Электронная библиотека » Уолтер Левин » » онлайн чтение - страница 3


  • Текст добавлен: 22 декабря 2016, 13:00


Автор книги: Уолтер Левин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 3 (всего у книги 23 страниц) [доступный отрывок для чтения: 7 страниц]

Шрифт:
- 100% +

Физика уже объяснила нам очень многое: красоту и хрупкость радуг, существование черных дыр, особенности движения планет, последствия взрыва звезд, причину увеличения скорости вращения фигуристки при опускании рук, причину невесомости астронавтов в космосе, формирование химических элементов во Вселенной, время рождения Вселенной, а также ответила на вопросы о том, как флейта создает музыку, как генерируется электричество, которое движет нашими телами и экономикой, каким был звук Большого взрыва. Физика позволила нам заглянуть и в наименьшие зоны субатомного мира, и в самые дальние уголки Вселенной.

Мой друг и коллега Виктор Вайскопф, который к моему прибытию в МТИ уже по праву считался его старейшиной, написал книгу под замечательным названием The Privilege of Being a Physicist («Привилегия быть физиком»), весьма точно отражающим чувства, испытанные мной в тот момент, когда я оказался в центре одного из самых захватывающих периодов астрономических и астрофизических открытий с тех времен, как земляне впервые начали пристально всматриваться в ночное небо. Люди, с которыми я работал бок о бок в МТИ, изобретали потрясающе творческие и сложные методы, позволяющие им отвечать на самые фундаментальные научные вопросы. И это была моя безусловная привилегия – помогать расширять коллективные знания человечества о звездах и Вселенной и при этом вносить посильный вклад в то, чтобы несколько поколений молодых людей поняли и полюбили эту великолепную область науки.

С того дня, как изотопы впервые распались буквально в моих руках, я не перестаю восторгаться открытиями в физике, и старыми, и новыми; ее богатой историей и постоянно расширяющимися границами; тем, как она раз за разом открывает мне глаза на неожиданные чудеса окружающего мира. Для меня физика – эффективный способ увидеть мир, великое и будничное, огромное и сиюминутное и то, как красиво и тесно все в нем переплетено.

Именно в таком ключе я и стараюсь представить физику своим ученикам. По-моему, гораздо важнее помнить о красоте открытий, чем сосредоточиваться на сложных расчетах и формулах – в конце концов, большинство из них не собираются становиться физиками. Я делал и делаю все возможное, чтобы помочь им взглянуть на мир по-другому; начать задавать вопросы, которые они никогда и не думали задавать; увидеть радугу так, как они никогда не видели ее раньше; сфокусироваться на изысканной красоте физики, а не на скучных математических деталях. Цель этой книги – открыть вам глаза на замечательные способы, которыми физика открывает мир, показать ее удивительную элегантность и красоту.

2. Измерения, погрешности и звезды

Моя бабушка и Галилео Галилей

Физика по своей сути экспериментальная наука, и измерения и их погрешности лежат в основе каждого исследования и открытия. Даже величайшие теоретические прорывы в физике обычно имеют форму прогнозов относительно величин, которые поддаются измерению. Возьмем, например, второй закон Ньютона F = ma (сила равна массе, умноженной на ускорение), пожалуй, самое важное уравнение в физике; или, скажем, знаменитое Эйнштейновское E = mc² (энергия равна массе, умноженной на квадрат скорости света), самое известное уравнение в физике. А как еще физикам выражать взаимосвязи, если не через математические уравнения с участием разных измеримых величин, таких как плотность, вес, длина, заряд, гравитационное притяжение, температура или скорость?

Я признаю, что в данном случае могу быть несколько предвзятым, ведь мои исследования при написании докторской диссертации в основном сводились к различного типа высокоточным измерениям частиц ядерного распада, а мой вклад в развитие рентгеновской астрономии базировался на измерениях жесткого рентгеновского излучения из источников, расположенных в десятках тысяч световых лет от Земли. Однако я со всей ответственностью утверждаю: физика без измерений попросту бессмысленна. И что не менее важно, любые значимые измерения без учета их погрешности бессмысленны тоже.

