Электронная библиотека » Виталий Морозков » » онлайн чтение - страница 1


  • Текст добавлен: 4 августа 2017, 00:48


Автор книги: Виталий Морозков


Жанр: Развлечения, Дом и Семья


сообщить о неприемлемом содержимом

Текущая страница: 1 (всего у книги 8 страниц)

Шрифт:
- 100% +

ПРЕДИСЛОВИЕ


Человеческая изобретательность ни в чём не проявляется так, как в играх.

Г.В. Лейбниц


Вся наша жизнь – одна сплошная скука, в ней нет ни фокусов, ни трюков! Да, да, дорогой читатель, ты тоже это знаешь… В нашей жизни не хватает красоты и волшебства, именно поэтому я решил написать эту книгу!


Эта книга о новой настольной игре – ФУТБОЛ НА БУМАГЕ, игре фокусов, трюков и провокаций!


Теперь можно играть в футбол где и когда угодно: за столом, на подоконнике, в школе, университете или на работе, во время любого перерыва, в автобусе, поезде или самолете! Ведь всё, что требуется – это найти партнёра, листок бумаги в клетку и ручку, или смартфон (планшет) со скачанной игрой. ФУТБОЛ НА БУМАГЕ ничуть не уступает своему старшему брату по увлекательности, ведь это игра с собственной стратегией и множеством интересных фишек!


Преимущества ФУТБОЛА НА БУМАГЕ:


Во-первых, демократичность – простота инвентаря и правил, благодаря чему играть в ФУТБОЛ НА БУМАГЕ можно в любом месте и в любое время!


Во-вторых, максимальная реиграбельность – при всей простоте правил, игра удивительно разнообразна и непредсказуема, поэтому играть в ФУТБОЛ НА БУМАГЕ хочется снова и снова!


В-третьих, динамичность – ФУТБОЛ НА БУМАГЕ быстрая игра, можно разыграть прекрасную партию за 5-10 минут, что при современном ритме жизни – бесценно!


В-четвёртых, поле ФУТБОЛА НА БУМАГЕ придаёт игре особый – трюково-провокационный характер, что позволяет использовать в игре не только «сухой расчёт», но и психологию!


В-пятых, научившись играть в ФУТБОЛ НА БУМАГЕ, ты поймешь, что ЛЮБОЕ ДЕЛО – ЭТО ИГРА, и можно действовать эффективно в ситуациях, когда 100-процентный расчёт невозможен. Для этого важно найти и реализовать правильную стратегию!


Но самое главное, что ФУТБОЛ НА БУМАГЕ – это ЖИВАЯ ИГРА со своей ИЗЮМИНКОЙ! Ты сможешь сам в этом убедиться, разучив несколько приемов и сыграв пару партий!


Настала пора развеселить тебя, дорогой читатель, и загадать тебе пару загадок, показать пару трюков! Окунёмся в волшебный мир ФУТБОЛА НА БУМАГЕ вместе!


Ты готов?


Виталий Морозков


КАК ПОЛЬЗОВАТЬСЯ КНИГОЙ


Чтобы научиться играть в ФУТБОЛ НА БУМАГЕ – надо практиковаться! Книга требует твоего участия!


Играй со своими родными, друзьями – это поможет тебе! Ты «почувствуешь» игру, если будешь на практике отрабатывать приемы, изложенные в книге. Невозможно понять вещи, изложенные в книге, если ты не играешь, если ты сам не разбираешь игровые примеры!


Книга построена по принципу «от простого к сложному», от правил до тактических и стратегических приемов игры. Вначале удели внимание правилам, они простые, но, чтобы их понять тебе нужно взять ручку и бумагу в клетку, нарисовать поле и с кем-то поиграть. Не торопись, не старайся охватить все сразу, иди шаг за шагом, прием за приемом, модель за моделью и все получится!


Главу 2 «Математика ФУТБОЛА НА БУМАГЕ» можно пропустить! Ничего страшного не произойдет, это глава для «гурманов».


Читая главу 3 «Теория ФУТБОЛА НА БУМАГЕ» ты можешь «перескакивать» от тактики к стратегии, ведь одно без другого «не живет»!


Лайфхак1: ты можешь нарисовать поле на листе бумаги формата А4, поместить его в файл и с помощью неперманентного маркера и текстильной салфетки использовать одно и тоже поле кучу раз, ведь нарисованные маркером ходы легко стираются с поверхности файла при помощи салфетки!


