Электронная библиотека » Уолтер Левин » » онлайн чтение - страница 8


  • Текст добавлен: 22 декабря 2016, 13:00


Автор книги: Уолтер Левин


Жанр: Прочая образовательная литература, Наука и Образование


Возрастные ограничения: +12

сообщить о неприемлемом содержимом

Текущая страница: 8 (всего у книги 23 страниц) [доступный отрывок для чтения: 8 страниц]

Шрифт:
- 100% +

Если на конце вашего шланга есть насадка, отрегулируйте его в тонкую струйку, чтобы капли получались достаточно маленькими, и когда солнце будет высоко в небе, направьте шланг на землю и начните распыление. Вы не увидите сразу весь круг, но кусочки радуги заметите. А перемещая носик шланга по кругу, вы, часть за частью, сможете увидеть целый круг радуги. Почему придется действовать таким образом? Потому что у вас нет глаз на затылке!



Красный вы увидите под углом 42 градуса от воображаемой линии, внутренний край дуги будет синим (фиолетовым), а внутренняя часть белой. Я очень люблю творить это маленькое волшебство во время поливки сада, и особенно здорово описать целый круг и создать полную радугу в 360 градусов. (Солнце, понятно, не всегда будет за вами.)

Одним холодным зимним днем 1972 года я так сильно хотел получить хорошие фотографии самодельных радуг для своих лекций, что заставил свою бедную семилетнюю дочь Эмму держать шланг, разбрызгивая воду в воздухе, пока я щелкал камерой. Впрочем, я думаю, что если вы дочь ученого, то можно немного пострадать ради науки. И я действительно сделал тогда несколько отличных снимков; мне даже удалось сфотографировать вторичную радугу, использовав в качестве фона контрастный асфальтобетон подъездной дорожки.

Надеюсь, вы попробуете провести этот эксперимент, но только в летнее время. И не разочаровывайтесь так уж сильно, не увидев вторичную радугу, – если ваша подъездная дорожка недостаточно темная, радуга, скорее всего, будет слишком бледной и практически невидимой.

Теперь, зная, как найти на небе радугу, вы наверняка начнете искать ее повсюду. Я, признаться, часто просто не способен бороться с этим искушением. Однажды мы со Сьюзен ехали домой, и начался дождь. Поскольку мы двигались прямо на запад, в сторону солнца, я, несмотря на плотное движение, свернул на обочину, вышел из машины и посмотрел назад. Это была неописуемая красота!

Всякий раз, проходя мимо фонтана в яркий солнечный день, я стараюсь встать так, чтобы поискать радугу там, где, как я знаю, она должна находиться. Попробуйте сами, когда будете проходить мимо фонтана. Встаньте между солнцем и фонтаном спиной к солнцу и не забудьте, что брызги фонтана работают точно так же, как капли дождя в небе. Найдите тень своей головы на земле и мысленно нарисуйте воображаемую линию. Теперь смотрите под углом 42 градуса от этой линии. Если в этом направлении достаточно капель, вы увидите сначала красную полосу радуги, а потом и все остальные. Скорее всего, полный полукруг радуги вы в фонтане не увидите – для этого нужно стоять к нему очень близко, – но зрелище, поверьте, будет настолько завораживающим, что попробовать, безусловно, стоит.

Но предупреждаю, что, увидев радугу, вы наверняка почувствуете непреодолимое желание поделиться этой красотой с окружающими. Я, например, часто начинаю показывать радугу в фонтане прохожим и, уверен, некоторые из них думают, что я странный. Но разве это правильно, в одиночку наслаждаться этим скрытым от наших глаз чудом? Конечно, я обязан показать его людям. Если вы знаете, что прямо перед вами может быть радуга, почему бы не поискать ее, а найдя, не попытаться сделать так, чтобы ее увидел кто-то еще, ведь радуга – это так красиво!