Должен сказать, что мы постоянно живем с некоторой оглядкой на погрешность в разумных пределах. Когда банк сообщает вам, сколько денег на вашем счету, вы ожидаете погрешности не больше полкопейки. Приобретая одежду онлайн, покупатель рассчитывает, что ее размер будет отличаться от нужного весьма незначительно. Если пара штанов 34-го размера окажется меньше или больше всего на 3 процента, их размер в области талии изменится более чем на два сантиметра; в результате вы получите либо штаны 35-го размера, висящие у вас на бедрах, либо 33-го, что заставит вас недоумевать, как это вы умудрились так быстро и основательно поправиться.

Не менее важно, чтобы измерения выражались в правильных единицах. Возьмем, к примеру, неудачную одиннадцатилетнюю миссию НАСА Mars Climate Orbiter по исследованию марсианского климата, которая обошлась в 125 миллионов долларов и закончилась катастрофой из-за банальной путаницы в единицах измерений. Одна команда инженеров использовала метрические единицы, а другая английские, в итоге в сентябре 1999 года космический аппарат вместо того, чтобы выйти на стабильную орбиту, вошел в атмосферу Марса.

Мое безоговорочное признание решающей роли измерений в физике послужило одной из причин скептического отношения к теориям, которые нельзя проверить с помощью измерений. Возьмем теорию струн или ее, так сказать, усовершенствованную версию, теорию суперструн, то есть последнюю на сегодняшний день попытку теоретиков предложить «теорию всего». Физикам-теоретикам – а теорию струн выдвинули поистине блестящие ученые – еще предстоит разработать хотя бы один эксперимент, один прогноз, позволяющий проверить любое из положений теории струн. Увы, по крайней мере на текущий момент ничто в данной теории не может быть подтверждено либо опровергнуто экспериментально. Это означает, что пока что она не имеет предсказательной силы, в связи с чем некоторые физики, в том числе Шелдон Глэшоу из Гарварда, сомневаются, стоит ли вообще считать ее физической теорией.

Однако у теории струн немало поистине блестящих и весьма красноречивых сторонников. Один из них – Брайан Грин; его книга и одноименная программа PBS[8]8
  PBS – американская некоммерческая служба телевизионного вещания. Прим. ред.


[Закрыть]
The Elegant Universe («Элегантная Вселенная») (в них, кстати, входит краткое интервью с вашим покорным слугой) очаровательны и красивы. М-теория Эдварда Уиттена, объединившая пять различных теорий струн и настаивающая на наличии одиннадцати измерений пространства, из которых мы, существа низшего порядка, видим только три, также довольно непривычна и наталкивает на серьезные размышления.

Когда какая-то теория не подтверждается фактами, я вспоминаю свою бабушку, мамину маму, поистине великую женщину, которая имела в запасе множество замечательных поговорок и привычек, делавших ее, по сути, на редкость интуитивным ученым. Например, она часто говорила, что стоящий человек короче, чем лежащий. Я обожаю рассказывать об этом своим студентам. В первый же день занятий я объявляю им, что в память о своей бабушке намерен сейчас же проверить эту диковинную идею. Они, конечно же, полностью сбиты с толку. Я буквально читаю их мысли: «Стоя короче, чем лежа? Но это невозможно!»

Их недоверие вполне понятно. Конечно, даже если какая-то разница и существует, то она, несомненно, ничтожно мала. В конце концов, если бы она составляла, скажем, пару десятков сантиметров, мы бы это точно знали, не так ли? Просыпаетесь вы утром, встаете с постели и – бац – становитесь заметно ниже, на целых двадцать сантиметров. Но если разница составляет всего один миллиметр, вы ее, скорее всего, не заметите. Вот почему я исхожу из того, что если бабушка права, то разница, вероятно, не больше пары сантиметров.