Лайфхак2: тебе будет легче разбирать игровые примеры, если ты будешь пользоваться простым карандашом и «стирашкой» – начальную конструкцию можно нарисовать ручкой, а различные варианты рассматривать с помощью карандаша и ластика. С помощью этого нехитрого способа ты сэкономишь кучу времени и сил, ведь тебе не придётся рисовать по тысяче раз одну и ту же конструкцию!


Лайфхак3: прежде, чем разбирать игровые примеры, изложенные в книге, хорошенько изучи подглаву «Футбольная нотация» (глава 1 «Правила игры ФУТБОЛ НА БУМАГЕ») и пойми, что это такое! Без понимания нотации разбор игровых ситуаций невозможен! Обязательно прочитай!


Лайфхак4: всю полезную инфу об игре ФУТБОЛ НА БУМАГЕ ты можешь найти в нашей группе ВКонтакте: Футбол на бумаге / Paper soccer / Настолка (https://vk.com/paper_soccer).


И запомни, мастерство сразу не приходит! Оно приходит со временем, с практикой, поэтому самое главное – это получать удовольствие от игры! Если тебе нравится играть, значит, со временем все будет!


Глава 1 ПРАВИЛА ИГРЫ ФУТБОЛ НА БУМАГЕ


ПОШАГОВЫЕ ПРАВИЛА

ФУТБОЛ НА БУМАГЕ (Paper Soccer) – настольная игра для двух человек, имитирующая игру в футбол. На листе бумаги в клетку рисуется поле, на котором два игрока по очереди делают ходы с помощью ручки. Выигрывает тот, кто забивает гол в ворота соперника или загоняет его в тупик.


1 ШАГ:

Находим соперника, берем лист бумаги в клетку, ручку (либо берем планшет, смартфон со скачанной игрой), и удобно усаживаемся за стол. В ФУТБОЛ НА БУМАГЕ играют двое, ходы делают по очереди.


2 ШАГ:

Рисуем поле. Жирным выделены границы и центр поля:





3 ШАГ:

Определяемся, за какие ворота будем играть (Верхние (В) или Нижние (Н) и подписываем каждый свои ворота – в нашем случае сторона, играющая за Верхние ворота (В), назвала себя «Мистер УМНИНГ», а сторона, играющая за Нижние ворота (Н), – «Мадам ИНТУЦИЯ»:





4 ШАГ:

Линии внутри поля пересекаются, и ходы делаются ПО ЭТИМ ПЕРЕСЕЧЕНИЯМ.


Центр поля окружает восемь пересечений (показаны на рисунке – КРАСНЫМ ЦВЕТОМ):





Итак, делаем первый ход – ставим ручку в центр поля и рисуем линию до одного из восьми пересечений, окружающих центр, останавливаемся в нем – первый ход сделан!


Показательная партия будет состоять из 7 ходов – по цветам радуги:








Мадам ИНТУЦИЯ остановилась (сделала свой ход) в одном из восьми пересечений, окружающих центр, потому что в это пересечение ЕЩЕ НЕ БЫЛО СДЕЛАНО ХОДА!


Это главное правило ФУТБОЛА НА БУМАГЕ и обязанность каждого игрока:

– останавливаться (ход сделан) в пересечении, в которое еще не было сделано хода (НЕЗАНЯТОЕ ПЕРЕСЕЧЕНИЕ);

– отталкиваться (продолжать ход, «ДАВАТЬ ПАС», «РИКОШЕТИТЬ») из пересечения, в которое уже был сделан ход (ЗАНЯТОЕ ПЕРЕСЕЧЕНИЕ).


Очередной ход совершается из последнего ЗАНЯТОГО ПЕРЕСЕЧЕНИЯ.





Все просто:

– попав во время хода в НЕЗАНЯТОЕ ПЕРЕЧЕНИЕ – ты останавливаешься в нем (ты свой ход сделал);

– попадая во время хода в ЗАНЯТЫЕ ПЕРЕСЕЧЕНИЯ – ты отталкиваешься от них (продолжаешь свой ход, «ДАЁШЬ ПАС», «РИКОШЕТИШЬ»).

«Рикошетить» (отталкиваться от ЗАНЯТЫХ ПЕРЕСЕЧЕНИЙ) во время хода можно сколь угодно долго до тех пор, пока ты не попадешь в НЕЗАНЯТОЕ ПЕРЕСЕЧЕНИЕ, в котором ты обязан остановиться!