Студенты часто спрашивают меня, а бывает ли третичная радуга. Ответ: и да и нет. Третичная радуга, как вы могли догадаться, – результат тройного отражения света внутри капли. В центре такой радуги расположено солнце, и, как и первичная радуга с центром в точке солнечного противостояния, она также имеет радиус около 42 градусов, и ее красная полоса находится на внешней стороне. Таким образом, чтобы увидеть третичную радугу, вам нужно смотреть в сторону солнца, а капли дождя должны быть между ним и вами. Но при таком раскладе вы почти никогда не увидите солнца. Есть и другие проблемы: много солнечного света будет проходить через капли, вообще не отражаясь, что приведет к очень яркому и большому свечению вокруг солнца, в результате чего увидеть третичную радугу будет практически невозможно. А еще она более блеклая, чем вторичная. Кроме того, гораздо шире первичной и вторичной, следовательно, и без того слабый свет радуги распределяется по небу еще сильнее и увидеть ее труднее. Насколько мне известно, фотографий третичных радуг не существует, и я лично не знаю никого, кто бы их когда-либо видел. Тем не менее отчеты о наблюдениях за этим природным явлением имеются.

Безусловно, люди хотят знать, реальны ли радуги. А может, это просто миражи, полагают они, отступающие все дальше и дальше по мере приближения к ним? В конце концов, мы же почему-то не можем увидеть конец радуги? Если эта мысль посещала и вас, успокойтесь. Радуги вполне реальны; это следствие взаимодействия реального солнечного света с реальными каплями дождя и вашими реальными глазами. Но так как они – результат четкого взаимодействия между этими тремя элементами, радуга, которую увидите вы, будет отличаться от той, которую увидит человек, стоящий от вас через дорогу. Она будет столь же реальной, но другой.

Причина, по которой мы обычно не видим конца радуги, соприкасающегося с землей, не в том, что радуг на самом деле не существует, а в том, что их концы находятся слишком далеко от нас, или скрыты зданиями, деревьями или горами, или в этих местах в воздухе меньше капель и радуга там слишком блеклая. Но если вы сможете подойти к радуге достаточно близко, то у вас получится даже прикоснуться к ней. Во всяком случае, вы наверняка сумеете проделать это с радугой, которую создадите сами с помощью садового шланга.

Мне даже доводилось держать радугу в руке, принимая душ. В один поистине прекрасный день я обнаружил радуги совершенно случайно. Повернувшись к разбрызгивателю душа, я вдруг увидел две (да-да, две!) яркие первичные радуги, каждая сантиметров тридцать длиной и пару сантиметров в ширину. Это было настолько захватывающе и красиво, что казалось похожим на сон. Я протянул руки и взял радуги в ладони. Непередаваемое ощущение! Я читал лекции о радугах в течение сорока лет, но никогда прежде не видел двух первичных радуг на расстоянии вытянутой руки.

Вот как это произошло. Лучик солнечного света проник в душ через окно ванной комнаты. В некотором смысле все было так, как если бы я стоял не перед фонтаном, а внутри него. Вода находилась очень близко от меня, а поскольку мои глаза расположены сантиметрах в семи друг от друга, каждый глаз имеет собственную воображаемую линию, отличную от этой линии для второго глаза. Углы оказались точно такими, как надо для радуги, количество воды тоже, и каждый мой глаз увидел свою первичную радугу. Когда я закрывал один глаз, одна из радуг исчезала; когда закрывал другой, исчезала вторая. Мне бы очень хотелось сфотографировать это удивительное зрелище, но я не мог, потому что у моего фотоаппарата всего один «глаз».

Побывав в тот день так близко к радугам, я по-новому взглянул на их реалистичность. Когда я двигал головой, радуги тоже двигались, но пока моя голова оставалась на месте, они тоже были неподвижны.

Теперь я специально подгадываю время утреннего душа так, чтобы поймать эти радуги. Солнце должно находиться в небе в конкретном месте, чтобы заглядывать в окно ванной комнаты под прямым углом, а это бывает только в период с середины мая до середины июля. Вы, наверное, знаете, что в определенные месяцы солнце встает раньше и поднимается в небе выше и что в Северном полушарии оно в зимние месяцы встает южнее, а в летние – севернее.