Для проведения эксперимента мне в первую очередь необходимо убедить аудиторию в точности моих измерений. Поэтому я начинаю с измерения вертикально установленного алюминиевого стержня – его длина составляет 150,0 сантиметров – и прошу слушателей подтвердить, что я определенно способен измерить его с точностью до миллиметра. Итак, длина стержня в вертикальном положении 150,0 ± 0,1 см. Затем я измеряю его в горизонтальном положении и получаю 149,9 ± 0,1 см, что вполне согласуется – с учетом погрешности измерений – с результатом замера в вертикальном положении.

Чего же я добиваюсь, проделывая эти манипуляции? Многого! Во-первых, два измерения наглядно демонстрируют, что я в состоянии измерить длину объекта с точностью до 1 миллиметра. Не менее важно и то, что этим я хочу студентам доказать, что не мошенничаю и не пытаюсь их обмануть. Предположим, что я бы заранее приготовил специальную рулетку для горизонтальных замеров – это был бы очень нечестный, непорядочный поступок. Наглядно продемонстрировав аудитории, что длина алюминиевого стержня практически одинакова при обоих замерах, я тем самым подтверждаю свою репутацию и научную честность.

Затем я приглашаю добровольца из зала, измеряю его в стоячем положении и записываю число на доске – скажем, 185,2 см, конечно же, плюс-минус миллиметр с учетом погрешности. Потом помогаю парню улечься на мой стол, оснащенный специальным измерительным прибором, похожим на гигантскую деревянную мерку, которой пользуются обувщики; только я измеряю не ступню, а все тело. Попутно я отпускаю разные шуточки по поводу того, удобно ли добровольцу, шумно благодарю его за то, что он пошел на такую жертву ради науки, и так далее, в результате чего ему становится немного не по себе. Его мучает вопрос, что же я задумал? Я плотно прижимаю треугольный деревянный брусок к макушке парня, лежащего на столе, и пишу на доске второе число. Таким образом, у нас теперь есть два результата измерения, каждое с погрешностью в 1 мм. Итак, что же мы имеем?

Вы наверняка немало удивитесь, услышав, что полученные значения отличаются друг от друга примерно на 2,5 сантиметра, конечно, плюс-минус еще 2 миллиметра. Мне приходится сделать вывод, что мой подопечный действительно как минимум на 2,3 сантиметра выше в лежачем положении, чем в стоячем. Я возвращаюсь к лежащему на столе студенту, объявляю ему, что лежа он примерно на два с половиной сантиметра выше, чем стоя, и – это моя любимая часть – громко провозглашаю: «Моя бабушка была права! Она всегда оказывалась права!»

Вы по-прежнему настроены скептически? Что ж, получается, моя бабушка была проницательнее вас? Когда мы стоим, сила земного тяготения сдавливает мягкие ткани между позвонками нашего позвоночника, а когда ложимся, позвоночник расправляется. Если об этом знаешь, ситуация кажется очевидной, но многие ли об этом задумываются? На самом деле этот эффект не учли даже ученые из НАСА при подготовке первых полетов человека в космос. Астронавты жаловались, что их скафандры в космосе становились слишком тесными. Специальные исследования, проведенные позже, уже во время миссии Скайлэб, показали, что из шести измеренных астронавтов все шестеро в состоянии невесомости оказались примерно на 3 процента выше – при росте 182 сантиметра на 5,8 сантиметра. Теперь скафандры делают немного больше, с учетом этой особенности.

Ну что, убедились, насколько важны точные измерения? На той же лекции, на которой я доказываю правоту своей бабушки, я еще измеряю весьма странные объекты, чтобы проверить предположение великого Галилео Галилея, отца современной естественной науки и астрономии, который когда-то задался вопросом: «Почему самые крупные млекопитающие именно такого размера, а не намного больше?», от чего получаю море удовольствия. Сам Галилей полагал, что чересчур крупное млекопитающее было бы слишком тяжелым и его кости не выдержали бы веса и сломались. Когда я об этом прочитал, меня чрезвычайно заинтересовало, прав ли великий ученый. На интуитивном уровне его ответ казался верным, но я все же захотел проверить.