До того момента, пока не сделан первый ход, ЗАНЯТЫМИ ПЕРЕСЕЧЕНИЯМИ считаются ЦЕНТР ПОЛЯ и ПЕРЕСЕЧЕНИЯ, НАХОДЯЩИЕСЯ НА ЕГО ГРАНИЦЕ, т.е. от центра поля и от границ во время хода надо отталкиваться «РИКОШЕТИТЬ».





Как видно из рисунка – Мадам ИНТУЦИЯ, делая третий ход, попадала в два пересечения:

– первое пересечение оказалось ЦЕНТРОМ ПОЛЯ и Мадам ИНТУЦИЯ оттолкнулась от него (продолжила свой ход), поскольку центр поля является ЗАНЯТЫМ ПЕРЕСЕЧЕНИЕМ (из него делался первый ход);

– второе пересечение оказалось НЕЗАНЯТЫМ и Мадам ИНТУЦИЯ в нем остановилась.





Как видно из рисунка – Мистер УМНИНГ, делая четвертый ход, попадал в два пересечения:

– первое пересечение оказалось ЗАНЯТЫМ (показано на рисунке – КРАСНЫМ ЦВЕТОМ) и Мистер УМНИНГ оттолкнулся от него – «ОТРИКОШЕТИЛ»;

– второе пересечение оказалось НЕЗАНЯТЫМ и Мистер УМНИНГ в нем остановился.





Как видно из рисунка – Мадам ИНТУЦИЯ, делая пятый ход, попадала в два пересечения:

– первое пересечение НАХОДИТСЯ НА ГРАНИЦЕ ПОЛЯ (показано на рисунке – КРАСНЫМ ЦВЕТОМ) и Мадам ИНТУЦИЯ оттолкнулась от него (продолжила свой ход), поскольку ПЕРЕСЕЧЕНИЯ, НАХОДЯЩИЕСЯ НА ГРАНИЦЕ ПОЛЯ являются ЗАНЯТЫМИ ПЕРЕСЕЧЕНИЯМИ и от них надо отталкиваться;

– второе пересечение оказалось НЕЗАНЯТЫМ и Мадам ИНТУЦИЯ в нем остановилась.





Как видно из рисунка – Мистер УМНИНГ, делая шестой ход, попадал в два пересечения:

– первое пересечение НАХОДИТСЯ НА ГРАНИЦЕ ПОЛЯ (показано на рисунке – КРАСНЫМ ЦВЕТОМ) и Мистер УМНИНГ оттолкнулся от него – «отрикошетил», поскольку ПЕРЕСЕЧЕНИЯ, НАХОДЯЩИЕСЯ НА ГРАНИЦЕ ПОЛЯ являются ЗАНЯТЫМИ ПЕРЕСЕЧЕНИЯМИ и от них надо отталкиваться;

– второе пересечение оказалось НЕЗАНЯТЫМ и Мистер УМНИНГ в нем остановился.


!ЗАПОМНИ!


Линия, которую ты рисуешь ручкой во время хода – называется МАРШРУТОМ.


Ходить по пройденным маршрутам (по уже нарисованным линиям) – ЗАПРЕЩАЕТСЯ!


То есть, ходить по нарисованным линиям, ходить «по пройденному»ЗАПРЕЩЕНО! В игре «дважды по одной дороге» не ходят.


Границы поля считаются пройденными маршрутами, ходить по границе и выходить за нее – ЗАПРЕЩЕНО!


В игре можно победить ДВУМЯ СПОСОБАМИ:


1-Й СПОСОБ ВЫИГРЫША:


Для победы в партии тебе необходимо «ЗАБИТЬ ГОЛ» в ворота соперника, т.е. занять любое из трех пересечений, находящихся в его воротах (показаны на рисунке – КРАСНЫМ ЦВЕТОМ):





Игрок проигрывает, если «ЗАБИВАЕТ ГОЛ» в свои ворота – «АВТОГОЛ».





Как видно из рисунка – Мадам ИНТУЦИЯ, делая седьмой ход, попадала в два пересечения:

– первое пересечение НАХОДИТСЯ НА ГРАНИЦЕ ПОЛЯ (показано на рисунке – КРАСНЫМ ЦВЕТОМ) и Мадам ИНТУЦИЯ «отрикошетила» от него (продолжила свой ход), поскольку ПЕРЕСЕЧЕНИЯ, НАХОДЯЩИЕСЯ НА ГРАНИЦЕ ПОЛЯ являются ЗАНЯТЫМИ ПЕРЕСЕЧЕНИЯМИ и от них надо отталкиваться;

– второе пересечение оказалось ПЕРЕСЕЧЕНИЕМ, НАХОДЯЩИМСЯ В ВОРОТАХ Мистера УМНИНГА, и, заняв это пересечение, Мадам ИНТУЦИЯ выиграла партию – ЗАБИЛА ГОЛ Мистеру УМНИНГУ.


