаривается до сих пор. Согласно ряду документов, один из первых инструментов был сделан в Нидерландах Захарием Янсеном в 1604 году по итальянской модели 1590 года. Другие протоколы опросов свидетелей сообщают, что первые зрительные трубы были изобретены около 1605–1610 годов в Миддельбурге изготовителем очков Иоанном Лапреем. В любом случае уже в 1608 году телескопы делали многие мастера. В частности, Якоб Метциус.
В 1610 году Галилей создал телескоп с увеличением 32 раза! Астрономические исследования ученого принесли ему большую славу. Под впечатлением успехов Галилея Иоганн Кеплер вновь вернулся в 1610 году к прикладной оптике. Он предложил принципиально новую оптическую схему зрительной трубы. До этого в ней использовалась лишь одна комбинация линз – последовательное соединение рассеивающей (вогнутой) в качестве объектива и собирающей (выпуклой) в качестве окуляра.
Труба же Кеплера имела две выпуклые линзы, что помимо большего поля зрения впервые позволило получить прямое изображение наблюдаемого объекта. Такой телескоп мог служить визирным приспособлением, то есть из инструмента чисто наблюдательного становился еще и измерительным. А это значительно расширило область его применения.
Однако первые телескопы давали изображения заметно искаженные различными дефектами (аберрациями). Ученые – которые тогда и были главными телескопостроителями – пытались устранить их, увеличивая фокусное расстояние объектива.
Так было до 1668 года, когда Исаак Ньютон впервые построил инструмент совершенно нового типа – телескоп-рефлектор (зеркальный), лишенный хроматической аберрации, свойственной линзовым устройствам (рефракторам). Объективом в нем служило вогнутое металлическое зеркало. От качества изготовления последнего и зависело совершенство изображения.
Через двадцать один год после Ньютона английский астроном и оптик Вильям Гершель отшлифовал зеркало диаметром 122 сантиметра. В то время это был величайший в мире рефлектор.
Поняв, что увеличение размеров телескопов – прямой путь к новым открытиям, астрономы ведущих обсерваторий мира вступили в настоящее соревнование. В 1917 году американец Д. Ричи построил новый рефлектор для обсерватории Маунт-Вилсон, он много лет оставался самым большим в мире. Его 258-сантиметровое зеркало весило пять тонн при общей массе инструмента сто тонн.
В 1931 году немецкий оптик Б. Шмидт, а затем его советский коллега Д.Д. Максутов (1941) разработали два варианта конструкции комбинированных, зеркально-линзовых телескопов. Оба инструмента получили мировое признание и стали носить имена своих создателей.
В обычный зеркальный телескоп Максутов ввел корректирующую линзу, исправлявшую искажения, вносимые сферическим зеркалом. Уже первые подобные системы позволили получить уникальные по качеству фотографии звездного неба и выпустить фундаментальное астрономическое издание – атлас туманностей.
В истории телескопостроения рефракторы долго «боролись» с рефлекторами, пока, наконец, не победили последние. Самый большой из них, с шестиметровым главным зеркалом из стеклокристаллического материала – ситалла, был установлен в Специальной астрофизической обсерватории Российской АН на горе Семиродники возле станции Зеленчукской, на Северном Кавказе. Обработка семидесятитонного зеркала продолжалась до лета 1974-го, а регулярные наблюдения начались в феврале 1976 года – в общей сложности после шестнадцати лет подготовительных работ. Грандиозное 42-метровое сооружение в сборе весит 950 тонн. Этот телескоп «видит» небесные объекты до 26-й звездной величины, находящиеся на границе наблюдаемой Вселенной.
Еще в 1940-е годы астрономы осознали, что электромагнитное излучение космических объектов отнюдь не ограничивается видимым спектром, но распределяется практически по всем диапазонам – от радиоволн до гамма-лучей и что наблюдение в новых областях спектра может принести ценнейшую информацию, ранее совершенно недоступную.
Первыми в ряду «неоптических» приборов стали радиотелескопы, благодаря которым еще в те же 1940-е годы были открыты радиогалактики, невидимые даже для лучших тогдашних оптических инструментов. Исследователи сразу же оценили и то, что в отличие от последних новые приборы не зависят от капризов погоды. Что касается конструкции, то среди радиотелескопов, как и у оптических, царствуют рефлекторы. Зеркалом здесь служит металлический сетчатый параболоид, в фокусе которого установлена антенна. Наведенный в ней сигнал поступает на обработку в приемник, а из него – на регистрирующие приборы.
Крупнейший инфракрасный телескоп был построен на Мауна-Кеа (Гавайи, США) на высоте 4200 метров над уровнем моря с зеркалом диаметром 374 сантиметра. Он настолько совершенен, что может использоваться также и для визуальных наблюдений. Снабженный компьютерной системой управления, он может автоматически наводиться на заданный объект и отслеживать его. Слева – главное зеркало, справа – узел системы.
А в 1985 году в обсерватории Мауна-Кеа началась работа над десятиметровым составным рефлектором Кека, включающим 36 автономно управляемых шестиугольных зеркал поперечником 183 сантиметра каждое. Для более точной фиксации зеркал и общей фокусировки изображения разработано специальное разгрузочное устройство, ослабляющее напряжения в элементах конструкции.
Однако и возможности улучшения характеристик оптических телескопов не были исчерпаны. Стали использоваться электронные фотоумножители, позволяющие увеличить эффективность наблюдений почти на два порядка. Так, оснащенный ими 508-сантиметровый рефлектор Хейла в обсерватории Маунт-Паломар (Калифорния, США), построенный в 1948 году, обладает разрешающей способностью «простого» телескопа с зеркалом 25,4 метра. Сейчас это самый эффективный земной оптический инструмент.
За новой информацией телескопы отправились на околоземные орбиты. Так, космическая станция «Мир» была укомплектована модулем «Квант» с двумя специальными телескопами – ультрафиолетовым и инфракрасным. А приборы автоматической орбитальной обсерватории «Астрон» могли наблюдать космические объекты одновременно в рентгеновских и ультрафиолетовых лучах.
24 апреля 1990 года с запуском космического телескопа «Хаббл» начался поистине золотой век астрономии.
К разработке проекта космического телескопа НАСА совместно с Европейским космическим агентством приступило в конце 1970-х годов. Планировалось, что это будет космическая обсерватория, которую станут посещать каждые два-три года корабли с Земли для технического обслуживания и устранения поломок.
Свое имя телескоп получил в честь одного из выдающихся астрономов XX века Эдвина Хаббла, подлинного классика науки. Он оставил грандиозное наследие – эволюционирующий мир галактик, управляемый законом его имени. Хаббл сделал столь выдающиеся открытия, что они дают бесспорное право назвать Хаббла величайшим астрономом со времен Коперника.
Эдвин Хаббл родился 20 ноября 1889 года. Его детство прошло в крепкой дружной семье, где росли восемь детей. Астрономией Эдвин заинтересовался рано, вероятно, под влиянием своего деда по матери, построившего себе небольшой телескоп. В 1906 году Эдвин окончил школу, после чего поступил в Чикагский университет. Там работал астроном Ф.Р. Мультон, автор известной теории происхождения Солнечной системы. Он оказал большое влияние на дальнейший выбор Хаббла.
После окончания университета Хабблу удалось получить стипендию Родса и на три года уехать в Англию для продолжения образования. Однако вместо естественных наук ему пришлось изучать в Кембридже юриспруденцию.
Летом 1913 года Эдвин возвратился на родину, но юристом он не стал. Хаббл стремился к науке и вернулся в Чикагский университет, где в Йеркской обсерватории под руководством профессора Фроста подготовил диссертацию на степень доктора философии.
Весной 1917 года, когда он заканчивал свою диссертацию, США вступили в Первую мировую войну. Молодой ученый отклонил приглашение и записался добровольцем в армию. Летом 1919 года Хаббл демобилизовался и поспешил в Пасадену, чтобы работать в новой обсерватории Маунт-Вильсон. Хаббл работал здесь до своей смерти с четырехлетним перерывом во время Второй мировой войны.
В обсерватории он начал изучать туманности, сосредоточившись сначала на объектах, видимых в полосе Млечного Пути. Первое, что сделал Хаббл – это классифицировал их. Классификация эта продолжает служить науке, и все последующие модификации ее существа не затронули.
Уже одно установление истинной природы туманностей определило место Хаббла в истории астрономии. Но на его долю выпало и еще более выдающееся достижение – открытие закона красного смещения.
После войны в обсерватории, куда вернулся астроном, возобновилась разработка двухсотдюймового (508-сантиметрового) телескопа. Хаббл возглавил комитет по созданию перспективных планов исследований на новом инструменте, был членом комитета по управлению объединившихся обсерваторий Маунт-Вильсон и Маунт-Паломар. Главную задачу обсерватории Хаббл видел в решении космологической проблемы. «Можно с уверенностью предсказать, – убежденно говорил он, – что 200-дюймовик ответит нам, следует ли красное смещение считать свидетельством в пользу быстро расширяющейся Вселенной или оно обязано некоему новому принципу природы».
Хаббл умер от инсульта 28 сентября 1953 года. На Земле нет памятников Хабблу. Никому не известно даже, где он похоронен, такова была воля его жены. Его именем назван кратер на Луне, астероид № 2069 и космический телескоп – крупнейший в мире.
Телескоп весом в 11 тонн, при длине 13,1 метров и диаметре рефлектора 240 сантиметров, стоит 1,2 миллиардов долларов – больше ста миллионов долларов за тонну. По расчетам специалистов, «Хаббл» проработает на орбите до 2005 года.
На телескопе установлено несколько научных приборов. Широкоугольная камера предназначена для фотографирования поверхностей планет и их спутников. Камера для слабосветящихся объектов усиливает в сто тысяч раз попадающий на нее свет. Спектрограф для этого слабого света анализирует излучение и может выявить химический состав и температуру того, что его испустило. Так называемый спектрограф Годдарда определяет, как движется объект, испустивший свет.
«Хаббл» вывел на орбиту высотой 613 километров один из «Шаттлов» в апреле 1990 года. Началась работа телескопа с неудачи. Через два месяца после запуска стало ясно, что основное зеркало телескопа диаметром в два с половиной метра отклоняется у своих краев от расчетного размера на несколько микронов – пятидесятую часть толщины человеческого волоса. Но этого оказалось достаточным, чтобы практически перечеркнуть труд тысяч людей – изображение было неясным и расплывчатым.
Чтобы исправить последствия аберрации, были созданы сложные корректирующие программы, и изображение стали подправлять уже на Земле при помощи компьютеров. Но даже в таком виде телескоп «Хаббл» позволял сделать открытия: обнаружить черные дыры в центрах галактик, новый шторм на Сатурне, расходящиеся кольца вокруг сверхновой звезды. Тем не менее было очевидно, что без ремонта не обойтись. Менять зеркало в космических условиях невозможно, поэтому было решено на каждый из приборов телескопа «надеть очки»: добавить небольшие устройства для коррекции. По два маленьких зеркальца исправляли недостаток большого.
Ранним утром 2 декабря 1993 года семеро астронавтов отправились на космическом корабле многоразового использования ремонтировать телескоп. Они вернулись через одиннадцать дней, сделав все, что было запланировано, и установив рекорд по выходам в космос – их было пять.
Еще через четыре дня в комнате обработки данных Института космического телескопа в Балтиморе, штат Мэриленд, собрались ученые, с нетерпением ждавшие первых картинок с исправленной обсерватории. Они появились на экране терминала в час ночи, и комната сразу наполнилась радостными воплями – теперь телескоп работал на все сто процентов. А его возможности таковы, что из любого города Америки он смог бы различить двух светлячков, порхающих на расстоянии вплоть до Токио, будь они не ближе трех метров друг от друга.
За годы своего полета за облаками космическая обсерватория совершила несколько десятков тысяч оборотов вокруг Земли, «накрутив» при этом миллиарды километров.
Телескоп «Хаббл» позволил наблюдать уже более восьми тысяч небесных объектов. Для сравнения – примерно столько же звезд видно с Земли невооруженным глазом. В его памяти хранятся «адреса» пятнадцати миллионов звезд, которые он может исследовать. Два с половиной триллиона байтов информации, набранной телескопом, хранится на 375 оптических дисках. Ученым около сорока стран он позволил опубликовать более тысячи научных работ.
Благодаря «Хабблу» были сделаны открытия, вошедшие в историю астрономии и даже в институтские учебники. Удалось выяснить, к примеру, что черные дыры действительно существуют и обычно расположены в центрах галактик. Или то, что первичная стадия зарождения планет одинакова для всех звезд, а темное пятно на Нептуне не стоит на месте: оно исчезает в одной полусфере и появляется в другой. Другой вывод – у спутника Юпитера, Европы, есть тонкая кислородная атмосфера. Еще открытие – пояс из сотен миллионов комет окружает Солнечную систему.
Телескоп помог найти новые спутники за внешним кольцом Сатурна, сделать первую карту поверхности астероида, пролетающего неподалеку от Земли, позволил обнаружить в межгалактическом пространстве гелий, оставшийся со времени Большого взрыва. «Хаббл» дал возможность заглянуть в самые удаленные уголки космоса, изменить наши воззрения на самые ранние стадии возникновения Вселенной.
«Хаббл» обнаружил новый класс гравитационных линз, которые будут использоваться в качестве «телескопов» для исследования Вселенной. С их помощью астрономы могут рассмотреть, как шел тогда процесс образования звезд в голубой галактике.
Телескоп помог ученым измерить скорость вращения газового диска эллиптической галактики М87 в созвездии Девы, удаленной от Земли на пятьдесят миллионов световых лет. Оказалось, что вращается он вокруг «чего-то» с массой в три миллиарда солнечных масс. «Если это не черная дыра, тогда я вообще не представляю, что это такое, – считает профессор Форд из Института космического телескопа. – Мы абсолютно не ожидали увидеть вращающуюся спиральную структуру в центре эллиптической галактики».
Правообладателям!
Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.