Я знал, что у млекопитающих львиная доля веса приходится на бедренные кости, и решил провести сравнительные замеры бедренных костей разных животных. Если Галилей прав, то бедренные кости супертяжелых млекопитающих будут недостаточно крепкими для поддержания их огромного веса. Конечно, я понимал, что крепость бедренной кости животного зависит от ее толщины. Более толстые кости могут поддерживать больший вес – это понятно на интуитивном уровне. Чем крупнее животное, тем толще должны быть кости.

Кроме того, очевидно, что чем больше размеры животного, тем длиннее его бедренная кость. Я понял, что смогу проверить идею Галилея, сравнивая длину и толщину бедренных костей млекопитающих разного размера и, соответственно, разного веса. На основании произведенных мной расчетов, которые слишком сложны, чтобы детально их здесь описывать (описание представлено в Приложении I), я пришел к выводу, что если Галилей прав, то толщина бедренных костей млекопитающих по мере увеличения их размеров должна расти быстрее, чем их длина. Я, например, подсчитал, что если одно животное в пять раз больше другого – и, соответственно, его бедренная кость в пять раз длиннее, – то эта кость должна быть примерно в одиннадцать раз толще.

А это означало бы, что в какой-то момент толщина бедренных костей сравнялась бы с их длиной, а то и превысила бы ее, что закономерно сделало бы тело млекопитающего непропорциональным и слишком неуклюжим. Такое животное, конечно же, не имело бы шансов на выживание, чем, скорее всего, и объясняется ограничение максимального размера существующих млекопитающих.

Словом, мое предположение, что толщина кости должна увеличиваться быстрее ее длины. Тут-то и началось самое интересное.

Я отправился в Гарвардский университет, где хранится прекрасная коллекция костей животных, и попросил показать мне бедренную кость енота и лошади. Оказывается, лошадь примерно в четыре раза больше енота, и, соответственно, ее бедренная кость (42,0 ± 0,5 см) почти в три с половиной раза больше кости енота (12,4 ± 0,3 см). Пока все шло как надо. Подставив эти числа в свою формулу, я рассчитал, что бедренная кость лошади должна быть примерно в шесть раз толще кости енота. Я измерил толщину костей (с погрешностью около 0,5 сантиметра для енота и 2 сантиметра для лошади) и выяснил, что лошадиная кость в пять раз толще, плюс-минус около 10 процентов. Пока все говорило в пользу теории Галилео Галилея. Однако я решил расширить тест, включив в него более мелких и более крупных млекопитающих.

Я опять отправился в Гарвард, где мне показали еще три кости: антилопы, опоссума и мыши. Вот как они выглядели (плюс кость лошади):



Ну разве это не прекрасно? Форма костей изменяется на удивление пропорционально; вы только поглядите, какая тоненькая и крошечная бедренная кость мыши! Малюсенькая и тонюсенькая бедренная косточка для малюсенькой мышки. Разве это не замечательно? Никогда не перестану поражаться красоте каждой детали матушки-природы.

Но как насчет результатов измерений, как они вписываются в мое уравнение? Произведенные расчеты повергли меня в шок, настоящий шок. Бедренная кость лошади оказалась примерно в 40 раз длиннее кости мыши и, согласно моим расчетам, в этом случае должна была быть более чем в 250 раз толще. А она была толще всего примерно в 70 раз.

И тут меня осенило: «А почему бы не попросить у них бедренную кость слона? Это помогло бы окончательно решить вопрос». Думаю, ребята в Гарварде были несколько раздражены, когда я явился к ним снова, но все же любезно выдали мне бедренную кость слона. К тому времени, я уверен, они просто хотели поскорее от меня избавиться! Поверьте, кость слона было очень трудно нести; она была длиннющая и, похоже, весила целую тонну. Я не мог дождаться момента, когда ее измерю, и не спал всю ночь.