2-Й СПОСОБ ВЫИГРЫША:


Партию проигрывает игрок, оказавшийся в ЗАНЯТОМ ПЕРЕСЕЧЕНИИ, из которого невозможно сделать ход – «ПОПАВШИЙ В ТУПИК» (например, попав в угол – ты проигрываешь партию).





Как видно из рисунка – Мадам ИНТУЦИЯ, делая седьмой ход, ПОПАЛА В УГОЛ, а значит, проиграла партию, т.к. оказалась в занятом пересечении (поскольку ПЕРЕСЕЧЕНИЯ, НАХОДЯЩИЕСЯ НА ГРАНИЦЕ ПОЛЯ являются ЗАНЯТЫМИ ПЕРЕСЕЧЕНИЯМИ), из которого невозможно сделать ход – ПОПАЛА В ТУПИК!


ПЕРВАЯ ПАРТИЯ СЫГРАНА!


КОРОТКИЕ ПРАВИЛА

1). В ФУТБОЛ НА БУМАГЕ играют двое, ходы делают по очереди. Поле рисуют на клетчатой бумаге (рис. 1). Более жирным цветом выделены границы и центр поля.





Линии внутри поля образуют пересечения, которые делятся на занятые и пустые (незанятые). До того момента, пока не сделан первый ход, занятыми пересечениями считаются центр поля и пересечения, находящиеся на его границе.


2). Первый ход делается из центра поля. В ФУТБОЛЕ НА БУМАГЕ существует пять принципиально разных вариантов первого хода (рис. 2).





Остальные три варианта всего лишь отражения. Т.о. первый ход можно сделать из центра поля в любое из восьми пустых пересечений. Встав в пустое пересечение, игрок должен в нём остановиться (он сделал свой ход), а данное пустое пересечение превращается в занятое и из него другой игрок делает свой ход. Очередной ход совершается из последнего занятого пересечения. Делая свой ход и попав в занятое пересечение, игрок должен из него сходить («дать пас») и так делать до тех пор, пока не попадёт в пустое пересечение, в котором должен остановиться.

3). Линия хода называется маршрутом. Ходить по пройденным маршрутам запрещается. Границы поля считаются пройденными маршрутами.

4). Для победы в партии необходимо «забить гол» в ворота противника, т.е. встать в пересечение, находящееся в его воротах (игрок также проигрывает, если «забивает гол» в свои ворота – «автогол»). На рисунке 3-1 приведён пример поражения Верхних ворот (В) забиванием гола.





Также партию проигрывает игрок, оказавшийся в занятом пересечении из которого невозможно сделать ход – «попавший в тупик». На рисунке 3-2 приведён пример такого поражения.

Естественных ничьих в ФУТБОЛЕ НА БУМАГЕ не бывает, возможна только ничья по договорённости сторон.


ФУТБОЛЬНАЯ НОТАЦИЯ

Для записи футбольных конструкций, ходов и партий используется специальная футбольная нотация: аналитическая и графическая.


Аналитическая нотация (АН).

Вертикальные пересечения обозначаются латинскими буквами от «a» до «g», а горизонтальные – цифрами от 1 до 11. Т.е. в футбольной «системе координат» каждое пересечение поля определяется буквой и цифрой. На рисунке 4 показаны координаты всех пересечений поля.





Красным цветом обозначены нечётные пересечения, чёрнымчётные. Если игроки строго соблюдают правила и партия доигрывается до победного конца – маршрут последнего хода всегда заканчивается в красном пересечении. Доказательство этого утверждения, а также определение чётных и нечётных пересечений даётся во второй главе книги – «Математика ФУТБОЛА НА БУМАГЕ».


Графическая нотация (ГН) – это рисунок маршрута хода.

Для наглядности можно показать ход, записанный с помощью графической и аналитической нотации. Из конструкции, показанной на рисунке 5-1, делается следующий ход: f8-g7-f6 (он показан на рисунке 5-2).





При записи ходов и партий используются следующие сокращения:


В – Верхний игрок, Верхние ворота (сторона, играющая за Верхние ворота);

Н – Нижний игрок, Нижние ворота (сторона, играющая за Нижние ворота).


Также используется запись следующего вида: (В;Н) или (Н;В).

Пример: запись (В;Н) означает, что первый ход из данной конструкции (и следовательно все нечётные ходы) делает Верхний игрок (В); а Нижний игрок (Н) соответственно делает второй ход (и следовательно все чётные ходы).


ГН – графическая нотация;

АН – аналитическая нотация;

!! – очень сильный ход;

! – сильный ход;

?? – очень слабый ход;

? – слабый ход;

act – активный ход;

pas – пассивный ход;


ку2 – использование стратегического приёма защита «ку-ку» (метод провокаций);

mpk – использование стратегического приёма «эмпэкашка» (метод плотных конструкций);

БП – безвыходное положение;

ЧВ(В), ЧВ(Н) – чётный выход в пользу Верхнего (В) или Нижнего игрока (Н);

Х – конец партии.


Глава 2 МАТЕМАТИКА ФУТБОЛА НА БУМАГЕ


Прежде чем перейти к изучению математических особенностей игры необходимо ввести определение размеров футбольного поля.

Размеры симметричного футбольного поля – это числовая совокупность вида (n1;n2;n3), где n1, n2, n3 – это:





Таким образом, наше футбольное поле имеет размеры (2;6;8).


1). Дано: симметричное футбольное поле размера (n1;n2;n3).

Определить: количество незанятых пересечений – N.

Решение: из рисунка 6 очевидно, что: N=2(n1-1)+(n2-1)(n3-1)-1

для нашего футбольного поля: N=2(2-1)+(6-1)(8-1)-1=36


2). Дано: симметричное футбольное поле размера (n1;n2;n3).

Доказать: на данном поле всегда чётное количество незанятых пересечений.

Доказательство: т.к. поле симметрично, то очевидно, что n1, n2, n3 – всегда являются чётными числами. Введём обозначения: Н – нечётное число; Ч – чётное число. Тогда:





Из формулы определения количества пустых пересечений следует:

N=Ч(Ч-Н)+(Ч-Н)(Ч-Н)-Н=ЧН+НН-Н=Ч+Н-Н=Н-Н=Ч

Таким образом, N всегда.


3). Дано: диаграмма с изображением сыгранной партии или части партии.

Определить: сколько было сделано ходов.

Решение: т.к. игрок ходит до тех пор пока маршрут хода не попадёт в пустое пересечение – очевидно, что, подсчитав количество пересечений, превратившихся из пустых в занятые, мы определим и количество совершённых ходов.

На рисунке 7-1 дана диаграмма сыгранной партии, а на рисунке 7-2 показаны «превратившиеся» пересечения (они обозначены красным цветом).





Обозначим количество «превратившихся» пересечений через P. Из рисунка 7-2 очевидно, что: Р=33-1=8

Таким образом, в партии было сделано 8 ходов.


4). Дано: диаграмма с изображением сыгранной партии или части партии.

Доказать: 1. количество рёбер, исходящих из центра поля и последнего занятого пересечения всегда нечётно;

2. количество рёбер, исходящих из любого другого занятого пересечения всегда чётно.

Ребро – отрезок, соединяющий два занятых пересечения.


Доказательство:

1. первый ход делается из центра поля (например d6-d7). Таким образом, после первого хода из центра поля исходит одно ребро. При дальнейшей игре «встав» в центр поля игрок должен от него «оттолкнуться».

Обозначим количество рёбер, исходящих из центра поля, через С. Тогда очевидно, что: С=1+2+…+2=Н+Ч+…+Ч=Н+Ч=Н


Максимальное количество рёбер, исходящих из центра поля, равно 7 (после трёх прохождений через центр, на четвёртом игрок попадает в тупик).

Очевидно, что количество рёбер, исходящих из последнего занятого пересечения равно 1, а следовательно нечётно.


2. Пересечения не являющиеся ни последними, ни центром поля сами были последними, но потом из них делали ход, т.е. количество рёбер, исходящих из данных пересечений, становилось равным 2. При дальнейшей игре «встав» в данное пересечение игрок должен от него «оттолкнуться». Обозначим количество рёбер, исходящих из такого пересечения (которое не является ни последним, ни центром поля), через S. Тогда очевидно, что:

S=2+2+…+2=Ч+Ч+…+Ч=Ч





На рисунке 8-1 приведён пример конструкции. Из данного положения ходят Нижние ворота (Н), хотя для них нет выхода, они «чудесным образом» его находят, и проход к воротам с лёгкостью перекрывается (рис. 8-2). Дело в том, что Нижние ворота (Н) попросту «смухлевали». Из пересечений d3 и c4 исходит нечётное количество рёбер. Этого быть никак не может, т.к. в соответствии с доказанным выше утверждением из пересечений d3 и c4 должно исходить чётное количество рёбер. Нижние ворота (Н) просто-напросто дорисовали «недостающее» ребро (c4;d3), через которое им забивается гол!