Окно моей ванной комнаты выходит на юг, но с этой стороны расположен большой дом, из-за которого свет никак не может попасть в ванную строго с юга. Солнечные лучи идут примерно с юго-востока. Когда я впервые увидел радугу в душе, я принимал его очень поздно, около десяти часов. Чтобы увидеть радугу у себя в душе, вам нужно иметь в ванной комнате окно, через которое солнечный свет сможет достигать брызг воды. Фактически, если вы никогда не видите солнца, выглядывая из окна своей ванной, можете не искать радугу в душе – ее там просто не может быть. Солнечный свет должен проникать в душ. И даже если он туда попадает, никакой гарантии, что вы увидите радугу, к сожалению, нет, потому что также необходимо наличие достаточного числа капель воды, расположенных под углом 42 градуса от воображаемой линии, а это бывает не всегда.

Конечно, это довольно жесткие условия, но почему бы не попробовать? А если вы обнаружите, что солнце проникает в ваш душ довольно поздно – в конце дня, – что ж, тогда стоит подумать о смене графика водных процедур.

Почему моряки носят солнцезащитные очки

Решив отправиться на охоту за радугами, обязательно снимите солнцезащитные очки, особенно если они из числа тех, которые мы называем поляризованными, иначе вы рискуете пропустить все шоу. У меня однажды был подобный забавный опыт. Как я уже говорил, я люблю прогулки по пляжам острова Плам. И я уже объяснял, как можно увидеть маленькие радуги в брызгах волн. Так вот, несколько лет назад я шел вдоль пляжа. Солнце было ярким, дул сильный ветер, и когда волны подкатывали близко к берегу, они разбивались на множество мелких брызг, так что я часто видел в них небольшие кусочки радуг. Я решил показать эту красоту другу, с которым вместе гулял, но он сказал, что ничего не видит и даже не понимает, что я имею в виду. Этот диалог повторился несколько раз. «Да вон же она!» – кричал я, все больше раздражаясь. «Я ничего не вижу!» – орал он в ответ. И тут меня осенило: я попросил его снять темные очки, конечно же, поляризованные. Без очков он сразу увидел радуги и даже начал показывать их мне! Так что же произошло?

Радуги в некотором роде странны по своей природе, поскольку почти весь их свет поляризован. Термин «поляризованный», скорее всего, известен вам именно из описания солнцезащитных очков. С технической точки зрения он не совсем корректен, но позвольте мне объяснить суть поляризованного света, а потом мы вернемся к темным очкам и радугам.

Волны получаются в результате колебаний «чего-либо». Вибрирующий камертон или скрипичная струна издает звуковые волны, о которых мы поговорим в следующей главе. Световые волны создаются вибрирующими электронами. Далее, если вибрации имеют одно и то же направление и перпендикулярны направлению распространения волны, мы называем такие волны линейно-поляризованными. Для простоты обсуждения я, рассказывая в этой главе о поляризованном свете данного вида, буду называть его просто «поляризованным».

Звуковые волны никогда не бывают поляризованными, потому что они всегда распространяются в том же направлении, что и колеблющиеся молекулы воздуха в волнах давления – наподобие волн, генерируемых игрушкой-пружинкой Slinky. А вот свет может быть поляризованным. Солнечный свет или свет от лампочки в вашем доме не поляризован, но мы можем без особого труда преобразовать его в поляризованный. Один из способов сделать это – купить так называемые поляризованные солнцезащитные очки. Теперь вы знаете, почему это название не совсем корректно. На самом деле это поляризующие солнечные очки. Другой способ – приобрести оптический линейный поляризатор (изобретенный Эдвардом Лендом, основателем Polaroid Corporation) и взглянуть на мир через него. Поляризаторы Ленда, как правило, толщиной в один миллиметр, бывают самых разных размеров. Почти весь свет, проходящий через них (в том числе через поляризующие очки), становится поляризованным.