И знаете, что я обнаружил? Бедренная кость мыши была 1,1 ± 0,05 см в длину и всего 0,7 ± 0,1 мм толщиной – действительно очень тонкая. Длина бедренной кости слона составляла 101 ± 1 см, то есть приблизительно в 100 раз длиннее кости мыши. А как насчет толщины? Измерив кость слона, я получил толщину 86 ± 4 мм, то есть примерно в 120 раз больше диаметра бедренной кости мыши. Однако, по моим расчетам, если Галилей прав, то бедренная кость слона должна была быть где-то в тысячу раз толще, чем у мыши. Иными словами, ее толщина должна составлять около 70 сантиметров. А на самом деле ее диаметр был где-то 9 сантиметров. В итоге мне пришлось признать, хоть и с крайней неохотой, что великий Галилео Галилей ошибался!

Измерение межзвездного пространства

Одной из областей физики, для которой измерения стали истинным проклятием, является астрономия. Измерения и их погрешность – огромная проблема для астрономов, в частности потому, что дело приходится иметь с мегарасстояниями. Как далеко находятся звезды от Земли? Ну, например, наша прекрасная соседка Андромеда? А как насчет галактик, которые мы можем видеть только в самые мощные телескопы? Насколько далеки от нас наиболее удаленные объекты в космосе, которые мы видим? Насколько вообще велика наша Вселенная?

Это лишь некоторые из самых фундаментальных и глубоких вопросов всего естествознания. И разные ответы на них буквально перевернули наше представление о Вселенной с ног на голову. В сущности, у такого дела, как оценка астрономических расстояний, вообще замечательная история. Через изменения в методиках расчета расстояний до звезд можно проследить эволюцию самой астрономии. И на каждом этапе полученные данные зависят от степени точности измерений, то есть используемого оборудования и изобретательности астрономов. Например, вплоть до конца XIX века единственными данными, с помощью которых астрономы могли производить расчеты, был так называемый параллакс.

Вы все сталкивались с этим явлением, хотя чаще всего и не знали об этом. Где бы вы сейчас ни сидели, оглянитесь вокруг и найдите участок стены с каким-то элементом: дверным проемом или висящей картиной. А если вы находитесь на улице, то какой-нибудь заметный элемент ландшафта, например большое дерево. Теперь вытяните прямо перед собой руку и поднимите один из пальцев так, чтобы он оказался с той или другой стороны от выбранного вами объекта. Теперь зажмурьте сначала правый глаз, а затем левый. Вы увидите, как ваш палец перепрыгнет слева направо по отношению к дверному проему или дереву. Теперь переместите палец ближе к глазам и проделайте все снова. Ваш палец сместится еще сильнее. Эффект огромен! Это и есть параллакс.

Все происходит из-за смены ракурса при наблюдении за объектом, в данном случае из-за перехода с линии зрения левого глаза на линию зрения правого (глаза человека расположены примерно в 6,5 сантиметра друг от друга).

Это и есть ключевая идея, лежащая в основе определения расстояний до звезд, только вместо 6,5 сантиметра, разделяющих наши глаза, в качестве базовой линии используется диаметр орбиты Земли (около 300 миллионов километров). По мере того как Земля обращается вокруг Солнца (по орбите с диаметром около 300 миллионов километров) в течение года, близлежащая звезда будет смещаться в небе относительно более удаленных звезд. Мы же раз в полгода измеряем угол в небе (угол параллакса) между двумя положениями этой звезды. Если произвести многократные измерения с полугодовым интервалом, получатся разные углы параллакса. На приведенном ниже рисунке я ради простоты примера выбрал звезду в плоскости орбиты Земли (так называемой орбитальной плоскости, или плоскости эклиптики), но описанный здесь принцип параллакса применим для любой звезды, а не только для звезд в плоскости эклиптики.