5). Дано: симметричное футбольное поле произвольных размеров.

Дать определение: понятия чётных и нечётных пересечений.


5.1. В ФУТБОЛЕ НА БУМАГЕ существует два вида пересечений: тупиковые и нетупиковые.

Тупиковыми называются пересечения, в которых можно попасть в тупик. Соответственно нетупиковыми называются пересечения, в которых нельзя попасть в тупик.

Попасть в тупик можно, если почти все рёбра, исходящие из данного пересечения заняты, т.е. если у данного пересечения осталось только одно незанятое ребро. Пример такого пересечения показан на рисунке 9.





Занявший такое пересечение игрок попадает в «тупик» и по правилам ФУТБОЛА НА БУМАГЕ проигрывает (рис. 10).





Нельзя попасть в «тупик» если у данного пересечения осталось два незанятых ребра. Пример такого пересечения показан на рисунке 11.





Занявший такое пересечение игрок по правилам ФУТБОЛА НА БУМАГЕ должен продолжить ход. Т.о. больше нет возможности сходить в это пересечение, т.к. все исходящие из него рёбра заняты (рис. 12).





Т.о. можно условно обозначить тупиковые пересечениянечётными, а нетупиковыечётными.


5.2. Теперь давайте исследуем на чётность все виды пересечений футбольного поля (кроме воротных пересечений – они этим свойством не обладают, т.к. по правилам ФУТБОЛ НА БУМАГЕ, если такое пересечение занято – одна из сторон автоматически проигрывает партию; это особенные пересечения).

В ФУТБОЛЕ НА БУМАГЕ существует семь видов пересечений (они показаны на рисунке 13).





Исследование на чётность:

1 – центр поля (d6):

Из этого пересечения делается первый ход, после чего от него отходят семь незанятых граней (рис. 14).




При дальнейшей игре, заняв центр, нужно от него «оттолкнуться», т.е. каждый раз будут заниматься две грани: 7:2=2×3+1

Т.е. после трёх прохождений через центр от него будет отходить одна незанятая грань. Если эту грань занять – ты попадёшь в тупик. Таким образом, центр – это нечётное пересечение.


2 – краевые пересечения (a3-…-a9; g3-…-g9; b2; b10; f2; f10):

Поскольку эти пересечения с самого начала игры считаются занятыми, то, сходив в одно из таких пересечений, от него надо «оттолкнуться». После этого от данного пересечения отходит одна грань (рис. 15).





Заняв эту грань – ты попадёшь в тупик. Таким образом, краевые пересечения являются нечётными.


3 – угловые пересечения (a2; g2; a10; g10):

Очевидно, что данные пересечения являются нечётными, поскольку от них отходит всего одна грань, заняв которую ты попадаешь в тупик.


4 – полевые пересечения ((b3-…b9;…; f3-…f9) – кроме d6):

Эти пересечения в начале партии являются пустыми и по ходу игры «превращаются» в занятые. Это происходит следующим образом: одна из сторон занимает полевое пересечение и в нём «останавливается», затем другая сторона ходит из этого пересечения. Т.о. от полевого пересечения будут отходить шесть незанятых граней (рис. 16):





При дальнейшей игре, заняв полевое пересечение, нужно от него «оттолкнуться», т.е. каждый раз будут заниматься две грани: 6:2=2×3

Т.е. после трёх прохождений через полевое пересечение ты займёшь все грани и дальнейший проход в такое пересечение невозможен. То есть, в полевом пересечении нельзя попасть в тупик, оно является чётным.


5, 6 – околоворотные пересечения (c2; c10; e2; e10; d2; d10):

Часть рёбер, исходящих от данных пересечений, соединена с воротными пересечениями, т.е. с пересечениями, заняв которые одной из сторон автоматически засчитывается поражение. Таким образом, условие тупиковости (нечётности) для околоворотных пересечений не может быть выполнено и они являются чётными.

Если бы в ФУТБОЛЕ НА БУМАГЕ отсутствовало правило гола – то 6 пересечения (c2;c10;e2;e10) превратились бы в тупиковые (поскольку от них отходят пять незанятых граней), а 5 пересечения (d2;d10) остались бы также чётными и были бы простыми полевыми пересечениями.


Теперь давай представим результаты в графическом виде (нечётные и воротные пересечения изображены красным цветом, чётные – чёрным):





Таким образом, если партия ведётся строго по правилам и доигрывается до победного конца – последним занимается одно из красных пересечений.


6). Следствие нечётности пересечений:

а). Введём определение изолированной группы:

изолированная группа – это конструкция, при которой проход к обоим воротам полностью перекрыт. Пример изолированной группы показан на рисунке 17.





б). Внутри изолированной группы всегда есть хотя бы одно нечётное пересечение. Это вполне очевидно – ведь если проход к обоим воротам полностью перекрыт, то в итоге одна из сторон попадёт в тупик, т.е. займёт тупиковое (нечётное) пересечение.

В примере представленном на рисунке 17 таким пересечением является центр.


Дано: симметричное футбольное поле произвольного размера

Доказать: на данном поле нельзя построить конструкцию следующего вида:





Доказательство: допустим, что такую конструкцию можно построить, тогда внутри неё должно быть хотя бы одно нечётное пересечение, но таких пересечений внутри данной конструкции нет, а есть только полевые пересечения, которые являются чётными, в чётном пересечении нельзя попасть в тупик. Мы пришли к противоречию – следовательно, такую конструкцию нельзя построить, если строго соблюдать правила ФУТБОЛА НА БУМАГЕ. Приведённая на рисунке 18 конструкция построена с нарушением правил игры.

Данное утверждение справедливо для футбольных полей любых конфигураций, необходимо только, чтобы совпадала «внутренняя геометрия».


7). Дано: ты договариваешься с противником о проведении матча.

Определить: на каком количестве партий в матче тебе нужно настаивать, чтобы твои шансы на успех были максимальными.


Решение:

Матч может состоять из нечётного или чётного количества партий. Поскольку в отдельной футбольной партии ничьи быть не может, то в нечётном матче всегда определяется победитель. В матче же, состоящем из чётного количества партий игроки могут сыграть в ничью. Для победы в матче требуется выиграть абсолютное большинство партий:

- для нечётного матча – k партий из n, где (n+1)/2 k n;

- для чётного матча – f партий из m, где m/2+1 f m


Введём несколько понятий:

– нечётный матч – матч, состоящий из нечётного количества партий.

- чётный матч – матч, состоящий из чётного количества партий.


Определение «формулы» матча зависит от нескольких обстоятельств:

1). Тебе нужна победа в матче или тебя устроит и ничья (т.е. игра будет вестись на победу или на непоражение); т.к. выиграть матч, состоящий из нечётного количества партий N, меньше шансов, чем не проиграть матч, состоящий из чётного количества партий (N+1).

Для наглядности можно привести простой пример:

Перед тобой дилемма – выбирать матч, состоящий из одной или из двух партий. Очевидно, что более надёжный вариант – это две партии, поскольку даже если ты проиграешь в первой партии – возможно тебе удастся отыграться во второй и свести матч вничью. Но, если тебе в силу тех или иных обстоятельств нужна только победа, конечно лучше играть одну партию. Таким образом, здесь всё зависит от твоей цели.

2). Знаешь ли ты свои шансы на победу в одной партии.

3). Если знаешь то каковы они (меньше или больше, чем у противника, или равны).


1. Допустим, что ты знаешь свои шансы на победу в отдельной партии:


- Н1(n) – вероятность не проиграть в матче, состоящем из n партий, для первого игрока

- Н2(n) – вероятность не проиграть в матче, состоящем из n партий, для второго игрока

- В1(n) – вероятность выиграть в матче, состоящем из n партий, для первого игрока

- В2(n) – вероятность выиграть в матче, состоящем из n партий, для второго игрока

- Д(n) – вероятность того, что игроки сыграют в ничью матч из n партий (n – всегда чётное)


1.1. Вероятность того, что матч выиграет один из игроков или он закончится в ничью (если это чётный матч) равна 1. Пускай в нашем небольшом исследовании 1 будет равна 729 (36) шансам.

Допустим, что: Н1(1)=В1(1)=1/3; тогда Н2(1)=В2(1)=2/3. Т.е. вероятность выиграть для первого игрока в одной партии равна 243 шансам, для второго – 486 шансам. Тогда:








Выводы из таблиц 1 и 2:

1). Шансов выиграть в нечётном матче из n партий больше, чем в чётном из (n+1) партий;

2). Шансы на выигрыш у более слабого игрока с увеличением количества партий «тают на глазах», а у более сильного игрока наоборот возрастают;

3). Шансов не проиграть в чётном матче из n партий больше, чем в нечётном из (n-1) партий;

4). Шансы на непроигрыш у более слабого игрока с увеличением количества партий также становятся меньше, а у более сильного игрока возрастают.


1.2. Допустим, что: Н1(1)=В1(1)=Н2(1)=В2(1)=1/2. Т.е. шансы игроков на выигрыш в отдельной партии равны.


1.2.1. Для нечётного матча (n – нечётное число):

1=В1(n)+В2(n), т.к. В1(1)=В2(1), тогда и В1(n)=В2(n)=1/2; т.е. вероятность выиграть у каждого из игроков в нечётном матче постоянна и равна 1/2.


1.2.2. Для чётного матча (n – чётное число):

1= В1(n)+В2(n)+Д(n), т.к. В1(1)=В2(1), тогда и В1(n)=В2(n)=Х

1=Х+Х+Д(n)=2Х+Д(n)

2Х=1-Д(n)

Х=(1-Д(n))/2=1/2-Д(n)/2

Х<1/2

В1(n),В2(n)<1/2; т.е. вероятность выиграть у каждого из игроков в чётном матче меньше 1/2.

Х+Д(n)=1-Х, т.к. Х<1/2, то Х+Д(n)>1/2; т.е. вероятность не проиграть у каждого из игроков в чётном матче больше 1/2.

Однако вероятности выигрыша и непроигрыша непостоянны. Вероятность сыграть в ничью с увеличением количества партий уменьшается, следовательно, вероятность выигрыша увеличивается, а непроигрыша уменьшается. Обе эти величины стремятся к 1/2. Т.е. больше всего шансов не проиграть у игроков в матче из двух партий:

Н1(2)= Н2(2)=3/4


2. Допустим, что ты не знаешь свои шансы на победу в отдельной партии:

2.1. Если хочешь играть на победу – тебе нужен нечётный матч, состоящий из как можно меньшего количества партий. Оптимальный вариант – матч из одной партии. Объясняется это очень просто: т.к. ты не знаешь своих шансов, то они могут оказаться меньше, чем у противника, и, выбирая «длинный» матч, ты только усугубишь своё положение. Если же твои шансы больше или равны – то они такими и останутся.

2.2. Если хочешь играть на непоражение – тебе нужен чётный матч, состоящий из как можно меньшего количества партий. Оптимальный вариант – матч из двух партий.


Теперь можно подвести общий итог:

1). Если хочешь не проиграть – тебе нужен чётный матч:


1.1. Если знаешь свои шансы:

1.1.1. Играешь сильнее – чем больше партий, тем лучше.

1.1.2. Играешь слабее или на равных – чем меньше партий, тем лучше. Оптимальный вариант – матч из двух партий.


1.2. Если не знаешь свои шансы – чем меньше партий, тем лучше. Оптимальный вариант – матч из двух партий.


2). Если хочешь выиграть – тебе нужен нечётный матч:


1.1. Если знаешь свои шансы:

1.1.1. Играешь сильнее – чем больше партий, тем лучше.

1.1.2. Играешь слабее – чем меньше партий, тем лучше. Оптимальный вариант – матч из одной партий.

1.1.3. Играешь на равных – количество партий в матче не имеет значения, т.к. вероятность победить постоянна и равна 1/2.


1.2. Если не знаешь свои шансы – чем меньше партий, тем лучше. Оптимальный вариант – матч из одной партий.


Теперь оформим полученные результаты в виде таблицы:





Следует сказать, что полученные результаты лишь идеальная математическая модель. Данная модель не учитывает того, что шансы игроков во время проведения матча могут меняться, например, в зависимости от их игровой выносливости, обучаемости. Но вообще – это хорошие «рабочие» правила.

К тому же (в первую очередь начинающим игрокам) я бы посоветовал просто играть в своё удовольствие, не задумываясь обо всех этих математических премудростях, с равными по силе игроками.


Страницы книги >> 1 2 3 4 5 6 7 8 | Следующая
  • 0 Оценок: 0

Правообладателям!

Это произведение, предположительно, находится в статусе 'public domain'. Если это не так и размещение материала нарушает чьи-либо права, то сообщите нам об этом.


Популярные книги за неделю


Рекомендации