Если поставить два прямоугольных поляризатора один на другой (я раздаю по паре каждому студенту, чтобы он мог экспериментировать с ними дома) и повернуть под углом 90 градусов друг к другу, свет через них не будет проходить вообще.

Впрочем, природа производит много поляризованного света и без помощи поляризаторов Ленда. Свет от голубого неба, идущий под углом 90 градусов к солнцу, почти полностью поляризован. Откуда мы это знаем? А попробуйте посмотреть на голубое небо (в любом месте под углом 90 градусов к солнцу) через линейный поляризатор, медленно вращая его. Вы заметите, что яркость неба меняется. Когда небо становится почти совсем темным, свет, поступающий от той части неба, практически полностью поляризован. Таким образом, чтобы распознать поляризованный свет, достаточно одного поляризатора (но все гораздо интереснее, если у вас их два).

В первой главе я описывал, как «создаю» в аудитории синий свет, рассеивая белый свет от сигаретного дыма. Я достигаю этого эффекта, рассеивая синий свет по лекционному залу под углом около 90 градусов; этот свет тоже почти полностью поляризован. Студенты могут увидеть его через поляризаторы, которые всегда приносят на мои лекции.

Солнечный свет, отражающийся от воды или стекла, также может стать практически полностью поляризованным, если он (или свет от лампочки) падает на водяную или стеклянную поверхность под прямым углом, который мы называем углом Брюстера. (Дэвид Брюстер – шотландский физик XIX века, сделавший огромный вклад в развитие оптики). Вот почему моряки часто носят поляризующие солнечные очки – благодаря им они блокируют большую часть света, отражающегося от поверхности воды.

Я всегда ношу в бумажнике хотя бы один поляризатор – да-да, всегда – и призываю своих студентов поступать так же.

Зачем я рассказываю вам все это о поляризованном свете? Затем, что свет от радуг почти полностью поляризован. Поляризация происходит, когда солнечный свет отражается внутри капли воды, что, как вы уже знаете, – необходимое условие для формирования радуги.

Я создаю на своих лекциях особый вид радуги (используя одну, хоть и очень большую, каплю воды) и благодаря этому могу доказать следующее: 1) красный находится на внешней части радуги, 2) синий (фиолетовый) – на ее внутренней части, 3) в середине радуги отображается яркий белый свет, которого никогда не увидишь во внешней части, и 4) свет радуги поляризован. Тема поляризации радуги меня чрезвычайно интересует (это одна из причин, почему я всегда ношу с собой поляризаторы).

Радуги и не только

Радуги – наиболее известное и красочное атмосферное явление, но отнюдь не единственное. Существует целый ряд других явлений атмосферы; некоторые из них сразу бросаются в глаза, а другие, напротив, мистически загадочны. Но давайте еще какое-то время останемся с радугами и посмотрим, куда это нас приведет.

Если внимательно посмотреть на очень яркую радугу, то на ее внутренней кромке иногда можно увидеть ряд чередующихся ярких и темным полос, которые называются дополнительными радугами. Чтобы понять это явление, нам придется отказаться от объяснения природы световых лучей, данного Ньютоном. Он считал, что свет состоит из частиц, поэтому, когда он представлял себе отдельные лучи света, проникающие в каплю дождя, преломляющиеся в ней и выходящие из нее, то предполагал, что они ведут себя так, как если бы были маленькими частицами. Но чтобы объяснить дополнительные радуги, о свете необходимо думать как о чем-то состоящем из волн. Для создания такой радуги световые волны должны пройти через дождевые капли менее миллиметра в диаметре.