Предположим, вы наблюдаете звезду А в момент, когда Земля, двигаясь по орбите вокруг Солнца (С), находится в положении 1. В этом случае вы видите звезду проецируемой на фон (очень удаленный) в направлении A1. Если же вы наблюдаете ту же звезду шесть месяцев спустя (с позиции 7), то увидите ее в направлении A7. Угол, обозначенный как α, наибольший из всех возможных углов параллакса. Если произвести аналогичные замеры с позиций 2 и 8, 3 и 9, 4 и 10, углы параллакса всегда будут меньше, чем α. В гипотетическом варианте наблюдений из пунктов 4 и 10 (гипотетическом, потому что с позиции 10 звезду наблюдать невозможно, ибо мешает Солнце) угол параллакса вообще был бы равен нулю. А теперь посмотрите на треугольник, образуемый точками 1А7. Мы знаем, что расстояние 1–7 составляет 300 миллионов километров; нам также известно, что угол равен α. Следовательно, теперь можно без труда рассчитать расстояние CA (математика уровня средней школы).

Несмотря на то что углы параллакса, измеренные в разные полугодовые периоды, отличаются друг от друга, астрономы говорят о конкретном параллаксе звезды, под которым подразумевают величину, равную половине самого большого угла параллакса. Так, если максимальный угол параллакса составляет 2,00 угловые секунды, то параллакс звезды будет равен 1,00 угловой секунде, а расстояние до нее в этом случае составит 3,26 световых года (хотя на самом деле звезд, столь близких к Земле, не существует). Чем меньше параллакс, тем больше расстояние. Если параллакс равен 0,10 угловой секунды, расстояние до нее будет 32,6 световых года. Самая близкая к Солнцу звезда – Проксима Центавра. Ее параллакс – 0,76 угловой секунды; таким образом, от Земли ее отделяет около 4,3 световых года.

Чтобы лучше понять, насколько малые изменения в положениях звезд приходится измерять астрономам, для начала следует разобраться, что же представляет собой угловая секунда. Представьте себе огромный круг, нарисованный в ночном небе через зенит (направление, указывающее непосредственно вверх) вокруг Земли. Поскольку это круг, то в нем, естественно, 360 градусов. Так вот, каждый градус делится на 60 угловых минут, а каждая угловая минута, в свою очередь, – на 60 угловых секунд. Таким образом, в полном круге 1 296 000 угловых секунд. Как видите, угловая секунда – величина крайне маленькая.

Вот еще один способ наглядно представить себе, насколько она мала. Если взять монету в десять центов и поместить ее примерно на расстоянии 3,5 километра от вас, то ее диаметр будет составлять одну угловую секунду. Или еще. Каждый астроном знает, что диаметр Луны равен около половины градуса, или 30 угловых минут. Это называется угловым размером Луны. Так вот, если бы вы умудрились нарезать Луну на 1800 одинаково тонких ломтиков, ширина каждого из них равнялась бы одной угловой секунде.

Учитывая, насколько малы размеры углов параллакса, которые должны измерять астрономы для определения расстояний до звезд, отлично понимаешь, как важна для них степень точности данных измерений.

По мере появления специального оборудования, позволяющего астрономам производить все более точные измерения, их оценки расстояний до звезд порой весьма существенно менялись. В начале XIX века Томас Хендерсон измерил параллакс самой яркой звезды на небе, Сириуса, и определил, что он равен 0,23 угловой секунды с погрешностью около четверти угловой секунды. Иными словами, по оценке Хендерсона, верхний предел параллакса Сириуса составляет около половины угловой секунды, а это означало, что данная звезда находится от нас не ближе чем на расстоянии 6,5 световых года. Для 1839 года это был очень важный вывод. Но спустя полвека Дэвид Гилл определил, что параллакс Сириуса равен 0,370 угловой секунды с погрешностью плюс-минус 0,010 угловой секунды. Измерения Гилла не противоречили данным Хендерсона, но были намного точнее, потому что их погрешность была в двадцать пять раз меньше. При параллаксе 0,370 ± 0,010 угловой секунды расстояние до Сириуса становится равным 8,81 ± 0,23 световых года, что существенно больше шести с половиной световых лет!

