Текст книги "Глазами физика. От края радуги к границе времени"
Автор книги: Уолтер Левин
Жанр: Прочая образовательная литература, Наука и Образование
Возрастные ограничения: +12
сообщить о неприемлемом содержимом
Текущая страница: 4 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]
Теперь вы понимаете, почему астрономы вечно охотятся за так называемыми стандартными свечами – объектами с известной светимостью. Они позволяют оценивать расстояния, применяя разные остроумные способы наподобие мерной рулетки для космоса. И они играли жизненно важную роль в создании того, что мы сегодня знаем как астрономическую лестницу расстояний.
Для измерения расстояний на первой ступеньке этой лестницы используется параллакс. Благодаря фантастически точным измерениям параллакса спутником Hipparcos мы можем с большой точностью измерять расстояния до объектов, удаленных от Земли на несколько тысяч световых лет. Далее идет следующая ступень – измерения с помощью цефеид, которые позволяют получить надежные оценки расстояний до объектов, удаленных от Земли до ста миллионов световых лет. На следующих ступеньках астрономы применяют ряд экзотических методов, слишком сложных с технической точки зрения, чтобы подробно их здесь описывать, многие из которых базируются на использовании стандартных свечей.
Задача измерения расстояний до небесных тел все больше и больше усложняется, ведь мы хотим измерять их все дальше и дальше от Земли. Это отчасти объясняется замечательным открытием, сделанным Эдвином Хабблом в 1925 году, согласно которому все галактики во Вселенной удаляются друг от друга. Данное открытие Хаббла – одно из самых шокирующих и значимых в астрономии и, возможно, во всей науке прошлого века; с ним может соперничать разве что теория естественного отбора Дарвина.
Хаббл заметил, что свет, излучаемый галактиками, указывает на явный сдвиг к менее энергетической, «красной» стороне спектра, где длина волн больше. В астрономии данное явление называется красным смещением. Чем оно больше, тем быстрее удаляется от нас галактика. На Земле этот эффект связан со звуком и известен как эффект Доплера; им объясняется, почему мы можем по звуку сирены без труда определить, например, приближается к нам машина скорой помощи или удаляется от нас (мы обсудим этот эффект более подробно в главе 13).
Хаббл обнаружил в отношении абсолютно всех галактик, красное смещение и расстояние до которых смог измерить, что чем дальше они находились, тем быстрее удалялись. Следовательно, Вселенная расширяется. Поистине величайшее открытие! Каждая галактика во Вселенной удаляется от любой другой галактики.
Это может привести к большой смысловой путанице в связи с расстояниями до галактик, удаленных на миллиарды световых лет. Что именно мы имеем в виду: расстояние в момент излучения света (скажем, 13 миллиардов лет назад) или расстояние в настоящий момент, когда объект за эти 13 миллиардов лет существенно отдалился от Земли? Один астроном скажет, что расстояние составляет около 13 миллиардов световых лет (это называется временем прохождения света), тогда как другой сообщит о расстоянии в 29 миллиардов световых лет до того же объекта (это называется сопутствующим расстоянием).
Выводы Хаббла с тех пор известны как закон Хаббла: скорость, с которой галактики удаляются от нас, прямо пропорциональна их расстоянию от нас. Чем дальше галактика, тем быстрее она мчится прочь.
Измерить скорость галактик было относительно легко – она непосредственно связана с величиной красного смещения. Но вот получить точные расстояния – совсем другое дело; это оказалось самой трудной частью задачи. Вы же помните, что при оценке расстояния до туманности Андромеды Хаббл ошибся в 2,5 раза. Он составил довольно простое уравнение v = H0D, где v – скорость данной галактики, D – расстояние до нее от нас и Н0 – константа, которую теперь принято называть постоянной Хаббла. По Хабблу она равна приблизительно 500 километров в секунду на мегапарсек (1 мегапарсек – 3,26 миллиона световых лет). Погрешность этой постоянной – около 10 процентов. Стало быть, по Хабблу, если галактика находится в 5 мегапарсеках от Земли, то ее скорость по отношению к нам составляет около 2500 километров в секунду.