Один из самых важных экспериментов во всей физике (его чаще всего называют опытом Юнга, или экспериментом на двух щелях) наглядно продемонстрировал, что свет состоит из волн. В этом знаменитом эксперименте, впервые проведенном в 1801–1803 годах, английский ученый Томас Юнг расщепил узкий луч солнечного света на два пучка и увидел на экране картинку (сумму двух пучков), которую можно было объяснить, только предположив, что свет состоит из волн. Позже данный эксперимент был проведен по-другому, с использованием двух щелей (или двух микроотверстий). Далее я буду исходить из предположения, что узкий пучок света проходит через два очень маленьких микроотверстия (расположенных близко друг к другу) в листе тонкого картона. Свет проходит через них и падает на экран. Если бы свет состоял из частиц, любая заданная частица проходила бы либо через одно отверстие, либо через другое (поскольку не могла бы пройти через оба) и, следовательно, мы видели бы на экране два ярких пятна. Однако картинка на экране иная. Она точно имитирует то, что ожидаешь увидеть, если на экране встречаются две волны – одна, прошедшая через первое микроотверстие, и одновременно вторая, идентичная первой, прошедшая через второе. Сложение этих двух волн подвержено тому, что мы называем интерференцией. Когда гребни волны из одной прорези совпадают со впадинами волн из другой, волны компенсируют друг друга и места на экране, где это происходит (их будет не одно), остаются темными. Разве это не удивительно – свет плюс свет равен тьме! И наоборот, в других местах экрана, где две волны синхронизированы друг с другом, нарастая и спадая одновременно, мы в результате видим очень яркие пятна (их тоже будет несколько). Таким образом, на экране отобразится узор, состоящий из чередующихся темных и светлых пятен, и это именно то, что увидел Юнг во время опыта с расщепленным лучом.



Я демонстрирую этот опыт на своих лекциях, используя красный и зеленый лазерные лучи. Это действительно захватывающее зрелище. Студенты видят, что узор зеленого света очень похож на узор красного, за исключением того, что деление на темные и светлые пятна у зеленого несколько мельче. Зависимость узора от цвета говорит о зависимости его от длины волны света (более подробно о длине волны мы поговорим в следующей главе).

Ученые на протяжении многих веков спорили по поводу того, состоит ли свет из частиц или из волн, и описанный выше эксперимент позволил сделать ошеломляющий и неоспоримый вывод: свет имеет волновую природу. Сегодня мы знаем, что свет может вести себя и как частица, и как волна, но этого не менее поразительного вывода научному миру пришлось ждать еще век, до появления квантовой механики. Впрочем, в данный момент в эту тему погружаться не стоит.

Лучше вернемся к дополнительным радугам. Интерференция световых волн создает темные и светлые полосы. Это явление особенно четко выражено, если диаметр капель составляет около 0,5 миллиметра. Вы можете увидеть изображение дополнительной радуги на сайте www.atoptics.co.uk/rainbows/supdrsz.htm.

Эффекты интерференции (часто называемые дифракцией) становятся еще заметнее при диаметре капель меньше 40 микрон (0,04 миллиметра). В этом случае цвета разнесены так сильно, что волны разных цветов полностью перекрываются, все цвета смешиваются и радуга становится белой. В белой радуге часто видна одна или две темные полосы (дополнительные радуги). Белые радуги очень редки, я их ни разу не видел. А вот мой ученик, Карл Уэльс, в середине 1970-х годов прислал мне фотографии нескольких красивых белых радуг. Он сделал фото в летнее время в два часа ночи (да, в два ночи) с Ледяного острова Флетчера, то есть с огромного дрейфующего айсберга (площадью 5 × 11 километров). На тот момент айсберг находился в 500 километрах от Северного полюса.

Белые радуги можно также увидеть в тумане, состоящем из исключительно крошечных капелек воды. Такие радуги трудно, но все же можно заметить; вы могли видеть их много раз, не осознавая этого. Обычно они появляются, когда туман достаточно слабый, чтобы солнечный свет мог через него просвечивать. Оказавшись на берегу реки или в гавани ранним утром, когда солнце еще совсем низко, а туман – обычное явление, я охочусь за белыми радугами в тумане и видел их не раз.

Такую радугу иногда можно создать с помощью автомобильных фар. Если вы окажетесь за рулем в ночном тумане, постарайтесь найти безопасное место для парковки. Или, если вы находитесь у себя дома, когда сгущается туман, разверните автомобиль в сторону тумана и включите фары. Затем отойдите от машины и смотрите на туман в лучах фар. Если вам повезет, вы увидите туманную радугу. Они делают мрак туманной ночи еще более жутким и потусторонним. Вы можете посмотреть, что произошло, когда один парень вдруг увидел такую радугу, которую сам же создал в фарах своего автомобиля, на сайте www.extremeinstability.com/08-9-9.htm. Заметили темные полосы в белых дугах?

Размером капель воды и волновой природой света также объясняется еще одно из красивейших оптических явлений, украшающих небо, – глории. Они лучше всего видны, когда летишь в самолете над облаками. Поверьте мне, их действительно стоит поискать. Для этого вы должны сидеть у окна не над крыльями, которые перекрывают вид вниз. Вам также надо убедиться, что солнце находится на стороне самолета, противоположной вашему месту, так что придется обратить внимание на время суток полета и направление рейса. Если из вашего окна видно солнце, эксперимент не получится. (В таком случае просто поверьте моим словам; полное и убедительное объяснение потребовало бы слишком много сложных математических выкладок.) Если все описанные выше условия соблюдены, попытайтесь вычислить место нахождения точки солнечного противостояния и смотрите вниз на нее. Если вам повезет, вы увидите в облаках цветные кольца, а если ваш самолет летит не слишком высоко над облаками, то увидите вокруг его тени глорию. Диаметр глорий варьируется от нескольких до приблизительно 20 градусов. Чем меньше капли, тем больше глории.

Я сделал множество фото глорий; на некоторых хорошо видна тень моего самолета, и, что самое забавное, мое сиденье в авиалайнере находится в самом центре глории, то есть в точке солнечного противостояния.

Впрочем, увидеть глории можно в самых разных местах, а не только из самолета. Альпинисты часто их видят, когда солнце находится у них за спиной, а они сами смотрят вниз в туманную долину. В этих случаях эффект получается довольно пугающий, мрачный и потусторонний. Альпинисты видят собственную тень, проецируемую на туман, в окружении глорий, иногда в нескольких цветных кольцах, и выглядит это весьма мистически. Данное явление также известно как призрак Броккена (или огненная радуга); оно названо так в честь высокого пика в Германии, где его видят особенно часто. На самом деле глории вокруг теней людей настолько похожи на нимбы, а сами фигуры выглядят настолько потусторонними, что вы вряд ли будете сильно удивлены, узнав, что слово glory – это архаизм, обозначающий круг света вокруг головы святого. А в Китае глории называют огнем Будды.

Однажды я сделал чудесное фото собственной тени, окруженной глорией, которое назвал образом святого Уолтера. Много лет назад я по приглашению моих друзей, астрономов из России, приехал в горы Кавказа, чтобы увидеть шестиметровый телескоп. На тот момент это был самый большой телескоп в мире. Погода для наблюдений за небом была просто ужасной. Каждый день, сколько я там пробыл, где-то в половине шестого вечера из лежащей ниже долины поднималась стена тумана, полностью окутывавшая телескоп. По-настоящему полностью; за все время моего визита мы так и не смогли произвести каких-либо наблюдений.

Как бы там ни было, через несколько дней пребывания в горах мне в голову пришла мысль, что я могу тут сделать фантастические снимки. Когда туман начинал заползать из долины, которая находилась на востоке, солнце на западе светило еще ярко – условия, идеальные для глорий. На следующий же день я принес фотоаппарат в обсерваторию и страшно нервничал, что именно в этот день туман откажется со мной сотрудничать. Однако в должное время стена тумана начала наползать, а солнце еще светило; я стоял к нему спиной. Я ждал и ждал, а потом, бум, и вокруг моей тени появился ореол. И я щелкнул. Я не мог дождаться момента, когда проявлю пленку – это была еще доцифровая эпоха, – но игра стоила свеч! Моя тень была длинной и выглядела призрачно, а тень моей камеры оказалась в самом центре колец великолепной глории.