В 1990-е годы спутник для высокоточных определений параллаксов с названием (подозреваю, создатели долго с ним экспериментировали, пока не подогнали под имя древнегреческого астронома Гиппарха) Hipparcos (акроним от High Precision Parallax Collecting Satellite) измерил параллаксы более ста тысяч звезд (и, следовательно, расстояния до них) с относительной погрешностью всего около одной тысячной угловой секунды. Разве это не невероятно? Помните, как далеко должна находиться монетка, чтобы ее диаметр составлял одну угловую секунду? А чтобы он был равен тысячной доле угловой секунды, монетка должна находиться за 3,5 тысячи километров от наблюдателя.

Одной из звезд, параллакс которых измерили с помощью Hipparcos, был, конечно же, Сириус; аппарат получил результат 0,37921 ± 0,00158 угловой секунды, что дает нам расстояние до Сириуса, равное 8,601 ± 0,036 световых года.

До этого самые точные измерения параллакса из всех когда-либо сделанных были получены радиоастрономами в период с 1995-го по 1998 год для очень специфической звезды по имени SCO X-1. Я подробнее расскажу о ней в главе 10. Ученые получили результат 0,00036 ± 0,00004 угловые секунды, что означает расстояние 9,1 ± 0,9 тысячи световых лет.

Кроме погрешности, вызванной ограниченной точностью оборудования и лимитами доступного для наблюдений времени, следует упомянуть о еще одном кошмаре астрономии – «неизвестных/скрытых» погрешностях. Что, если вы делаете ошибку, даже не осознавая этого, потому что упускаете что-то важное или потому, что ваши инструменты неправильно выверены? Предположим, ваши весы в ванной комнате неверно откалиброваны и показывают значительно меньший, чем на самом деле, вес, причем вы их такими и купили. Вы обнаруживаете ошибку, только придя на прием к врачу – и с вами чуть не случается сердечный приступ. Мы называем такое явление систематической ошибкой, и она пугает нас до смерти. Я отнюдь не поклонник бывшего министра обороны Дональда Рамсфелда, но почувствовал к нему некоторое сочувствие, когда он на брифинге в 2002 году сказал: «Мы знаем, что есть вещи, которых мы не знаем. Но есть еще и неизвестное неизвестное – то, чего мы не знаем, оставаясь в неведении о том, что именно мы не знаем».

Проблемы, связанные с ограничениями астрономического оборудования, делают еще более удивительными достижения блестящего, но по большей части недооцененного женщины-астронома Генриетты Суон Ливитт. Ливитт занимала в Гарвардской обсерватории очень скромную должность, но в 1908 году начала работу, которая позволила совершить гигантский скачок в деле измерения расстояний до звезд.

Увы, такого рода вещи случаются в истории науки так часто, что данную ситуацию тоже следовало бы рассматривать как систематическую ошибку: когда научный мир недооценивает талант, интеллект и вклад женщин-ученых[9]9
  Так было, например, с Лизой Мейтнер, которая помогла открыть такое явление, как деление ядра; с Розалинд Франклин, которая сделала большой вклад в обнаружение структуры ДНК; и с Джоселин Белл, которая открыла пульсары и, конечно же, должна была разделить Нобелевскую премию, полученную ее руководителем Энтони Хьюишем «за решающую роль в открытии пульсаров» в 1974 году. Прим. ред.


[Закрыть]
.

Занимаясь анализом тысяч фотографических пластин Малого Магелланова облака, Ливитт заметила, что в определенном классе больших пульсирующих звезд (ныне их называют переменными цефеидами) четко выражена зависимость между яркостью звезды в оптическом диапазоне и временем, которое ей требуется для одной полной пульсации, известным как период звезды. Ливитт обнаружила, что чем больше этот период, тем ярче звезда. Как мы с вами убедимся, это открытие распахнуло астрономам двери к точным измерениям расстояний до звездных скоплений и галактик.