Сегодня утверждение, что Вселенная быстро расширяется, не подлежит сомнению. Но открытие Хаббла этим не ограничивалось. Зная значение постоянной Хаббла, можно было отвести часы назад и определить время, прошедшее с момента Большого взрыва, и таким образом вычислить возраст Вселенной. Сам Хаббл оценивал его приблизительно в 2 миллиарда лет, что явно конфликтовало с данными о возрасте Земли, который, по подсчетам геологов – современников астронома, составлял никак не менее 3 миллиардов лет. Этот факт чрезвычайно беспокоил Хаббла, и небезосновательно. Конечно, он не знал о целом ряде совершенных им систематических ошибок. Мало того что он иногда путал разные типы переменных цефеид, он также ошибочно принимал облака газа, в которых формировались звезды, за яркие звезды из удаленных галактик.
Чтобы по достоинству оценить результаты восьмидесятилетнего прогресса в деле измерения расстояний до звезд, достаточно вспомнить историю самой постоянной Хаббла. Астрономы пытаются уточнить ее значение на протяжении вот уже почти столетия. Это привело не только к семикратному уменьшению данной константы, что резко увеличило размеры Вселенной, но и к изменению возраста Вселенной с исходных 2 миллиардов лет по Хабблу до почти 14 миллиардов лет по текущей оценке, точнее говоря, 13,75 ± 0,11 миллиарда лет. В конце концов, основываясь на дальнейших наблюдениях (частично с помощью потрясающего орбитального телескопа, носящего имя Хаббла), мы смогли прийти к согласию, что постоянная Хаббла составляет 70,4 ± 1,4 километра в секунду на мегапарсек. Погрешность – всего 2 процента, что действительно невероятно!
Просто подумайте об этом. Измерения по принципу параллакса, применяемые с 1838 года, послужили фундаментом для разработки новых инструментов и математических методов, позволяющих преодолеть миллиарды световых лет и достичь самого края наблюдаемой Вселенной.
Впрочем, несмотря на поистине потрясающий прогресс в решении подобных астрономических загадок, еще предстоит разгадать очень много тайн. Мы научились измерять долю темной материи и темной энергии во Вселенной, но понятия не имеем, что это такое. Мы знаем возраст Вселенной, но все еще задаемся вопросом, конечна ли она. Мы весьма точно измеряем гравитационное притяжение, электромагнетизм и ядерные силы, но понятия не имеем, будут ли они когда-либо объединены в единую теорию. У нас также нет ни малейшего представления о том, каковы шансы на существование какой-либо разумной жизни в нашей собственной или какой-либо другой галактике. Таким образом, нам еще предстоит долгий путь. Тем не менее просто удивительно, сколько ответов нам уже дали инструменты физики, как сильно они помогли астрономам достичь столь высокой степени точности измерений межзвездного пространства.
3. Движущиеся тела
Попробуйте провести один любопытный эксперимент. Встаньте на весы в ванной комнате – но не на те новомодные, которые установлены в кабинете врача, и не на те, что со стеклянным цифровым табло, на которое надо нажать пальцем ноги для включения, а на старые добрые обычные весы для ванной. Не имеет значения, будете вы в обуви или босиком (вам ни на кого не нужно производить впечатления), какие цифры покажут весы и насколько эти цифры вам понравятся. Встали? Теперь быстро поднимитесь на цыпочки и задержитесь в этом положении. Вы увидите, что весы, похоже, немного сошли с ума. Возможно, чтобы четко понять, что происходит, вам придется проделать это несколько раз, потому что все происходит довольно стремительно.
Сначала стрелка прыгает вверх, верно? Затем движется вниз и устанавливается на показателе вашего веса, где и была до этого, хотя на некоторых весах она (или цифра на цифровой панели) может немного колебаться, прежде чем стабилизируется. Когда вы опуститесь на пятки, особенно если сделаете это резко, стрелка сперва пойдет вниз, потом проскочит вверх мимо вашего веса и в итоге опять замрет на показателе, который вам, возможно, приятно видеть (а может, вы предпочли бы оставаться в неведении). Что все это значит? В конце концов, вы же весите одинаково независимо от того, встаете на цыпочки или опускаетесь на пятки, не так ли? Или нет?
Чтобы это выяснить, нам (хотите верьте, хотите нет) потребуется помощь самого сэра Исаака Ньютона, моего кандидата на звание величайшего физика всех времен и народов. Некоторые из моих коллег с этим не согласны, да и вы, вероятно, отдаете предпочтение Альберту Эйнштейну, тем не менее никто не сомневается в том, что Эйнштейн и Ньютон возглавляют этот рейтинг. Почему я голосую за Ньютона? Потому что его открытия одновременно и фундаментальны, и чрезвычайно разнообразны. Он исследовал природу света и разработал теорию цвета. Для изучения движения планет он построил первый рефлекторный телескоп, ставший настоящим прорывом по сравнению с используемым до этого рефракторным телескопом, и даже сегодня почти все крупные телескопы строятся на базовых принципах конструкции Ньютона. Изучая свойства движения жидкостей, он основал новую большую область физики, и ему удалось вычислить скорость звука (он ошибся примерно на 15 процентов). Ньютон даже изобрел новую отрасль математики: математический анализ. Но, на наше счастье, нам вовсе не обязательно прибегать к сложным вычислениям, чтобы оценить величайшие открытия ученого, известные всему миру как законы Ньютона. Надеюсь, что в этой главе я покажу вам всю их масштабность и значимость.
Три закона движения Ньютона
Первый закон Ньютона гласит: если на тело не действуют другие тела (либо действие этих тел компенсируется), то оно, будучи в состоянии покоя, так и остается в этом состоянии, а тело, пребывающее в движении, продолжает движение в том же направлении и с той же скоростью. Сам Ньютон формулировал это так: «Тело в состоянии покоя сохраняет это состояние, а тело в равномерном движении по прямой линии движется с той же скоростью в прежнем направлении, если только его не вынуждают изменить данное состояние прилагаемые к нему силы». Это закон инерции.
Концепция инерции нам всем отлично знакома, но если задуматься, понимаешь, что, по сути, она противоречит здравому смыслу. Сегодня мы принимаем этот закон как нечто само собой разумеющееся, даже несмотря на то, что часто он идет вразрез с нашим повседневным опытом. В конце концов, в реальном мире тела крайне редко движутся по прямой линии и обычно не продолжают двигаться до бесконечности. Мы ожидаем, что в какой-то момент они непременно остановятся. Ни один игрок в гольф никогда не сформулировал бы закона инерции, потому что только после крайне редких ударов мячик движется строго по прямой и очень часто останавливается, так и не докатившись до вожделенной лунки. Интуитивной была и остается совершенно противоположная идея, что тела от природы стремятся к состоянию покоя, доминировавшая в западном мышлении на протяжении тысячелетий, вплоть до появления революционного закона Ньютона.
Ньютон перевернул наше понимание движения объектов с ног на голову, объяснив, что мячик для гольфа часто останавливается, не докатившись до лунки, из-за того, что его движение замедляет сила трения; а Луна не уносится в космос, продолжая кружить вокруг Земли, потому что ее удерживает на орбите сила земного притяжения.
Чтобы оценить реальность инерции на более интуитивном уровне, вспомните, как трудно, катаясь на коньках, сделать поворот в конце катка – ваше тело упрямо стремится вперед, и вам надо точно рассчитать, какую силу применить к конькам и при каком угле наклона, чтобы успешно развернуться и поехать в другую сторону, а не свалиться на лед или не врезаться в ограждение. Если вы лыжник, подумайте о том, насколько проблематично быстро изменить курс, чтобы избежать столкновения с другим лыжником, вдруг оказавшимся на вашем пути. Причина, по которой мы гораздо чаще замечаем инерцию в подобных случаях, нежели в обычной повседневной жизни, заключается в том, что в обеих ситуациях сила трения, которая в нормальных условиях эффективно замедляет наши движения и помогает без труда изменить направление, очень мала. Только представьте, что бы произошло, если бы поле для гольфа было ледяным, – вы бы сразу увидели, что мяч без трения может двигаться вперед очень-очень далеко, намного дальше, чем на обычном покрытии.
А теперь обсудим, насколько революционной была эта идея Ньютона. Мало того что она перевернула прежние представления о движущихся телах, она еще указала путь к открытию множества постоянно действующих на нас невидимых сил, таких как силы трения, силы тяжести, магнитные и электрические силы. Вклад Ньютона настолько важен, что единица силы в физике названа его именем. Но великий ученый не только позволил нам «увидеть» эти скрытые силы, но и показал, как их измерить.
Своим вторым законом Ньютон обеспечил нас удивительно простым, но очень полезным инструментом для расчета сил. По мнению некоторых людей, знаменитое F = ma – самое важное уравнение всей физики. Формулирую словами: результирующая сила, действующая на тело (F), равна его массе (m), умноженной на его ускорение (а).
Чтобы наглядно увидеть всего один из многочисленных примеров, объясняющих, почему эта формула очень полезна в повседневной жизни, рассмотрим рентгеновский аппарат. Согласитесь, определить точный диапазон энергий рентгеновских лучей при использовании этого оборудования чрезвычайно, жизненно важно. Вот как нам помогает в этом уравнение Ньютона.
Один из главных выводов в физике (мы подробнее обсудим его чуть позже) заключается в том, что на заряженную частицу (скажем, электрон, протон или ион), помещенную в электрическое поле, действует определенная сила. Если нам известен заряд частицы и напряженность электрического поля, можно вычислить действующую на нее электрическую силу. А зная ее, мы с помощью второго закона Ньютона можем вычислить ускорение частицы[10]10
Я исхожу из предположения, что в данном случае сила тяготения, действующая на заряженную частицу, настолько мала, что ее можно не принимать в расчет.
[Закрыть].
Электроны в рентгеновском аппарате, прежде чем ударить по намеченной цели, ускоряются внутри рентгеновской трубки. Скорость, с которой они ударяют в цель, определяет диапазон производимых при этом энергий рентгеновского излучения. Изменение напряженности электрического поля позволяет изменить ускорение электронов. Таким образом, скоростью, с которой электроны ударяют в цель, можно управлять, выбирая нужный диапазон энергий рентгеновского излучения.
Для облегчения подобных расчетов физики используют в качестве единицы силы ньютон. 1 ньютон – это сила, ускоряющая тело массой 1 килограмм на 1 метр в секунду за секунду. Почему мы говорим «в секунду за секунду»? Потому что при ускорении скорость все время меняется; то есть, иными словами, после первой секунды ее рост не прекращается. Если ускорение постоянно, скорость каждую секунду изменяется на одну ту же величину.
Чтобы стало еще понятнее, приведу пример с шаром для боулинга, падающего с высотки на Манхэттене, скажем со смотровой площадки Эмпайр-стейт-билдинг. Известно, что ускорение падающих объектов на Земле составляет примерно 9,8 метра в секунду за секунду; его называют ускорением свободного падения и обозначают в физике буквой g. (Ради простоты изложения я в данном случае игнорирую сопротивление воздуха; позже мы поговорим об этом подробнее.) Через одну секунду шар для боулинга летит со скоростью 9,8 метра в секунду. К концу второй секунды он ускоряется еще на 9,8 метра в секунду, следовательно, движется со скоростью 19,6 метра в секунду. А к концу третьей секунды он уже будет лететь со скоростью 29,4 метра в секунду. Чтобы долететь со смотровой площадки до земли, ему требуется около 8 секунд. Таким образом, его скорость к этому моменту составляет 8 раз по 9,8, то есть около 78 метров в секунду (приблизительно 280 километров в час).
Кстати, вы знаете о весьма распространенном мифе, что если бросить с верхушки Эмпайр-стейт-билдинг монетку и попасть в человека, то его можно убить? Тут я опять игнорирую роль сопротивления воздуха, которая – я подчеркиваю – в данном случае будет весьма значительной. Но даже без ее учета монетка, упавшая вам на голову со скоростью около 78 метров в секунду, вряд ли вас убьет.
Сейчас довольно удачный момент, чтобы разобраться с одной проблемой, которая будет неоднократно встречаться в этой книге, поскольку она часто возникает в физике – разницей между массой и весом. Обратите внимание, что Ньютон использует в своем уравнении массу, а не вес тела, и хотя вы, скорее всего, думаете, что это одно и то же, в действительности это принципиально разные понятия. Мы обычно используем как единицу веса килограмм (и в этой книге тоже), но на самом деле это единицы массы.
Разница между ними довольно проста. Ваша масса остается одинаковой независимо от того, в каком месте Вселенной вы находитесь. Правда-правда – и на Луне, и в открытом космосе, и на поверхности какого-нибудь астероида. При смене места изменяется не масса, а вес. Так что же такое вес? Вот тут все несколько усложняется. Вес – это результат гравитационного притяжения. Вес является силой: это масса, умноженная на гравитационное ускорение (F = mg). Таким образом, наш вес варьируется в зависимости от воздействующей на нас силы тяготения, поэтому космонавты на Луне весят меньше. Гравитация на Луне в шесть раз меньше, чем на Земле, так что на Луне человек весит лишь одну шестую часть от своего веса на Земле.
На тело определенной массы действует приблизительно одинаковая сила земного притяжения, не зависящая от того, где именно на Земле оно находится. Следовательно, вполне правомерно говорить: «Он весит восемьдесят килограммов», несмотря на то что при этом мы путаем две категории – массу и вес. Я долго и упорно думал, стоит ли использовать в этой книге специальную физическую единицу силы (то есть вес), а не килограммы, и решил этого не делать, потому что тогда обсуждение получится слишком запутанным. Вряд ли даже самый фанатичный физик, весящий 80 килограммов, сказал бы: «Я вешу 784 ньютона» (80 × 9,8 = 784). Так что вместо этого я просто прошу запомнить, в чем разница между массой и весом, поскольку вскоре мы вернемся к данному вопросу, выясняя, почему весы сходят с ума, когда вы, стоя на них, поднимаетесь на цыпочки.
Тот факт, что ускорение свободного падения на Земле фактически везде одинаково, базируется на еще одном таинственном обстоятельстве, о котором вы, возможно, наслышаны: что тела с разной массой падают с одинаковой скоростью. В известной истории о Галилео Галилее, впервые рассказанной в его ранней биографии, описывается, как он проводил эксперимент, одновременно бросая с верхушки Пизанской башни пушечное ядро и деревянный шар меньшего размера. Предположительно, он делал это, чтобы опровергнуть приписываемое Аристотелю утверждение, будто более тяжелые предметы падают быстрее, чем легкие. Этот рассказ у многих вызывал сомнение, и сегодня, кажется, уже для всех очевидно, что Галилей никогда не проводил такого эксперимента, тем не менее история по-прежнему популярна. Причем настолько, что командир «Аполлона 15» астронавт НАСА Дэвид Скотт, как известно, одновременно бросил на поверхность Луны молоток и перо сокола, чтобы посмотреть, будут ли они падать вниз с одинаковой скоростью и в вакууме. Это замечательное видео можно найти в интернете.
Лично меня в этом видео поражает то, как медленно падают оба предмета. Если не слишком над этим задумываться, можно было бы ожидать, что они будут падать быстро, по крайней мере молоток. Но оба падают медленно – потому что ускорение свободного падения на Луне в шесть раз меньше, чем на Земле.
Почему же Галилей был прав, утверждая, что два тела разной массы приземлятся одновременно? Потому что ускорение свободного падения одинаково для всех объектов. Согласно формуле F = ma, чем больше масса, тем больше сила тяготения, но ускорение у всех объектов одно и то же. Таким образом, они достигают земли с одинаковой скоростью. Конечно, объект с большей массой будет иметь большую энергию и, следовательно, сильнее ударяться о землю.
Тут важно отметить, что перо и молоток ни за что не приземлилась бы в одно и то же время, если бы вы провели этот эксперимент на Земле. Это результат сопротивления воздуха, которое мы до сих пор сбрасывали со счетов. Сопротивление воздуха – сила, противодействующая движению движущихся тел. Кроме того, ветер будет гораздо сильнее влиять на перо, нежели на молоток.
Это подводит нас к очень существенной особенности второго закона Ньютона. Слово результирующая в приведенном выше уравнении критически важно, поскольку в природе на тело практически всегда действует более одной силы и все они должны приниматься во внимание. Это означает, что их нужно суммировать. Но на самом деле все не так просто, как может показаться на первый взгляд. Дело в том, что силы являются тем, что мы называем векторами, то есть у них есть не только величина, но и направление, что, в свою очередь, означает, что для определения результирующей силы вы не можете просто сложить цифры, скажем, 2 + 3 = 5. Предположим, например, что на тело массой 4 килограмма действуют всего две силы: одна, в 3 ньютона, направлена вверх, а другая, в 2 ньютона, – вниз. Их сумма составляет 1 ньютон с направленностью вверх, и согласно второму закону Ньютона данное тело будет двигаться вверх с ускорением 0,25 метра в секунду за секунду.
Сумма двух сил даже может быть равна нулю. Например, если я поставлю объект массой m на свой стол, то по второму закону Ньютона на него будет действовать сила тяготения mg (масса × ускорение свободного падения) ньютонов в направлении вниз. Поскольку данное тело не ускоряется, результирующая сила, действующая на него, должна равняться нулю. Это означает, что должна быть другая сила, равная mg ньютонам, направленная вверх. Это сила, с которой стол толкает объект вверх. Сила mg, направленная вверх, суммируется с силой mg, направленной вниз, и в сумме они дают силу, равную нулю!
Это подводит нас к третьему закону Ньютона: «У каждого действия всегда есть равное противодействие». Это означает, что силы, с которыми два тела воздействуют друг на друга, всегда равны и имеют противоположную направленность.
Некоторые из последствий данного закона очевидны на интуитивном уровне, например, винтовка при выстреле дает отдачу в плечо стреляющего. Но учтите также, что когда вы давите на стену, она давит на вас в противоположном направлении с точно такой же силой, как вы на нее. И клубничный торт, купленный на день рождения, давит на блюдо с той же силой, с какой блюдо давит на него. В сущности, каким бы странным ни казался третий закон Ньютона, мы с вами буквально окружены его примерами в действии.
Вам когда-нибудь приходилось, включив кран с присоединенным к нему лежащим на земле шлангом, видеть, как тот извивается, словно змея, а если вам особенно повезло, обрызгивает вашего не успевшего отбежать младшего братишку? Почему это происходит? Потому что вода, выталкиваемая из шланга, тоже давит на него, в результате чего шланг обливает все вокруг. И, само собой, вы пробовали надуть воздушный шарик, а затем отпустить его, чтобы посмотреть, как он бешено мечется по комнате. А все дело в том, что шар выталкивает воздух и воздух, выходящий из него, толкает шар в противоположном направлении, вынуждая носиться вокруг – этакая воздушная версия извивающегося садового шланга. По этому же принципу работают реактивные самолеты и ракеты. Они выталкивают газ с очень большой скоростью, что заставляет их двигаться в противоположном направлении.
Чтобы до конца понять, насколько необыкновенна и глубока эта идея, рассмотрим, что происходит согласно законам Ньютона, когда мы бросаем яблоко с тридцатиэтажного здания. Мы знаем, что ускорение будет g, то есть 9,8 метра в секунду за секунду. Теперь предположим, что масса яблока составляет около половины килограмма. Используя второй закон, F = ma, вычисляем, что Земля притягивает яблоко с силой 0,5 × 9,8 = 4,9 ньютона. Пока все идет нормально.
Теперь смотрим, что происходит в соответствии с третьим законом: если Земля притягивает яблоко с силой 4,9 ньютона, то и яблоко притягивает Землю с силой 4,9 ньютона. Таким образом, выходит, что, когда яблоко падает на Землю, Земля падает на яблоко. Звучит нелепо, верно? Но погодите. Поскольку масса Земли несравненно больше массы яблока, цифры получаются довольно дикие. Так как масса Земли нам известна (около 6 × 1024 килограммов), мы можем вычислить, насколько сильно она смещается в направлении яблока: где-то на 10−22 метра, то есть около одной десятимиллионной размера протона. Это расстояние настолько мало, что его просто невозможно измерить; по сути, оно бессмысленно.
Утверждение, что два тела воздействуют друг на друга с равной силой противоположной направленности, работает повсюду в нашей жизни, и именно оно виновато в том, что ваши весы сходят с ума, когда вы встаете на них на цыпочки. Это возвращает нас к вопросу, что же такое вес, и позволяет лучше это понять.
Когда вы стоите на весах, земное притяжение давит на вас вниз с силой mg (где m – ваша масса), а весы толкают вас вверх с той же силой, так что результирующая сила, действующая на вас, равна нулю. На самом деле ваши весы измеряют именно эту толкающую вверх силу, и именно она отображается на циферблате как ваш вес. Но, как вы помните, вес – не то же самое, что масса. Чтобы изменилась ваша масса, вам придется сесть на диету (или, наоборот, начать есть больше); изменить же вес гораздо легче и быстрее.
Предположим, что ваша масса (m) – 55 килограммов. Когда вы встаете на весы, вы давите на них с силой mg и весы воздействуют на вас с той же силой, mg. Результирующая сила, воздействующая на вас, равна нулю. Сила, с которой весы давят на вас, отобразится на их шкале. Например, если они указывают вес в килограммах, вы это и увидите: 55 килограммов.
А теперь давайте взвесим вас в лифте. Пока лифт стоит на месте (или движется с постоянной скоростью), вы не ускоряетесь (как и лифт) и весы показывают все те же 55 килограммов, то есть столько же, как и при взвешивании в ванной комнате. Мы входим в лифт (он находится в состоянии покоя), вы встаете на весы и они показывают 55 килограммов. Теперь я нажимаю кнопку верхнего этажа, и лифт какое-то краткое время набирает скорость. Предположим, что его ускорение постоянно и составляет 2 метра в секунду за секунду. В течение короткого времени, пока лифт разгоняется, результирующая сила, действующая на вас, не может быть равна нулю. Согласно второму закону Ньютона она (Fрез) должна быть Fрез = maрез. Поскольку ускорение составляет 2 метра в секунду за секунду, результирующая сила, действующая на вас по направлению вверх, будет m × 2. Так как действующая на вас сила тяжести будет mg и направлена вниз, должна быть сила mg + m² (что можно также записать в виде m(g + 2)), действующая на вас в направлении вверх. Откуда же она берется? Она должна исходить от ваших весов (откуда же еще?). Весы воздействуют на вас силой m(g + 2), направленной вверх. Но вспомните, что вес, отображаемый на весах, – это сила, с которой они толкают вас вверх. В результате весы говорят вам, что ваш вес составляет около 65 килограммов (g равняется около 10 метров в секунду за секунду). Похоже, вы довольно сильно потолстели!
Согласно третьему закону Ньютона, если весы воздействуют на вас с силой m(g + 2), направленной вверх, то и вы должны прилагать к ним такую же силу противоположной направленности. Далее, по логике, если весы давят на вас с той же силой, с какой вы давите на них, то результирующая сила, действующая на вас, равна нулю, следовательно, вы не можете ускориться. Однако, рассуждая таким образом, вы совершаете весьма распространенную ошибку. На вас действуют только две силы: mg, направленная вниз вследствие силы тяжести, и m(g + 2), направленная вверх со стороны весов. Стало быть, к вам прилагается результирующая сила 2m, направленная вверх, которая ускоряет вас на 2 метра в секунду за секунду.
В тот момент, когда лифт прекращает ускоряться, ваш вес возвращается к норме. Следовательно, он увеличивается лишь в течение очень короткого промежутка времени, пока растет ускорение.
Как вы уже, наверное, догадались, если лифт ускоряется, двигаясь вниз, вы теряете вес. В течение того времени, что лифт разгоняется вниз с ускорением 2 метра в секунду за секунду, весы будут показывать, что ваш вес равен m(g–2), то есть около 44 килограммов. Поскольку лифт, идущий вверх, должен в итоге остановиться, ему для этого нужно короткое время разгоняться в направлении вниз. Таким образом, ближе к концу подъема вы увидите, что довольно сильно похудели, что, возможно, вас порадует! Однако вскоре после того, как лифт полностью остановится, ваш вес снова вернется к нормальному показателю (в нашем примере к 55 килограммам).
Теперь предположим, что какой-то ваш недоброжелатель перережет трос и вы полетите вниз по шахте лифта с ускорением свободного падения g. Понятно, что в этот момент вы вряд ли будете думать о физике, но это был бы весьма интересный (и весьма короткий) эксперимент. Ваш вес составил бы m(g – g) = 0, то есть вы стали бы невесомым. Учитывая, что весы будут падать вниз с таким же ускорением, что и вы, они перестанут воздействовать на вас направленной вверх силой. И если бы вы в этот миг посмотрели вниз на весы, то увидели бы, что они показывают ноль. В сущности, вы бы парили в воздухе, и все, что находилось в лифте, парило бы вместе с вами. Например, если бы у вас был стакан воды, вы запросто могли бы перевернуть его вверх дном, и вода не вылилась бы. Впрочем, это один из тех экспериментов, которые я настоятельно рекомендую никогда не проводить!
Это объясняет, почему космонавты парят в космических кораблях. Когда космический модуль, или шаттл (то есть многоразовый транспортный космический корабль), находится на орбите, он фактически пребывает в состоянии свободного падения – подобно летящему вниз лифту. Но что же такое свободное падение? Ответ может вас удивить. Свободное падение – это когда на тело действует только сила земного притяжения и больше никаких других сил. На орбите космонавты, космический корабль и все, что в нем, находятся в состоянии свободного падения – падают на Землю. Причина, почему космонавты не расплющиваются, заключается в том, что Земля изогнута и космонавты, космический корабль и все, что в нем, движутся так быстро, что по мере их падения на Землю поверхность планеты выгибается от них и они не шлепаются на нее.
Таким образом, космонавты в шаттле невесомы. Оказавшись в таком космическом корабле, вы могли бы подумать, что там вообще не действует сила тяготения; в конце концов, в нем ничто не имеет веса. Часто говорят, что шаттл на орбите представляет собой среду состояния невесомости, поэтому вы так все и воспринимаете. А между тем, если бы не было силы земного притяжения, корабль просто не мог бы оставаться на орбите.
Правообладателям!
Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.Читателям!
Оплатили, но не знаете что делать дальше?