Впрочем, чтобы увидеть нимб вокруг своей головы, вовсе не обязательно забираться в такое экзотическое место, как горы Кавказа. Если вы посмотрите на свою тень на клочке покрытой росой травы ранним солнечным утром (конечно, солнце должно находиться непосредственно позади вас), то сможете увидеть то, что на немецком языке называется Heiligenschein, или «святой свет»: свечение вокруг тени вашей головы (оно не будет разноцветным; это не глория). Данный эффект создают капли росы на траве, отражающие солнечный свет. Если захотите попробовать это сделать – а я надеюсь, что захотите, – то знайте, что это проще, чем найти глории. Вы увидите свечение, потому что это раннее утро и солнце находится низко, следовательно, ваша тень будет довольно длинной и вы будете похожи на удлиненные фигуры с нимбами святых на картинах средневековых художников.

Много разных типов радуг, глорий и нимбов могут удивить вас в самых неожиданных местах. Я, например, встретил свой любимый вид одним солнечным днем в июне 2004 года – помню, это был день летнего солнцестояния, 21 июня; мы приехали в музей Де Кордова в городе Линкольн с Сьюзен (которая в то время еще не стала моей женой), моим сыном и его подругой. Мы уже шли по парку ко входу, когда сын окликнул меня. Прямо перед нами, на земле, распростерлась потрясающая, ярчайшая, почти круговая радуга. (Потому что, как помните, это был день солнцестояния и светило находилось так высоко, как только может находиться в Бостоне, почти под углом в 70 градусов над горизонтом.) Вид был такой, что аж дух захватывало!

Я вытащил фотоаппарат и нащелкал кучу фотографий – так быстро, как только мог. Все получилось уж очень неожиданно. У земли не было ни одной капли воды, и я быстро понял, что эта радуга в любом случае не могла состоять из капель, потому что ее радиус был значительно меньше 42 градусов. И все же выглядело это точно как радуга: красный на внешней стороне дуги, синий на внутренней, а внутри яркий белый свет. Откуда же она взялась? Я понимал, что это чудо состоит из прозрачных, сферических частиц какого-то вещества, но из чего именно?

Одна из сделанных мной тогда фотографий получилась так хорошо, что стала фотографией для астрономических загадок НАСА того дня; ее разместили на сайте НАСА 13 сентября 2004 года[17]17
  Если хотите увидеть мою фотографию в интернете, кликните на архиве этого сайта и перейдите к 13 сентября 2004 года. Общий URL-адрес дан ниже.


[Закрыть]
. (Это кстати, потрясающий сайт; настоятельно рекомендую заходить на него каждый день по адресу: http://apod.nasa.gov/apod/astropix.html.) В результате я получил около трех тысяч вариантов отгадок относительно того, что же это такое. Мой любимый ответ – написанное от руки письмо Бенджамина Гайслера четырех лет от роду: «Я думаю, ваша загадочная фотография нарисована цветными карандашами, маркерами и мелками». Сейчас оно висит на доске объявлений у моего кабинета в МТИ. Из всех полученных мной ответов всего тридцать респондентов думали в верном направлении, но только пятеро ответили абсолютно правильно.

Отличной подсказкой к разгадке этой головоломки может служить то, что в музее в тот момент проводили капитальный ремонт. В частности, его стены обрабатывались пескоструйным аппаратом. Маркос Хэнкин, который отвечал за физические демонстрации в Массачусетском технологическом институте и с которым я сотрудничал на протяжении многих лет, сказал мне – тогда я этого не знал, – что в некоторых видах таких аппаратов используются стеклянные шарики. И во дворе музея на земле было разбросано огромное множество крошечных стеклянных бусинок. Я взял горсть домой. Так что то, что мы тогда видели, было стеклянной радугой, ставшей в настоящее время официальной категорией радуг – радуг, образованных стеклянными шариками; она имеет радиус около 28 градусов, но точное значение зависит от типа стекла бусин.

Нам с Маркосом страшно захотелось создать собственную стеклянную радугу для моих лекций. Мы купили несколько килограммов стеклянных бусин, приклеили их на большие листы черной бумаги и прикрепили бумагу к доске в аудитории. Затем, в самом конце моей лекции о радугах, мы направили луч прожектора на эту бумагу из задней части лекционного зала. И у нас получилось! Я пригласил студентов по очереди выходить в переднюю часть аудитории, вставать перед доской и отбрасывать тень прямо в середину своей собственной стеклянной радуги.

Это был потрясающий эксперимент, и вы можете попробовать провести его у себя дома, потому что создать стеклянную радугу не так уж и сложно. Все зависит от ваших целей. Если вы хотите увидеть только цвета радуги, это довольно легко. Если же хотите увидеть всю радугу целиком, окружающую, словно нимб, вашу голову, придется потрудиться.

Чтобы увидеть небольшой кусочек радуги, вам потребуется лишь кусок черного картона размером 30 квадратных сантиметров, прозрачный аэрозольный клей (мы использовали 3M’s Spray Mount Artist’s Adhesive, но подойдет любой прозрачный аэрозольный клей) и прозрачные сферические стеклянные бусины. Они обязательно должны быть прозрачными и сферической формы. Мы использовали «грубый стеклянный абразив для пескоструйной обработки» с диапазоном диаметра от 150 до 250 микрон.

Разбрызгайте клей по куску картона и посыпьте бусинами. Среднее расстояние между ними не особенно важно, но чем ближе шарики друг к другу, тем лучше. Будьте осторожны с бусинками. Возможно, стоит заняться этим во дворе, чтобы они не рассыпались по полу комнаты. Дайте клею высохнуть, дождитесь солнечного дня и выходите на улицу.

Найдите воображаемую линию (напоминаю, она идет от вашей головы до ее тени на земле). Поместите картон где-то на ней; теперь вы видите на картоне тень своей головы (если солнце в небе низко, можно поставить картон на стул, если высоко, положите картонку на землю; как вы помните, стеклянные шарики в музее Де Кордова тоже лежали на земле). Насколько далеко картон будет находиться от вашей головы, зависит от вас. Предположим, вы поместите его на расстоянии 1,2 метра. Затем сместите его примерно на 0,6 метра от воображаемой линии в направлении, перпендикулярном ей. (Двигать картонку можно в любом направлении – влево, вправо, вверх, вниз!) И увидите цвета стеклянной радуги. А если вы решили поставить картон подальше, скажем на расстоянии 1,5 метра, то, чтобы увидеть цвета радуги, надо сместить его на 0,75 метра. Возможно, у вас возник вопрос, как я получил эти цифры? Все просто: радиус стеклянной радуги составляет около 28 градусов.

После того как увидите цвета радуги, можно подвигать картон по кругу по воображаемой линии и найти другие ее части. Так вы получите всю круговую радугу по частям – точно так же, как мы делали с помощью садового шланга.

Если же вам хочется увидеть всю радугу целиком, окружающую тень вашей головы, потребуется больший кусок черного картона – полный квадратный метр – и намного большее количество стеклянных шариков, приклеенных к нему. Встаньте так, чтобы тень головы находилась близко к центру картона. Если расстояние между вашей головой и картоном будет около 80 сантиметров, вы увидите всю стеклянную радугу полностью. Но если поставите картон слишком далеко, скажем на расстоянии 1,2 метра, то всю радугу не увидите. Так что дерзайте! Выбор за вами.

Внимание! Это не конец книги.

Если начало книги вам понравилось, то полную версию можно приобрести у нашего партнёра - распространителя легального контента. Поддержите автора!

Страницы книги >> Предыдущая | 1 2 3 4 5 6 7 8
  • 0 Оценок: 0

Правообладателям!

Данное произведение размещено по согласованию с ООО "ЛитРес" (20% исходного текста). Если размещение книги нарушает чьи-либо права, то сообщите об этом.

Читателям!

Оплатили, но не знаете что делать дальше?


Популярные книги за неделю


Рекомендации