Чтобы оценить это открытие по достоинству, сначала необходимо понять разницу между яркостью звезды в оптическом диапазоне и ее светимостью. Яркость – это количество энергии на квадратный метр на секунду света, достигающего Земли. Она измеряется с помощью оптических телескопов. А светимость – это количество энергии в секунду, излучаемой астрономическим объектом.

Возьмем, например, Венеру – обычно самый яркий объект на всем ночном небе, даже ярче Сириуса, который считается самой яркой звездой нашего небосвода. Венера находится достаточно близко к Земле и именно поэтому такая яркая, но у нее практически отсутствует внутренняя светимость. Она излучает довольно мало энергии по сравнению с Сириусом – мощным горнилом, вдвое массивнее Солнца с примерно в двадцать пять раз большей светимостью. Светимость объекта многое говорит о нем астрономам, но проблема в том, что у нас не было надежного способа ее измерения. Яркость можно измерить, потому что она видима; светимость измерить невозможно. Для этого необходимо знать как яркость звезды, так и расстояние до нее.

Используя методику под названием статистический параллакс, Эйнар Герцшпрунг в 1913 году и Харлоу Шепли в 1918-м сумели преобразовать значения яркости, полученные Ливитт, в светимость. А предположив, что светимость цефеиды с заданным периодом в Малом Магеллановом облаке такая же, как и у цефеиды с тем же периодом в другом месте, они получили способ вычислить соотношение светимости всех цефеид (даже не входящих в Малое Магелланово облако). Я не буду подробно останавливаться на данном методе, поскольку это потребует довольно глубокого погружения в технические детали, но отмечу, что выявление взаимосвязи между светимостью и периодом звезды стало важнейшей вехой в деле измерения расстояний до звезд. Зная светимость звезды и ее яркость, вы можете вычислить, на каком расстоянии от Земли она находится.

Кстати, диапазон светимости цефеид довольно велик. У цефеиды с периодом в три дня светимость приблизительно в тысячу раз больше светимости Солнца, а при периоде в тридцать дней превышает данный показатель Солнца почти в тринадцать тысяч раз.

В 1923 году великий астроном Эдвин Хаббл обнаружил цефеиды в галактике Андромеды (также известной как M31), благодаря чему вычислил, что расстояние до нее составляет около 1 миллиона световых лет – результат, повергший в шок немало астрономов. Многие, в том числе Шепли, утверждали, что вся Вселенная, включая M31, входит в наш собственный Млечный Путь. Хаббл же показал, что на самом деле она практически невообразимо от нас далека. Но это еще не все – если выполнить поиск в интернете, то можно обнаружить, что галактика Андромеды находится от нас на расстоянии 2,5 миллиона световых лет.

Это и есть яркий пример неизвестного неизвестного. При всей своей гениальности Хаббл допустил систематическую ошибку. Он основывал свои расчеты на известной светимости звезд, которые впоследствии стали называть цефеиды типа II, хотя на самом деле наблюдал разновидность цефеид с примерно в четыре раза большей светимостью, нежели думал (позже их назвали цефеиды типа I). Астрономы обнаружили разницу только в 1950-х годах и поняли, что измерения расстояний в предыдущие тридцать лет давали искаженный результат – имела место серьезная систематическая ошибка, из-за которой размер известной Вселенной был преувеличен в два раза.

В 2004 году, по-прежнему используя метод цефеид, астрономы измерили расстояние до галактики Андромеды, получив 2,51 ± 0,13 миллиона световых лет. В 2005-м другая группа ученых измерила это же расстояние с помощью метода двойных затменных звезд, получив результат 2,52 ± 0,14 миллиона световых лет, то есть около 24 квинтиллионов километров. Эти два измерения отлично согласуются друг с другом. Тем не менее погрешность составляет примерно 140 тысяч световых лет (около 1,3 × 1018 км). А ведь эта галактика по астрономическим стандартам – наш ближайший сосед. Представьте себе, какова тогда погрешность при измерении расстояний до других, более удаленных галактик.


Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 | Следующая
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации